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Abstract. Detecting cancerous lesion is an important task in positron
emission tomography (PET). Bayesian methods based on the maximum
a posteriori principle (also called penalized maximum likelihood meth-
ods) have been developed to deal with the low signal to noise ratio in
the emission data. Similar to the filter cut-off frequency in the filtered
backprojection method, the prior parameters in Bayesian reconstruction
control the resolution and noise trade-off and hence affect detectability
of lesions in reconstructed images. Bayesian reconstructions are difficult
to analyze because the resolution and noise properties are nonlinear and
object-dependent. Most research has been based on Monte Carlo simula-
tions, which are very time consuming. Building on the recent progress on
the theoretical analysis of image properties of statistical reconstructions
and the development of numerical observers, here we develop a theo-
retical approach for fast computation of lesion detectability in Bayesian
reconstruction. The results can be used to choose the optimum hyperpa-
rameter for the maximum lesion detectability. New in this work is the use
of theoretical expressions that explicitly model the statistical variation
of the lesion and background without assuming that the object variation
is (locally) stationary. The theoretical results are validated using Monte
Carlo simulations. The comparisons show good agreement between the
theoretical predications and the Monte Carlo results.

1 Introduction

Task-specific evaluation of medical imaging methods has become increasingly
important. Two major applications of PET are lesion detection and region of
interest quantitation. Due to the low signal to noise ratio (SNR) in PET data,
statistically based image reconstruction methods have been developed to improve
image quality [1-4]. To explore the full potential of statistical reconstruction,
the reconstruction methods need to be optimized for PET applications. Such
optimization requires fast computation of the task-specific figures of merit for
statistical reconstructions. Here we focus on the detection task.
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A general methodology for studying lesion detectability is the human observer
ROC (receiver operating characteristics) study, where physicians read images
and decide whether there is a lesion or not. A ROC curve is generated by plotting
the true positive fraction vs. the false positive fraction. Using human observers
can be time consuming, so numerical observers based on signal detection theory
have been developed [5]. While numerical observers reduce the time of ROC
studies, Monte Carlo reconstructions are often needed to provide the sample
images. Hence the total computation time is still long.

While theoretical analysis is difficult because statistical algorithms are non-
linear, progress has been made in understanding the nonlinear properties of sta-
tistical reconstruction methods. Barrett et al. [6] derived approximate formulae
for the mean and covariance of the maximum likelihood (ML) expectation max-
imization (EM) reconstruction as a function of the iteration number. The same
approach was extended to the maximum a posteriori (MAP) EM algorithms by
Wang and Gindi [7] and most recently to block iterative algorithms by Soares et
al [8]. Using the results in [6] with numerical observer models, Abbey et al. [9]
have studied lesion detectability in ML EM reconstruction. This iteration-based
approach is attractive for methods that are terminated before convergence, as
is common practice for the EM algorithm and its ordered-subsets variants [10].
However, evaluation of the expressions for large numbers of iterations is time-
consuming. In addition, this approach requires that the reconstruction algorithm
has an explicit update equation. Hence, it is not applicable to gradient-type al-
gorithms that involve line searches.

An alternative approach was proposed by Fessler and Rogers [11, 12], who an-
alyzed the mean, variance, and spatial resolution at a fixed point of the objective
function. The resolution and noise properties are computed at the fixed point
using partial derivatives and truncated Taylor series approximations. These re-
sults are independent of the particular optimizing algorithm used and require
only that the algorithm iterates to effective convergence. Qi and Leahy [13,14]
extended this approach by deriving simplified expressions for the local impulse
response function and covariance using Fourier transform. These expressions al-
low fast evaluation of the resolution and noise properties of Bayesian reconstruc-
tion. The results have been used to choose the prior parameter to maximize the
contrast to noise ratio [13] and to achieve uniform contrast recovery in fully 3D
PET [14]. Similar approximations have been used by Stayman and Fessler [15]
in designing a penalty function to achieve isotropic local impulse response func-
tions. Combining with computer observer models, these theoretical results have
been applied to the study of lesion detectability [16-19]. In [17,19] the signal-
known-exactly, background-known-exactly (SKE-BKE) detection task was used,
which is a highly simplified scenario compared to real situations. While some
variability of background and lesion was included in [16, 18], they both assumed
that the covariances of the background and lesion are stationary (or at least lo-
cally stationary) for fast computation. Such a stationary assumption is generally
invalid for random lesions.



Here we study lesion detectability where both the lesion and background are
described by statistical distributions. We derive simplified theoretical expressions
that allow fast evaluation of lesion detectability for various linear observers with-
out assuming the object covariance is locally stationary.

2 Theory

2.1 Data Model

Emission data are well modeled as a collection of independent Poisson random
variables with the (conditional) expectation, g € IRM*! related to the unknown
tracer distribution, € IRV *!, through an affine transform

y = Elylz] = Px +r, (1)

where P € IRM*¥ is the detection probability matrix with the (i, j)th element
equal to the probability of detecting an event from the jth voxel at the ith
measurement with consideration of photon attenuation and detector efficiency,
and r € IRM*! accounts for the presence of scattered and random events in the
data.

The Poisson likelihood function is

e Yi glyt
plyle) = [ 2, (2)
i Yi:
and the log likelihood function is given by
L(ylz) = (yilog i — §i — logyi!) , (3)
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where y € IRM*! is the measured sinogram data. For PET data that are pre-
corrected for random events, a shifted Poisson model can be used [20].

2.2 Bayesian Image Reconstruction

Bayesian methods regularize the image through the use of a prior distribution
on the unknown image. Most image priors have a Gibbs distribution of the form

p() = eV, (W

where U(x) is the energy function, § is the smoothing parameter that controls
the resolution of the reconstructed image, and Z is a normalization constant.
Here we focus on quadratic priors, for which the energy function can be expressed

as .
Uz) = 3 z' Rz, (5)



where R is a positive definite (or semidefinite) matrix and ' denotes transpose.
The commonly used pair-wise quadratic priors and thin plate priors [21,22] are
just special cases of (5).

Combining the likelihood function and the image prior, the MAP reconstruc-
tion is found as

2(y) = argmax [L(y|z) — BU(x)]. (6)

Since L(y|x) is a concave function of x, (6) generally has a unique solution
for convex priors. The smoothing parameter 3 has a strong effect on the image
property. If 3 is too small, the reconstructed image approaches the ML estimate
and becomes very noisy; if 3 is too large, the reconstructed image will be very
smooth and useful structural information can be lost. The goal of this paper is
to derive theoretical expressions for fast evaluation of the detectability of lesions
in each data set with different reconstruction parameters.

2.3 Lesion Detection with Numerical Observers

For a given reconstructed image &, a linear numerical observer computes a test
statistic (a scalar-valued decision variable), n(&), by

n(@) =t'e, (7)

where t is the observer template. A decision whether there is a lesion or not is
then made by comparing this statistic to a preselected threshold. If n(x) exceeds
the decision threshold, & is determined to have a lesion; otherwise, it is not. By
varying the threshold, we can obtain a ROC curve. The area under the ROC
curve (AUC) is often used to measure the lesion detectability. This numerical
observer model assumes that the location of the possible lesion is known a priori.
One can use separate observer templates for different locations.

The detection performance can also be measured by the SNR of n(&), which
is defined as

|H] — En(@)|Ho))*
1]+ var[n(@)|H1]) /2°

SNR2[5(2)] = L& f (8)

(var[n(@)|H
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(9)

where E denotes expectation, Hy is the null hypothesis representing lesion ab-
sent, H; is the hypothesis representing lesion present, Ei.‘ g, and Zi‘ H, are
the covariance matrices of & under hypotheses of H; and Hy, respectively, and
z = E[&|H,] — E[&|Ho]. Without loss of generality, we assume that the proba-
bilities of the two hypotheses are equal.

When (&) is normally distributed, the AUC is related to the SNR by [23]

AUC = = [Hef(Sl;R)] :



where erf(z) is the error function. Here we will use SNR to measure the lesion
detectability.

One example of the linear observers is the non-prewhitening (NPW) observer,
which uses a matched filter to compute the test statistic [5]

nnew () = (E[&|H,] — E[z|Ho))'z = 2'z. (10)

In some situations, the NPW observer has been found to correlate with human
performance for lesion detection [24-26].

At this time, the most popular numerical observers are probably the chan-
nelized Hotelling observers (CHOs) [27,25]. They have gained much interest
because many studies have shown that CHOs have good correlation with human
performance, although the degree of the correlation depends on the properties
of the lesion and background, and the channel functions [28-30].

The test statistic of CHO is

T]CHo(.’f}) = Z/U/KilUi, (11)

where U denotes the frequency-selective channels that mimic the human visual
system and K is the covariance of the channel outputs, i.e.,

1
K= §U(2®|H1 +E®|H0)U/+KN7 (12)

where K is the covariance of the internal noise in the channels to model the
uncertainty in human detection process [31,27].

2.4 Lesion Detectability in MAP Reconstruction

To compute the SNR for each numerical observer, we need the expressions of
z = E[2[H1] — E[®|Ho] and covariance matrices Xz, and Xg ;. Using the
results in [12] and [11], the local impulse response of MAP reconstruction can
be approximated by

LIR; ~ [F + BR]'F, (13)

and the covariance by

L, ~ [F + BR) "' P'diag {yl} Xy, diag {yi] P[F + 3R] . (14)

7 (2

where y = PE[z] + v = { P(E[z|Ho] + E[x|H,]) + v, F = P'diag [73—11} P, and
Xy, is the covariance matrix of the measurement y under Hy, k = 0,1. Note
(13) represents the spatially variant local impulse response function with each
column denoting the local impulse response at the corresponding voxel location.
Without object variability, y consists of independent Poisson random vari-
ables, of which the covariance is ¥, = diag[g;] with y = Px + r. When
considering object variation, the overall covariance of the measurements is

Dy, = E{Xys|Hp} + PXy g, P, (15)



where X, g, is the covariance of the object variation under Hy.

Since we are particularly interested in small lesions, we can assumed that the
presence of a lesion almost has no effect on the Poisson noise in the data, i.e.,
E{XY,;|Hy} ~ diag[y;], k = 0,1. For small lesions, z can also be approximated
by the convolution between the expectation of the lesion profile f; = E[x|H;] —
E[x|Hp] and the local impulse response function at the lesion location. Therefore,
we have

z~[F + (BR]'Ff, (16)
Seim, ~ [F+BR|F + FX, 4, F|[F + 3R] (17)

Substituting (16) and (17) into (9), we can obtain the theoretical expressions
of the SNR of any linear numerical observer in the form of (7). In particular, for
CHO in (11), the SNR is

SNRZ o = 2’U K 'Uz, (18)

where
K ~U[F + BR|"'[F+ FX,F|[F + 3R|"'U’ + Ky, (19)

and X, is defined as %EI‘HO + %E$‘H1.

2.5 Fast Computation

Direct computation of (18) is very time-consuming due to the large size of the
matrix. Often people assume the local impulse function and the covariance are
locally stationary and use fast Fourier transform to compute the expressions in
frequency domain (e.g., [16, 18]). However, for random lesions that are indepen-
dent of the background, the covariance of the object is not stationary around
the lesion. This has been one major difficulty in computing the detectability of
random lesions. Here we solve this problem by dividing the variance in (19) into
two parts:

U[F + R]"'F[F + R]"'U’, (20)

which is caused by the Poisson noise in the data, and
U[F + BR)]"'FX,F[F + 8R]"'U’, (21)

which is due to the lesion (and background) variation.

Equation (20) is the same as the covariance matrix studies in [16, 18] and
can be approximately computed using fast Fourier transform in frequency space
based on the fact that F and R are locally stationary [14], i.e.,

/

U[F + R "'F[F + R|"'U’ ~ f]diag{ U, (22)

A }
(Ni + Bui)?
where {\;, ¢ = 1,...,N} and {y;, i = 1,..., N} are the Fourier coefficients
of the column vectors corresponding to the lesion location of F' and R, respec-
tively, and U is the Fourier coefficients of the channel functions. Details on the
computation of A and g can be found in [14].



Since x is not stationary, X, is not a block Toeplitz matrix and hence equa-
tion (21) cannot be computed in frequency space. However, we found that we
can compute F[F + BR]7'U’ in Fourier space and then calculate the product
with X, in spatial domain, Thus (21) can be approximated by

U[F + BR]'FX,F[F + 3R] "'U’

~ <Q’diag [ﬁ] f]l) pIN (Q'diag [ﬁ} U/> , (23)

where @ represents the Kronecker form of the Fourier transform. Because the
number of channels is small (often less than 10), (23) can be computed very easily.
Since we have used the locally stationary approximation on F[F + 3R]™1, (23)
requires that the correlation length in Y, is relatively short and that the energy
of the channel function U concentrates around the lesion location.

Using similar approximations, z can be computed in the Fourier space as

Uk,i)\zfi
Z i + B

where {&, i = 1,..., N} is the Fourier transforms of f;, and [c;] denotes a
column vector with the kth element being cy.
Substituting (22)-(24) into (18), we can get the final expressions for SNR of

Uz—Udlag[ }{— (24)

CHO
Uk i/\igi Uk z/\ fz
SNR2 : 25
CHO = Z/\ﬂrﬁui Z/\ + B (25)
where
K~ Udi [ Ai } U’
~ 14, -—=
5 (Ni + Bi)?

+ (Q’diag [ﬁ] Ul) pys (Q’diag [ﬁ] UJ> + Kn.(26)

2.6 Lesion with Known Profile

As a special case, we study the random lesions with known profile. Here the
tracer uptake in lesions is modeled as a fixed profile times a random scaling
factor ¢ with mean of one and variance of o2 (variable contrast), i.e

fi=chi (27)

This statistical model is especially useful in emission imaging when the tracer
uptake in small lesions can be assumed to be homogeneous. The covariance of
the lesion under this model is

EfIZU flﬂ (28)
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Fig. 1. The background phantom image and the locations of the simulated lesions.

Substituting it into (21) and assuming there is no background variation, we get
U[F + BR]"'FX,F[F + fR]'U’' = c?U22'U’, (29)

and the covariance of channel output K becomes

Ur.i\i€i Uk iii
;/\iJrﬁM ;N,Jrﬂm

which can be computed in frequency space without assuming X, is locally sta-
tionary!

/

Y TTa i Fr! 2
KNUdlag {W} U +Uc

3 Monte Carlo Simulations

We conducted computer simulations to validate our theoretical approximations.
We simulated an ECAT HR+ whole-body PET scanner (CTI PET Systems,
Knoxville, TN) operating in two dimension mode. The sinogram data has 288
angles of view and 288 lines of response in each view. The background phantom
image (Figure 1) was obtained from a reconstructed image of a patient scan.
Two circular lesions with variable contrast, one 8mm diameter and one 16mm
diameter, were simulated in the liver region. The locations are shown in Figure 1.

The data were generated by forward projecting the phantom image with and
without a lesion. Photon attenuation was modeled. Poisson noise was added to
the sinogram data after scaling the expected total number of events to 200k. For
each case, 500 independent noisy data sets were reconstructed using a precondi-
tioned conjugated gradient method [32]. The SNRs for the CHO were calculated
using both Monte Carlo reconstructions and the theoretical expressions with
(25) and (30). Two sets of channel functions were studied: (i) five rotationally
symmetric, non-overlapping square channels (SQR); and (ii) three difference-of-
Gaussian channels (DOG). These channel functions are similar to that used in
[25, 33].
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Fig. 2. Comparison of the Monte Carlo results (‘+’) with the theoretical predications
(solid line). (a) 16mm lesion with DOG channels; (b) 8mm lesion with DOG channels;
(c) 16mm lesion with SQR channels; (d) 8mm lesion with SQR channels. The tumor
to background activity ratio was uniformly distributed between 1.18 and 1.75.

Figure 2 shows the SNRs computed from independent Monte Carlo recon-
structions and the theoretical approximations. The tumor to background activity
ratio was uniformly distributed between 1.18 and 1.75. The background activity
was fixed with the maximum at 5.5. White noise with variance of 5 x 1073 was
used to model the internal channel noise in human visual system. The error bars
in the Monte Carlo results represent 68% confidence intervals that were esti-
mated using a bootstrap method. In general, the theoretical predictions match
with Monte Carlo results very well. All theoretical predictions lie inside the 68%
confidence interval of the Monte Carlo estimates. We can also see that the op-
timum smoothing parameter (maximum SNR) for the 16mm lesion is slightly
larger than that for the 8mm lesion, indicating that lower resolution image is
preferred for detecting larger lesions.

Figure 3 shows another comparison of the CHO performance for the 8mm
lesion with activity ratio varying from 1.75 to 3.2. With the higher contrast,
the lesion detectability is significantly increased, but the shape of the curves
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Fig. 3. Comparison of the Monte Carlo results (‘+’) with the theoretical predications
(solid line) for the 8mm lesion. (a) DOG channels; (b) SQR channels. The tumor to
background activity ratio was uniformly distributed between 1.75 and 3.2.

are similar to those shown in Figure 2. Again, good match between theoretical
predictions and Monte Carlo results is evident. Additional simulations show
that the lesion detectability can also be reliably estimated by the theoretical
expressions using noisy data.

4 Conclusion and Discussion

We have derived theoretical expressions for fast computation of lesion detectabil-
ity in the Bayesian reconstruction. Both lesion and the background can contain
variability. No assumption on the local stationary of the object variation is used.
The results are applicable to a wide range of linear numerical observers and
can be used to find the optimum regularization for lesion detection. We have
conducted Monte Carlo simulations and the comparisons show good agreement
between the theoretical predications and the Monte Carlo results.

In our experiments (results not shown) we have found that the lesion de-
tectability depends on the channel parameters of the observer. In particular, the
lesion detectability with large 3 (>100) heavily depends on the internal noise
level in the low frequency channels. Finding the best channel parameters that
correlated with human performance is essential for optimizing image reconstruc-
tion for lesion detection. Research has already been conducted to estimate the
observer template directly from human-observer studies (e.g.,[34]). While the
channel parameters used in this paper are somewhat arbitrary and are unlikely
to be the optimum, the theoretical results do not rely on the particular choice
of the channel parameters and can be applied to almost any channel parameters
that are suitable for the detection task.

Another issue is that the Bayesian reconstruction algorithm that we studied
uses a Gibbs prior with a quadratic energy function. The statistical informa-
tion about the lesion and the background is only used in the observer study. We



choose this simple form of Bayesian method because it is widely used in practice.
In a true Bayesian paradigm, however, one may want to use all the prior infor-
mation in the reconstruction process (including the distribution of the lesion and
background). It would be interesting to see how such a true Bayesian approach
will affect the image quality. This is one of our future research directions.
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