Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

PDF Version Also Available for Download.

Description

Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified ... continued below

Physical Description

vp.

Creation Information

Braby, L. A.; Reece, W. D. & Hsu, W. H. August 29, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and scattering environment of the actual radiation exposure.

Physical Description

vp.

Notes

INIS; OSTI as DE00813694

Source

  • Other Information: PBD: 29 Aug 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID/14103
  • Grant Number: FG07-01ID14103
  • DOI: 10.2172/813694 | External Link
  • Office of Scientific & Technical Information Report Number: 813694
  • Archival Resource Key: ark:/67531/metadc736039

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 29, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 4, 2017, 1:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Braby, L. A.; Reece, W. D. & Hsu, W. H. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields, report, August 29, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc736039/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.