RMOTC TEST REPORT
DOE/RMOTC - 020167

TUCKER WIRELINE
OPEN HOLE WIRELINE LOGGING

April 5, 2002 - April 6, 2002

Work performed under Rocky Mountain Oilfield Testing Center (RMOTC)
CRADA 2002-014

Data of Publication: May 23, 2002
Author: Mark Milliken, RMOTC Project Coordinator

RMOTC
Rocky Mountain Oilfield Testing Center

Approval:

RMOTC Manager____________________________________Date_________________
ABSTRACT

The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and density-porosity.
RMOTC TEST REPORT

TUCKER WIRELINE OPEN HOLE WIRELINE LOGGING

CRADA 2002-014
DOE Project Code 6730.02.016Y
Mark Milliken, Project Coordinator
May, 2002

RMOTC
Rocky Mountain Oilfield Testing Center

Summary of results. The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic porosity, and density porosity.

For this report, the logs were compared at picks based on three types of Tensleep lithologies: clean blocky sand, dolomitic sand, and a clean thin sand. Most of the data were comparable, and the differences are probably within the error range of the tools and supporting algorithms. There was an 8-9 ft difference in measured depth.

Tucker Wireline and their technology. Tucker Wireline is one of seven divisions of the Tucker Energy Services, based in Houston, TX. Tucker's other divisions include drilling, completion, marine, completion, technology, and oilfield services.

Equipment. For the RMOTC test, Tucker Wireline brought in these tools (Figure 1):

- Triple stack.
- Dual Laterolog (run at RMOTC's request).
- BHC Sonic.

The triple stack includes the Phased Induction (PIT), Neutron (CNT), and Density (LDT) tools. The digital Phased Induction tool is designed to measure deep, medium, and shallow resistivity. The digital Borehole Compensated Neutron tool is a contact pad device used to determine formation porosity. It is compensated to overcome environmental conditions affecting detector neutron tools. The digital Borehole Compensated Litho-Density tool is a contact pad device used to determine the bulk density of the formation.
The Dual Laterlog tool provides the deep resistivity measurement, LLD, and the shallow resistivity measurement, LLS. Under normal conditions, LLS will be the resultant of the flushed, invaded and transition zones, while LLD, although affected by the previous zones, will respond to mainly the virgin zone. The accuracy of the measurement requires that the undisturbed formation have the largest contribution on the reading. Therefore, the mud resistivity must be low relative to the formation resistivity. RMOTC requested this tool to get more accurate deep resistivity (Rt) data in the Tensleep formation. The relatively fresh Tensleep formation water (0.6 ohm-m) is fresher than the mud filtrate (0.47 ohm-m).

The Phased Induction (PIT) tool measures induction signals for deep and medium induction. SP, temperature and spherically focused resistivity (SFL) are also measured.

The BHC Sonic (CST-AA) tool is a two transmitter, two receiver design with 3' - 5' spacing. The tool provides borehole compensated travel time, sonic amplitude and integrated transit time.

**Test procedure and results.** A log run was attempted on April 5 about 2 hours after the contract logger left the location. A bridge was encountered at about 4400 ft., and a decision was made to abandon the logging attempt to clean out the hole. On April 6, Tucker re-entered the hole with the triple combo string to a depth of 5947 ft, the driller's depth. All three logging trips were made without problem. The results are summarized in Appendix 1. Logs of the Tensleep B sand zone are shown in Appendix 2 for comparison.

**Tucker Wireline contact:**
Bob Joyce, Business Development Manager, U.S.
Tucker Wireline Services
15311 Vantage Parkway West, Suite 250
Houston, TX 77032
Office: 281-442-9095 ext. 206
Email: Bob.Joyce@TuckerEnergy.com
APPENDIX 1

COMPARISON OF TUCKER AND CONTRACTOR OPEN HOLE LOGGING DATA
## APPENDIX 1. COMPARISON OF TUCKER AND CONTRACTOR OPEN HOLE LOGGING DATA

### NPR3 25-1-X-14

<table>
<thead>
<tr>
<th>LOG PICK</th>
<th>MEASURED DEPTH TUCKER</th>
<th>MEASURED DEPTH CONTR.</th>
<th>DIFF*</th>
<th>SONIC POROSITY % TUCKER</th>
<th>SONIC POROSITY % CONTR.</th>
<th>DIFF</th>
<th>TRAVEL TIME, MS/F TUCKER</th>
<th>TRAVEL TIME, MS/F CONTR.</th>
<th>DIFF</th>
<th>NEUTRON POROSITY % TUCKER</th>
<th>NEUTRON POROSITY % CONTR.</th>
<th>DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENSLEEP UPPER B SAND</td>
<td>5826</td>
<td>5834</td>
<td>8</td>
<td>18</td>
<td>17</td>
<td>-1</td>
<td>76</td>
<td>75</td>
<td>-1</td>
<td>12</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>TENSLEEP LOWER B DOLOMITE</td>
<td>5854</td>
<td>5863</td>
<td>9</td>
<td>2</td>
<td>1.5</td>
<td>-0.5</td>
<td>53</td>
<td>53</td>
<td>0</td>
<td>3.5</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>TENSLEEP LOWER B SAND</td>
<td>5859</td>
<td>5868</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>68</td>
<td>68</td>
<td>0</td>
<td>9</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

*DIFF = CONTR. - TUCKER

<table>
<thead>
<tr>
<th>LOG PICK</th>
<th>DENSITY POROSITY % TUCKER</th>
<th>DENSITY POROSITY % CONTR.</th>
<th>DIFF</th>
<th>DEEP LATEROLOG RT OHM-METERS TUCKER</th>
<th>DEEP LATEROLOG RT OHM-METERS CONTR.</th>
<th>DIFF</th>
<th>DUAL INDUCTION RT OHM-METERS TUCKER</th>
<th>DUAL INDUCTION RT OHM-METERS CONTR.</th>
<th>DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENSLEEP UPPER B SAND</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>55</td>
<td>48</td>
<td>-7</td>
<td>40</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TENSLEEP LOWER B DOLOMITE</td>
<td>-7</td>
<td>-6</td>
<td>1</td>
<td>900</td>
<td>1100</td>
<td>200</td>
<td>&gt;2000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TENSLEEP LOWER B SAND</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>60</td>
<td>40</td>
<td>-20</td>
<td>70</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

MILLIKEN 5/17/02
APPENDIX 2

Log Comparisons