Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

PDF Version Also Available for Download.

Description

The neutralization of solutions containing significant quantities of fissile material at the Department of Energy's Savannah River Site and the subsequent transfer of the slurry to the High Level Waste (HLW) system is accomplished with the addition of a neutron poison to ensure nuclear safety. Gd, depleted U, Fe, and Mn have been used as poisons in the caustic precipitation of process solutions prior to discarding to HLW. However, the use of Gd is preferred since only small amounts of Gd are necessary for effective criticality control, smaller volumes of metal hydroxides are produced, and the volume of HLW glass ... continued below

Physical Description

vp.

Creation Information

Visser, A.E. July 7, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The neutralization of solutions containing significant quantities of fissile material at the Department of Energy's Savannah River Site and the subsequent transfer of the slurry to the High Level Waste (HLW) system is accomplished with the addition of a neutron poison to ensure nuclear safety. Gd, depleted U, Fe, and Mn have been used as poisons in the caustic precipitation of process solutions prior to discarding to HLW. However, the use of Gd is preferred since only small amounts of Gd are necessary for effective criticality control, smaller volumes of metal hydroxides are produced, and the volume of HLW glass resulting from this process is minimized.

Physical Description

vp.

Source

  • Other Information: PBD: 7 Jul 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2003-00193
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/812302 | External Link
  • Office of Scientific & Technical Information Report Number: 812302
  • Archival Resource Key: ark:/67531/metadc736045

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 7, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • May 5, 2016, 6:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Visser, A.E. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison, report, July 7, 2003; South Carolina. (digital.library.unt.edu/ark:/67531/metadc736045/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.