Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5

PDF Version Also Available for Download.

Description

Iron- and cobalt-exchanged ZSM-5 are active catalysts for the dissociation of nitrous oxide. In this study, density functional theory was used to assess a possible reaction pathway for the catalytic dissociation of N2O. The active center was taken to be mononuclear [FeO]+ or [CoO]+, and the surrounding portion of the zeolite was represented by a 24-atom cluster. The first step of N2O decomposition involves the formation of [FeO2]+ or [CoO2]+ and the release of N2. The metal-oxo species produced in this step then reacts with N2O again, to release N2 and O2. The apparent activation energies for N2O dissociation in ... continued below

Physical Description

vp.

Creation Information

Ryder, Jason A.; Chakraborty, Arup K. & Bell, Alexis T. December 19, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Iron- and cobalt-exchanged ZSM-5 are active catalysts for the dissociation of nitrous oxide. In this study, density functional theory was used to assess a possible reaction pathway for the catalytic dissociation of N2O. The active center was taken to be mononuclear [FeO]+ or [CoO]+, and the surrounding portion of the zeolite was represented by a 24-atom cluster. The first step of N2O decomposition involves the formation of [FeO2]+ or [CoO2]+ and the release of N2. The metal-oxo species produced in this step then reacts with N2O again, to release N2 and O2. The apparent activation energies for N2O dissociation in Fe-ZSM-5 and Co-ZSM-5 are 39.4 and 34.6 kcal/mol, respectively. The preexponential factor for the apparent first-order rate coefficient is estimated to be of the order 107 s-1 Pa-1. While the calculated activation energy for Fe-ZSM-5 is in good agreement with that measured experimentally, the value of the preexponential factor is an order of magnitude smaller than that observed . The calculated activation energy for Co-ZSM-5 is higher than that reported experimentally. However, consistent with experiment, the rate of N2O decomposition on Co-ZSM-5 is predicted to be significantly higher than that on Fe-ZSM-5.

Physical Description

vp.

Source

  • Journal Name: Journal of Physical Chemistry B; Journal Volume: 106; Journal Issue: 28; Other Information: Journal Publication Date: Jul. 18, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49413
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 799571
  • Archival Resource Key: ark:/67531/metadc735823

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 19, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 4, 2016, 5:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ryder, Jason A.; Chakraborty, Arup K. & Bell, Alexis T. Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5, article, December 19, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc735823/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.