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ABSTRACT 

MPLite is a light weight message-passing library designed to deliver the maximum per- 

formance to applications in a portable and user friendly manner. The Virtual Interface (VI) 

architecture is a user-level communication protocol that bypasses the operating system to p r e  

vide much better performance than traditional network architectures. By combining the high 

eEciency of MPlLite and high performance of the VI architecture, we are able to implement a 

high performance message-passing library that has much lower latency and better throughput. 

The design and implementation of MPLite for M-VIA, which is a modular implementation 

of the VI architecture on Linux, is discussed in this thesis. By using the eager protocol 

€or sending short messages, MPLite M-VIA has much lower latency on both Fast Ethernet 

and Gigabit Ethernet. The handshake protocol and RDMA mechanism provides double the 

throughput that MPICH can deliver for long messages. MPLite M-VIA also has the ability to 

channel-bonding multiple network interface cards to increase the potential bandwidth between 

nodes. Using multiple Fast Ethernet cards can double or even triple the maximum throughput 

without increasing the cost of a PC cluster greatly. 
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CHAPTER 1. INTRODUCTION 

1.1 Parallel Computing 

The need for more computational power is the main driving force in the development of 

computers. Scientific and engineering problems require extremely fast computers to simulate 

physical phenomena. Some typical examples include weather prediction, the atomic structure 

of materials, the evolution of galaxies and the behavior of microscopic electronic devices ( (399) .  

To satisfy the computation need, one approach is to build a more powerful processor and use 

a huge amount of memory. However, a single processor in many cases still cannot nicct the 

computational demand. For example, it will take 13 hours to predict the earth's wwtlicr 

for the next two days by using a computer that can execute one trillion ( lo1*) cal('1lliLt ioiis 

per second (Pac97). Moreover, the speed of light is an intrinsic limitation to tlw spcwl o f  

computers (Dem95). Instead of using a more powerful single processor, another soliit i o t i  is 

parallel computing: use multiple-cooperating processors to solve large problems. 

There are two broad classes of parallelism: SIMD (Single Instruction Multiplti Dzltil) a t i d  

MIMD (Multiple Instruction Multiple Data). SIMD systems perform the same opciriit.ioii 011 

different data concurrently. Vector machines, such as Gray T-90, and systems like the CR12 arc 

examples of the SIMD architectures. MIMD systems perform different operations on different 

data concurrently. MIMD architectures have two basic types: shared-memory or distributed- 

memory. 

Shared-memory MIMD architectures consist of a collection of processors and memory mod- 

ules that share the samc memory bus. Each processor can access any memory module directly. 

Although the memory access is faster than distributed memory computers, shared-memory 

systems have specific problems such as memory consistency. Examples of shared-memory 



2 

architectures include the SGI Origin systems, IBM 43p/44p aad Compaq ES40/DS20. 

In distributed-memory MIMD systems, each processor has its own private memory. Access 

to other processors and memory is via the network. There are many network interconnect 

topologies such as 2D and 3D meshes, fat trees, and flat networks. Examples of distributed- 

memory architectures include the Cray T3E, Intel Paragon and 13M SP-2. 

Distributed-memory MIMD systems can also be built using a group of PCs or workstations. 

Such systems are referred to as clusters. A cluster is a collection of independent computer sys- 

tems tightly-coupled by a dedicated network to form a multiprocessor computing environment. 

Building a cluster is very economical and can have significant computational power, but the 

network can limit the kind of applications that will run effectively on it. 

1.2 Communication in Parallel Computers 

Shared-memory computers typically use compiler directives that control concurrency and 

access to data or use a native shared-memory library for inter-process communication. Distributed- 

memory computers use a rnessage-passing paradigm. Parallel computer vendors usually have 

their own message-passing libraries optimized for their particular machines. There are also 

many free distributions suitable for a variety of architectures. Among those implementations, 

MPICH (GLnDS96) and LAM MPI (BDV94) are the two most commonly used rnessage-passing 

libraries that conform to  the message passing interface (MPI) standard(For94). 

The basic operations of rnessage-passing are the send and receive functions. The simplest 

model to measure the communication cost for sending a message is: communicution dime = 

latency + message size / bandwidth. The communication time can make a big difference 

in the performance of a parallel application. Therefore, it is always desirable to improve 

the performance of the underlying message-passing library and the network protocol. The 

performance of a message-passing library or a network protocol is usually measured by three 

factors: 

1. Latency: The preparation time for sending a message, or the time to send a smallest 

useful message. It can be roughly measured by sending and receiving a 1 byte message 
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to another node and dividing the round-trip time by 2. Latency has a significant impact 

on applicatons that pass small to moderately sized messages. 

2. Bandwidth: The measurement of the communication rate. It tells us the maximum 

number of bits or bytes that can be transfered per second. 

3. Host processing cost: The CPU cycles consumed €or communication. 

From a software perspective, the performance of a message-passing library can be improved 

in two ways: improve the performance of the message-passing layer or improve th.e underlying 

network protocol. 

The implementation of traditional network protocols, such as TCP, suffers a performance 

penalty because of the operating system processing overhead and the extra rnemory-to-memory 

copies between kernel space and user space. Many research efforts have designed user-level pro- 

tocols that bypass the operating system to deliver higher performance (vECgS92; vEBBV95; 

PKC97; DBL+97; PT98; flTOO; CCC97). The Virtual Interface Architecture (CCC97) is one 

such protocol that defines an interface between high performance network hardware and com- 

puter systems. 

The message-passing Iayer can also be improved. For portability issues, many message- 

passing implementations complicate the internal queuing structure and require extra buffering 

for normal operations. Therefore, they do not match the performance of the underlying network 

protocol. MPLite (Tur) is a light weight rnessage-passing library designed to  streamline the 

flow of data and deliver the maximum performance to the application. 

1.3 The Goal of This Thesis 

It is clear that if we can integrate the advantages of a light-weight message-passing Iibrary 

and OS-bypass network protocols, we can implement a message-passing library that has better 

performance. In this thesis, we will discuss the design and implementation of the MPLite 

message-passing library on top of M-VIA, which is a modular implementation of the VI ar- 

chitecture for Linux. The goal is to combine the high efficiency of MPliite with the high 
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performance of M-VIA, and exploit the potential of the VI architecture to provide a low la- 

tency and high bandwidth message-passing library for applications. MPLite M-VIA uses two 

different communication modes to achieve low latency for short messages and high bandwidth 

for long messages. Also, MPLite M-VIA is the first to implement channel-bonding mecha- 

nisms on M-VIA, which provide double or triple the maximum throughput by using two or 

three Fast Ethernet cards in each machine in a cluster computer. 

1.4 Organization 

In chapter 2, a brief introduction to the message-passing paradigm and its implementations 

will be presented. We will also investigate some user-level communication protocols. The 

emphasis is on the MPLite message-passing library and the Virtual Interface Architecture. 

Chapter 3 will discuss the design and implementation details of MPLite for M-VIA. The 

experimental results, compared to MPICH, MVICH and TCP will be presented in chapter 4. 

The discussion of the limitations of MPLite M-VIA, as well as a summary and discussion of 

future efforts, will be presented in chapter 5. 

1.5 Other Research Efforts 

In addition to the thesis work described here, a generic floating-point data contprtwioI1 

library was also designed and implemented as the partial fulfillment of the requirenicnt for thc? 

degree. The goals of my effort on this project were to develop the initial prototypr for the! 

compression library and fine tune the algorithms for the arbitrary precision routines. 

Data compression is an effective way to increase the data transfer bandwidth or storage 

capacity in high performance computing. In the compression library, we only deal with scien- 

tific data: integer and floating-point numbers, single and double precision. The goals of the 

compression library include (CKS+OO): 

0 A fast, robust library for application use. 

0 Utilize determinable and limited amount of resources. 
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Run-time resource configuration. 

Operate on local data structure or distributed data structure (via Global Arrays). 

e Portability by avoiding assembly level code. 

The compression library is still under development. Currently it provides interfaces to 

compress and uncompress double precision data using different algorithms and contains several 

utility functions. 

Given an uncompressed buffer, the size of the compressed buffer is dynamically determined 

and allocated and the handle of the compressed buffer is returned to the user. The handle con- 

tains the address of the compressed buffer as well as the header information. The compression 

algorithms currently implemented are: 

0 Double precision to single precision. 

0 Double precision to arbitrary precision. 

e Skip lists. 

0 Double precision to arbitrary precision then using skip list mechanism. 

IEEE standard 754 specifies that a double precision number contains one sign bit, 11 

czpnent bits, and 52 mantissa bits. The exponent has a bias of 1023, thus an exponent of 

zero means that 1023 is stored in the exponent field. In the algorithm of double precision to 

arbitrary precision, the user specifies how many exponent and mantissa bits are needed and 

tlir! algorithm adjusts the numerical representation accordingly. The algorithm must deal with 

several aspects of compressing the numerical representation of a double precision number: 

1. If the number of exponent bits the user specified is not enough to represent the data, 

the algorithm will automatically increase the number of bits to that required. There 

is a compression option that can let the algorithm automatically determine how many 

exponent bits are needed to represent the maximum (or minimum) number in the user 

data. 
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2. Some representations are reserved for special values. For example, infinity is represented 

with an exponent of all ones and a mantissa of all zero. These values should be handled 

differently. 

3. Big endian and little endian have different representations of a floating-point number. 

So the endian information should be stored in the compression header. 

The skip list algorithm represents a number in two components: data value and data index. 

It eliminates the need to represent a zero value therefore it is usefully for any sparse array or 

matrix. A variation of the skip list is to count the number of continuously repeated values. 

One of the requirement of the compression library is that user can modify the compressed data 

without uncompressing the entire buffer. For a skip list compressed buffer, the modification 

may lead to size change of the buffer. So an extra buffer is provided in skip list compressed 

buffer to store small changes. If too many changes are made and lead to the overflow.of extra 

buffer, the current implementation must uncompress and recompress the entire buffer. 

Some application level functions are provided to operate on the compressed buffer: get 

or put a portion of successive data, gather or scatter data according to an index map, and 

accumulate data. 
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CHAPTER 2. COMMUNICATION WITHIN A CLUSTER 

Shared-memory multi-processor machines usually use shared-memory for inter-process com- 

munication. For distributed systems, especially in clusters, message-passing is a more common 

approach. The two most commonly used message-passing standards are PVM (Parallel Virtual 

Machine) and MPI (Message Passing Interface). MPI does not support some features of PVM 

such as dynamic process spawning, but it has more flexible collective functions (gather/scatter) 

and asynchronous send and receive communication capabilities. Some commonly used message- 

passing libraries are investigated in this chapter. The MPLite message-passing library will be 

discussed in more detail. 

Message-passing libraries are implemented on top of an underlying network proto(-ol. COIII- 

pared to traditional network protocols, a user-level protocol allows the user to 1)y~);lss t h  01)- 

erating system and access the network device directly, thus providing low lateriry ; L I ~  twt.tcr 

performance. We will investigate several user-level protocols and focus on the Virt I i i l l  I r r t  r~ft tcr:  

Architecture. 

2.1 Parallel Virtual Machine 

PVM (PVTVI; SunSO) is one of many message-passing systems that preceded the forinatioIi 

of the MPI standard. It is an integrated set of software packages that allows a heterogeneous 

collection of computers to be used as a single parallel computer. PVM provides a general 

programming interface for algorithms, and the underlying infrastructure permits the execu- 

tion of applications in a virtual computing environment that supports multiple computation 

models, such as functional parallelism and data parallelism. It provides support €or a variety 

of architectures. The processors involved can be scalar machines, multi-processor machines or 
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other special processors. The principles of PVM include: 

rn User-selected running host. The user selects a set of machines to'run the application on 

and can exploit the capability of each specific machine. 

The basic unit of parallelism is a task. A task is often but not always a process in the 

operating system. 

Explicit message-passing model. Message-passing is accomplished by using explicit send 

and receive commands. 

rn Heterogeneity and multiprocessor environment support. 

A typical execution of a PVM application is a set of one or more sequential programs 

containing embedded PVM function calls in either the C or FORTRAN language'. Each ap- 

plication program or instance of the application corresponds to one task. The compiled and 

linked binary codes are placed in a location accessible fiom each machine involved. The user 

starts one task, which eventually invokes other tasks. Those active tasks exchange messages 

t.o complete local computations. The results in each node are finally combined. 

2.2 Message Passing Interface 

MPI (For95), which was first defined in 1992, is a widely accepted standard for writing 

message-passing programs on multiprocessor machines. The standard provides portability 

t )&ween various architectures and an easy- to-use, consistent interface for application develop- 

iiient. 

MPI is a library that can be called from C, C++ or FORTRAN programs. It is designed 

to allow efficient inter-processor communication, reduce memory-to-memory copies and allow 

the developer to overlap communication and computation. The semantics of the interface is 

architecture independence and language neutral. Therefore, MPI applications can be develped 

on and for many platforms and used in a heterogeneous environment. MPI provides reliable 

communication for the upper layer, so applications do not need to deal with communication 

failures. MPI guarantees thread-safety for rnultithreaded programming as well. 
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MPI describes the syntax and semantics for point-to-point communications, collective com- 

munications, group, context and communicator management, process topologies, environment 

management and profiling interface. 

In point-to-point communications, the messages are not overtaking. If two sends match 

one receive or one send matches two receives, the destination node will not receive the second 

message if the first one is pending. In a single-threaded program, the send and receive are also 

ordered. There are four communication modes for point-to-point communications: 

Standard mode: The blocking send and receive are standard mode communication. In this 

mode, a send can start whether or not a matching received has been posted and can 

complete before a matching receive is posted. It is up to the MPI implementation to 

decide whether outgoing message will be buffered and if the send operation should be 

blocked. The standard send mode is non-local: the completion of the send may depend 

on the matching receive. 

Buffered mode: This is similar to standard mode, but it is local. If a send operation is 

cxrr:ritcd before a matching receive is posted, the outgoing message will be buffered to 

allow t . l i c i  send call to complete. 

Synchronous mode: A send can start whether or not a matching receive is posted, hut will 

( ~ O I I I J ) I I ~ I  I ’  successful only when the matching receive is posted and has started receiving. 

‘ l - l i ih is ;I non-local function. 

Ready mode: X said may start only when the matching receive is posted. Otherwise an 

vrror  i3 rvt iirned. 

I I I  i i (  I t l i t  i o i i  to these blocking communication mechanisms, MPI defines non-blocking com- 

m i I i i r i ~ !  i c ~ ~  rridianisms. A non-blocking send initiates the data transfer and returns im- 

~ ~ i t d i a t ( ~ I I y .  A wait function needs to be called to complete the operation. Non-blocking 

coIiintitiiic.rztion mechanisms can use all four communication modes described above. 

Collcctivc communications involve a group of processes. The collective operations provided 

by MPI include: barrier synchronization, broadcast, gather/scatter, global reduction opera- 
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tions such as sum, max and min and many other variations. Collective functions are typically 

built upon basic point- to-p oint communication primitives. 

Since version 1.1 of the MPI standard, many efforts have been made to add new functional- 

ity. MPI 2.0 was introduced in 1997. Many new features were added such as dynamic process 

creation, one-side communication and parallel IO (For97). 

There are many implementations of the MPI standard. Computer vendors usually have 

their own MPI implementation optimized for their specific architectures. There are also many 

implementations that are freely distributed and suitable for a variety of architectures. MPICH 

and LAM MPI are the two most commonly used implementations. 

2.2.1 MPICH 

MPICH (GLnDS96) is a complete implementation of the standard. The initial implemen- 

tation was available immediately when the MPI standard was released in 1994. The goal of 

the MPICH project is to  provide a portable, robust and efficient MPI implemciitatioii and 

promote the adoption of the MPI standard. MPICH is essentially a base impliIwtitation for 

parallel computers. MPICH is suitable for a variety of architectures. It supports t riitliticmal 

distributed-memory parallel computers (Intel Paragon, IBM SP, NCube, Cray TSL)). sfiared- 

memory architectures (SGI Origin, IBM SMP, Compaq ES40) and clusters of workst.ations 

running Unix or Windows. MPICH is intended to exploit the capability of specific: architec- 

tures to obtain high performance communications. 

The key for performance and portability in MPICH is the Abstract Device Interface (ADI), 

which is architecture independent. All MPI functions are implemented using macros and 

functions that make up the ADI. The AD1 layer provides basic send and receive functions and 

message management. It contains codes for message packetizing, attaching headers, buffer 

management, queue management and handling heterogeneous environments. 

For each different architecture, the AD1 is implemented by using an architecture specific 

low level channel interface. The channel interface implements three data transfer protocols: 

The eager protocol where data is sent to the destination immediately; the rendezvous protocol 
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where data is sent to the destination only when a matching receive is posted; the get or put 

protocol where data is read or written directly. The simplicity of the channel interface, which 

can be as small as five functions, provides a quick way to port MPICH to new architectures. 

2.2.2 LAM MPI 

LAM (Local Area Multicomputer) (BDV94) is a full implementation of MPI and is a 

programming environment for heterogeneous computers on a network. LAM provides enhanced 

monitoring and debugging tools, such as a snapshot of a process and message status, to facilitate 

the message-passing application development. 

Each computer runs a LAM daemon, which consists of a nano-kernel and a dozen system 

processes. The nano-kernel schedules these internal processes and some external processes to 

provide a communication subsystem for message passing between other LAM daemons. The 

LAM buffer daemon collects incoming messages and stores outgoing messages for forwarding. 

LAM MPI has the capability of dynamic process spawning, in which a group of MPI processes 

can collectively create a new group of processes and a new communicator is established for 

communication. 

2.2.3 MPLite 

MPLite (TCKO1) is a light weight message-passing library designed to streamline the data 

flow and deliver the maximum performance to applications in a portable and user-friendly 

manner. The purpose of MPliite is to minimize the overhead of the message-passing layer and 

deliver as much performance as possible to applications. A full implementation of the MPI 

standard requires complicated buffering and queue management to provide portability for 

various architectures and handle situations such as MPI-ANY-SOURCE in receive operations: 

out-of-order messages and byte mismatches between send and receive pairs. The extra buffering 

and memory copy overhead, as well as the complicated multi-layered programming structure, 

reduce the communication bandwidth and increase the latency. 

MPLite provides a subset of the most commonly used MPI functions, which are enough 
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for a large number of the parallel codes. The simplicity makes it easy to reduce extra buffering 

and programming overhead, and thus deliver the maximum performance from the underlying 

network layer to the application. It is an ideal research tool for studying the performance of 

message-passing. Below is a listing of MPI commands that MPLite  supports. 

Initialization and cleanup 

MPIlnit , MPI-Commsize, MPI-Commrank, MPITinalize. 

0 Send and receive €unctions 

MPI-Send, MPIRecv, MPI-Sendrecv, MPI-Bsend. MPIlsend, MPIJRecv, MPI-Ssend, 

MPI-Srecv, MPI-Wait. 

0 Collective operations 

MPIAllreduce, MPIBcast, MPIBarrier. 

Timing functions 

MP 1 - W ti me. 

Cart t.sian coordinate functions 

lII’I-C;irt-create, MPI-Cart-coords, MPI-Cartrank, MPI-Cartshift, MPI-Cart-get. 

1 ‘ 1 i t s  11I’Litcl  does not support groups, the use of communicators for creating subgroup 

mid t h t b  iiI)strm:tioIl of the data types in a heterogeneous environment. It is not appropriate 

f f i r  I I ~ o r t ~  c ~ o i ~ i ~ ) l c > ;  codes using those features. Below is listing of what is not supported. 

C:trtiitiitiiiicators other than Cartesian grid €unctions and MPI-COMM-WORLD. 

e JlPl-Filc- and MPIO- functions. 

0 ?rlaiiy variations on the basic communication functions. 

0 H ctt?rogcneous environments. 
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Figure 2.1 represents the organization of MPLite. Applications can use the MPLite 

syntax, which is simpler than standard MPI syntax, or choose to  use standard MPI syntax. The 

MPLite layer has support for all the implemented send/receive functions, collective functions, 

timing functions, IO functions and Cartesian functions. There are also functions for a variety 

of other ongoing areas of research. 

Mixed syyrtem 
distributed 

Figure 2.1 Diagram of the stru tur of MPSite 

Each MPLite module implements point-to-point communication functions for different 

architectures. For the TCP module, there are two modes: synchronous and asynchronous. 

Communication events within an SMP node can be through either TCP or through shared- 

memory segments. There is also a module for using the Cray T3E SHMEM library that 

provides twice the performance of the Cray optimized MPI. In chapter 3 of this thesis, we 

present the work on the M-VIA module, which bypasses the operating system to provide lower 

latency and higher bandwidth. 

The TCP synchronous module simply increases the TCP send and receive buffers. Because 

all the messages must be buffered at TCP layer, this is an efficient way to  reduce extra buffer- 

ing and memory-to-memory copies. Therefore, the TCP synchronous module provides the 



14 

maximum performance to the application layer. However, it will lock up if the user puts more 

data than can fit into the enlarged TCP buffers. Setting TCP buffers to a large size can make 

it usable €or many applications but requires large amounts of memory for this configuration. 

In the TCP asynchronous mode, the send and receive functions initiate the data transfer 

but return before completion. Whenever the data is transfered out of the TCP buffer or more 

data arrives in the TCP receive buffer, a SIGIO signal is generated so that a signal handling 

routine can continue transfering the data. Asynchronous send and receive functions are non- 

blocking and are more robust than the synchronous mode. The MP-Wait() function will buffer 

the send data when necessary, therefore it will never be blocked even if two nodes are both 

sending. This asynchronous mode provides good performance even when using the default 

TCP buffer size. 

All modules of MPLite implement the basic communication primitives and use the same 

type of message queues to  manage the message buffering when needed, such a s  for out-of-order 

messages. They provide a consistent interface to the upper layer though the implementation 

details may differ. . 

2.3 Other Message-Passing Libraries 

In addition to the traditional twc-side communication libraries, which require the coopera- 

tion of both the source and destination, there are one-sided communication libraries that can 

put or get messages without the explicit cooperation of the iteracting node. The version 2.0 

of the MPI standard has some support for one-sided communication, but the typical example 

is the Cray T3E SHMEM library (SHM94). 

There are also several high-level libraries that build upon or beyond traditional message- 

passing libraries to provide a simple to use interface for applications. As an example, Global 

Arrays (NHL96) provides a distributed multi-dimensional array interface a s  well as one-sided 

communication mechanisms. 
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2.4 User-level Networking 

All message-passing libraries are implemented on top of one or more underlying network 

protocols. The performance of the network protocol is critical to the performance of rnessage- 

passing libraries. Traditional network protocols such as TCP usually use kernel protocol stacks 

to handle data transfer and demultiplexing operations. This mechanism requires data being 

copied multiple times between user space and kernel space. For example, in Linux, to receive 

a packet, the data is moved from the 1/0 device to the kernel sk-bufl data structure, and 

then moved to the user buffers. The extra memory-to-memory copy as well as the operating 

system processing overhead increases the data transfer latency and decreases the bandwidth 

(C JRS89). 

In order to improve the performance, it is desirable to move the network interface much 

closer to the application. A User-level Networking (ULN) protocol defines an interface between 

applications and underlying network devices. Applications can talk directly to tbc network 

interface controllers through a protected environment, thus reducing the operating systmi 

processing overhead and eliminating the extra memory copies. Examples of ULN arc* ‘I:-Nct. 

Active Messages, Fast Messages, Virtual Memory-Mapped Communication, Basic h i t  rrf;iw for 

Parallelism, Scheduled Transfer Protocol and the Virtual Interface Architecture. 

2.4.1 Active Messages 

Active Messages (AM) (vECgS92) is an asynchronous communication mechanisni iiitc:irrlc:d 

to overlap communication and computation. The traditional send/receive model oftcn iiscs 

blocking or a handshaking mechanism to implement the blocking communications, a i d  a buffer- 

ing mechanism to implement the non-blocking asynchronous communication mode. Thus thc 

effectiveness of an application using the message-passing library is degraded under the tradi- 

tional send/receive model due to poor overlap of communication and computation. In Active 

Messages, each message contains as its header the address of a user-level handler which is 

executed on message arrival at the destination side. The handler is executed to extract the 

message body from the network, which is viewed as a pipeline. The sender launches the ims- 
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sage into the network and continues computing; the receiver is notified or interrupted on the 

message arrival and runs the handler to receive the message body. The Active Messages differ 

from the Remote Procedure Call (RPC) in that the handler executed on the message arrival is 

to extract the message body from the network instead of performing computation. Buffering 

is not needed for Active Messages. 

2.4.2 U-Net 

The User-Level Network Interface (U-Net) (vEBBV95) communication architecture pro- 

vides processes with a virtual view of a network interface to enable user-level access to high- 

speed communication devices. It focuses on reducing the processing overhead to provide low- 

latency communication and exploit the full network bandwidth even €or small messages. It is 

an architecture designed to support traditional network protocols such as TCP/IP, as well as 

newer networking abstractions such as Active Messages. 

The U-Net architecture consists of three parts: the end-point represents a handler to the 

network, the co.mmunication segments hold the communication data and the message queues 

hold descriptors for incoming or outgoing messages. To send a message, the send descriptor 

is pushed to the send queue and then the network interface will complete the descriptor. 

Incoming messages are demultiplexed into the appropriate destination based on message tags. 

The U-Net architecture specifies two levels of communication: a base-level which requires an 

intermediate memory copy at both the source and destination, and a direct-access mode which 

supports true zero-copy data transfers. 

2.4.3 Fast Messages 

Fast Messages (FM) (PKC97) is a low-level messaging layer similar to Active Messages, 

but expands Active Messages by imposing stronger reliability guarantees. It uses essentially 

the same API as Active Messages and has the same concept of message handlers, but pro- 

vides a guarantee for reliable delivery, ordered delivery and control over the scheduling of the 

communication work (decoupling), which is a mechanism to allow programs to control their . 
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cache performance. This allows the higher message layers the ability to avoid flow control, 

retransmission and other reliability issues. 

2.4.4 Virtual Memory-Mapped Communication 

Virtual Memory-Mapped Communication (VMMC) (DBL+97) is a communication model 

providing direct data transfer between the virtual address space of the sender and receiver. 

The receiver exports the destination memory region, and the sending process imports remote 

buffers. VMMC protects the memory access by restricting the exporting and importing of the 

buffers. After a successful import, the sender can transfer data from its virtual address space 

into the imported destination buffer. This is accomplished by using a Remote Direct Memory 

Access (RDMA) mechanism. 

2.4.5 Basic Interface for Parallelism 

The Basic Interface for Parallelism (BIP) (PT98) is a small API implemented on Myrinet 

network hardware. It implements all communication in a user layer library and gives the user 

direct access to the hardware. Memory copies are minimized during data transfer. Short 

messages are stored in an circular queue, so that send calls will not block even if no matching 

receive has been posted. Sending a long message requires a receive to be posted before or no 

longer than 50ms after the send. 

2.4.6 Scheduled Transfer Protocol 

The Scheduled Transfer Protocol (STP) (fITOO; SGI) is an ANSI specified connection- 

oriented data transfer protocol. The protocol supports flow-controlled Read and Write se- 

quences and non-flow-controlled, persistent-memory Put, Get and FetchOp sequences. The 

objective of STP is to provide high-bandwidth data transfer with minimal host CPU usage 

for long messages, and very low latency for short messages. STP has been implemented on 

Gigabyte System Network (GSN) and Gigabit Ethernet for Irix 6.5. The implementation on 

Linux is under deveiopment , 
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The STP flow-controlled Read and Write sequences are designed to increase the bandwidth 

of the long message transfer. A small control message is used to pre-allocate buffers on the 

destination node, and the user buffers are mapped into the network interface’s address space. 

Therefore, data can be transfered directly from the source user buffers to the destination user 

buffers using a RDMA mechanism to achieve potentially true zero-copy data transfer. 

The non-flow-controlled Get/Put/FetchOp sequences are designed for short messages where 

low latency is the key. These sequences rely on more persistent memory mapping of the data 

buffers. The data buffers, once mapped through the kernel, are subsequently used and re-used 

to send/receive multiple blocks of data several times, thus resulting in very low latencies. 

STP provides the basic transport layer infrastructure that can be used to implement mul- 

tiple Upper Layer Protocols (ULP). Currently the only ULP implemented for Linux is the 

INET sockets API, AFlNET sockets of type SOCKSEQPACKET using the protocol family 

IPPROTO-STP. STP can use hardware acceleration, or use full software support. The cur- 

rent Linux implementation includes a full software support module and the enhance~rw~ts to 

Gigabit Ethernet drivers with the Alteon firmware. 

The current Linux implementation consists of a complete STP stack for loiig i ~ w i t g ; t ~  

transfers through the socket API. However, it does not support reliable data deliwry. i d  

is still in a very unstable beta stage. There is also an OS-bypass library (libST) for s h r t  

message transfers, but it does not work because the receive ring in the device drivrt 11xq m t  

been implemented and the send sequences can only send header information. Tlici*dortI. WP 

have not implemented MP-Lite for STP. 

2.4.7 Virtual  Interface Architecture 

Virtual Interface Architecture (VIA) (CCC97; DRM+98), which is a standard proposed by 

Compaq, Intel and Microsoft, is an architecture for the interface between high performance 

network hardware and computer systems. The VIA is designed to enable applications to 

communicate over a System Area Network (SAN). A SAN is a type of network that provides 

high bandwidth, low latency communication, and has very low error rates. Very similar to 
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U-Net, VIA defines a set of functions, data structures, and associated semantics, and provides 

direct access to the network interface for ldoving data directly into and out of process memory 

without additional copies of data and bypassing the operating system in a fully protected 

manner. 

The VIA model consists of several components, as illustrated in Figure 2.2. The application 

and VI user agent form the VI consumer part of VIA. The VI user agent, typically the VI 

Provider Library, is an API for the application to access the kernel agent and the virtual 

interfaces. The kernel agent, which is a privileged part of the operating system and usually a 

device driver, performs operations such as memory registration, and opening/closing network 

interfaces. The data transfer is through Virtual Interfaces. A network interface controller 

(NIC) can be associated with multiple Virtual Interfaces. Each VI represents an end-point of 

a connection. The kernel agent, Network Interface Controllers and Virtual Interfaces form the 

VI provider part of the architecture. 

VI Provider Library 

register memory 
openklose NIC 

Agent 

sendheceive 

VI Kernel 

RDMA writehead 

I Network Interface Controller I 
Figure 2.2 VI architecture model 

A VI consists of a pair of work queues: a send queue and a receive queue. The VI consumer 

performs the send and receive operations by posting descriptors to the send queue and receive 

queue. A descriptor is a data structure that contains all the information that the VI provider 
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needs to process the requests, such as pointers to data buffers. Each queue is associated with 

I 

a doorbell. Whenever a new descriptor is posted to the queue, the doorbell is used to notify 

I 

the underlying NIC. The status information is returned from NIC to the VI consumer. Figure 

2.3 shows a diagram of a Virtual Interface. 

VI 

Network Interface Conkoller 

Figure 2.3 A Virtual Interface 

Each work queue in the VI can associate with a completion queue. The notification of the 

completed descriptor in the work queue can be directed to the completion queue. A completion 

queue allows a VI consume to coalesce notification of descriptor completions from the work 

queues of multiple VIS in a single location. There are four methods to check the status of B 

descriptor: 

Poll the send or receive queue. 

Wait on the send or receive queue. 

Poll the completion queue. 

a Wait on the complet.ion queue. 

The polling method provides the minimum latency but requires more CPU cycles. The VI 
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specification recommends using completion queues. Waiting on the completion queue is more 

eficient . 
The VI architecture requires that user buffers be registered before they are used. The 

registration of' a buffer locks the buffer memory pages into physical memory and translates the 

virtual address to a physical address. This memory registration process allows the VI consumer 

to reuse the registered buffers. The VI provider can transfer data directly between buffers of 

VI consumers and the network interface controller without additional buffering. 

There are two data transfer models in VI: the send/receive model and RDMA model. In 

the send/receive model, descriptors are posted to the send queue and receive queue. Data is 

transfered from the buffers specified by the send descriptors to  the buffers specified by the 

receive descriptors. Send descriptors and receive descriptors keep a strict one-to-one mapping 

and are queued and dequeued in FIFO order. The VI consumer is responsibile for the man- 

agement of flow control, so the receive side must pre-post at least one descriptor of sufficient 

buffer size before the data arrives. 

In the RDMA model, the initiator of the data transfer specifies the address of tmth  the 

source buffer and the destination buffer. There are two types of RDMA operations: t hv RDMA 

Write and RDMA Read. In an RDMA Write, the data is transfered from the loral hdfcr to 

the remote buffer. In an RDMA Read, the data is transfered from the remote tmfiw to the 

local buffer. Prior to the data transfer, the remote VI informs the local VI of tIw ;iddress 

and the registered memory handle of the remote buffer. The RDMA mode does not ('onsunie 

any descriptors in the remote VI queues, and no notification is given to the reinotc VI unIess 

the Immediate Data field is specified in the local descriptor. The support for RDMA Writc is 

mandatory, while the support for RDMA Read is optional. 

The VI architecture supports three reliability levels: unreliable delivery, reliable delivery 

and reliable reception. All VI NICs are required to support Unreliable Delivery. Other levels are 

highly recommended but not required. The detailed information about reliability is discussed 

in chapter 5.  

The VI architecture and the Scheduled Transfer Protocol are very similar. They both 
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provide RDMA mechanisms to increase the bandwidth of long message transfers and use pre- 

registered buffers for short messages to reduce latency. In STP, the sending of control messages 

to preallocate buffers at the destination is automatically handled by the protocol, but in VIA, 

the handshaking and the flow-control must be handled by the VI consumer. 

2.5 VIA Implementations 

2.5.1 M-VIA 

M-VIA (BS99) is a modular implementation of the VIA for Linux being developed by Na- 

tional Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National 

Laboratory. The modular implementation allows it to support many types of network inter- 

faces, and provides a portable and robust interface conforming to the VIA standard. M-VIA 

consists of a user provider library, a loadable kernel agent module and several modified device 

drivers. IC can operate in either hardware acceleration mode or full software mode. It supports 

hardware VIA “doorbell” or software “doorbell” modes with a fast trap (a trap to a privileged 

inode that does not incur the overhead of a system call) for legacy hardware. 

M-VIA is a full featured implementation of the VIA. The M-VIA kernel module is di- 

vided into several independent components including connection management, protection tag 

management, registered memory management, completion queue management, error queue 

nianagement and the requisite Linux kernel extensions. The modular design makes it easy to 

bc integrated into current Linux systems, for either the 2.2 or 2.4 kernels of Linux. The hard- 

ware support includes: Loop-back driver, DEC tulip Fast Ethernet cards, Intel Pro/100 Fast 

Ethernet cards, Scorn ”Boomerang” Fast Ethernet cards, PacketEngines GNIC-I Yellowfin 

Gigabit Ethernet cards, PacketEngines GNIC-I1 Hamachi Gigabit Ethernet cards, Syskonnect 

SK-98XX Gigabit Ethernet cards and Intel Pro/1000 Gigabit Ethernet cards. 

The current release does not have full support €or reliable reception. Version 1.2b2 supports 

reliable delivery, which is very close to the reliable reception level. The latter is required to 

provide a full robust message-passing library for scientific applications. 

The design of M-VIA 2 has been initiated. M-VIA 2 will redesign the internal structure to 
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provide better support for VI-aware hardware. 

2.5.2 The Berkeley VIA Implementation 

The Berkeley VIA implementation (BGC98) is a prototype implementation on Sun Solaris, 

Windows N T  and PC Linux over Myrinet. It follows the suggested reference implementation 

contained in the appendices of the VIA specification. One design choice was to keep as little 

information in the NIC's memory as possible. The VI creation and connection are protected by 

mapping a queue for protected commands into the kernel driver's memory so only the kernel 

driver can perform those operations. Doorbells are implemented as a single memory location 

on the MIC and poIled by the firmware. 

The Berkeley VIA implementation only supports a subset of VIA rather than the entire 

standard. It does not implement the scatter/gather capability, reliability modes, error and 

completion queues and the RDMA facilities. 

2.5.3 Commercial Products 

h h i y  vcndnrs provide VI-aware hardware and corresponding VIA implementations. They 

arc: Gigaiict (Ernulex) - cLan, Finisar - Fibre Channel VI Host Bus Adapter, Tandem - 

ServvrNvt 11. Fiijitsu System Technologies - Synfinity CLUSTER, and NEC - VlOOO NIC. 

2.6 VIA Implementations for MPI 

2.6.1 hlVICH 

l ? l ' l C t i  ( C ' c w )  is an MPICH-based implementation of MPI over VIA. It provides a high 

p~~rf trr i i i ; i r i c~ i~  JIPI for high speed networks such as Gigabit Ethernet, GigaNet, ServerNet 11, 

or Fit.st Et h t ~ ~ t c t .  

ht\'ICli is a full implementation of the AD12 for VIA, developed from scratch. It imple- 

ments four protocols to maximize performance over a range of message sizes: 

For short messages, MVICH uses an eager protocol, in which data is sent and received 

through pre-posted buffers, with the source sending data immediately. 
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For long messages, MVICH uses one of three protocols, depending on whether the un- 

derlying NICs support RDMA Write or Read. 

1. The “r3” protocol is a standard rendezvous protocol in which data is sent only when the 

receiver has sent an ok-to-send message. 

2. The “rput” protocol is an RDMA Write protocol. Data is sent after an ok-to-send is 

posted by the receiver. Memory on both the sender and receiver is dynamically registered 

so this protocol is zerc-copy. 

3. The “rget” protocol is an RDMA Read protocol similar to %put”. 

MVICH is still under development. The current release is l.Oa6.1. Work is in progress to 

pass the full conformance and stress tests. We will compare the performance of MVICH with 

communicatioii libraries in chapter 4. 

2.6.2 M-VIA for LAM MPI 

The ParMa2 project has a basic M-VIA implementation for LAM MPI (BBCR: a t * d ’ ) .  I t  

also utilizes the normal send/receive and RDMA mechanism to improve the perfr)riil;iric.cn. Tht: 

basic communication functions supported include: 

0 Standard send, synchronous send, buffered send and ready send. 

a Non-blocking primitives. 

Tag and communicator control on messages. 

MPIProbe and non-blocking MPI-IProbe, used to read a matching enveIope. 

Support for receive from any process: MPIANY-SOURCE in receive functions. 

This package also has a flow control functionality to avoid exhausting all communication 

resources including RDMA space and pre-posted descriptors. Packet fragmentation and re- 

assembly are implemented due to the 32 KB limitation of the maximum packet size. 

http://perfr)riil;iric.cn
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The drawback of this implementation is that user buffers are not dynamically registered. 

Data is transfered between pre-registered send and receive buffers. Therefore, a memory copy is 

needed to copy data between the user buffer and the pre-registered buffer at both the source and 

destination. This greatly reduces the performance €or large messages. Moreover, it is currently 

very unstable. One problem is that it is unable to send messages more than approximately 

1600 times. Therefore, it is impossible to run a full NetPIPE (SMG91) benchmark test. 

2.6.3 VIA for MPI/PRO 

MPI/Pro (DS98; DS99) is a commercial MPI implementation by MPI Software Technology 

Inc. MPI/Pro uses a progress thread in each of its VI and SMP communication devices for 

implementing an independent , non-polling message progression, thus MPI/Pro makes progress 

on all messages independent of the sequence o i  user calls. Similar to other implementations, two 

different protoccils are used to handle short message send/receive and long message RDMA 

to achieve the required low latency and high bandwidth. Other features include multiple 

receive queues and optimized derived data types. Currently MPI/Pro VIA supports Giganet , 
ServerNet-I1 and FC-VI (Finisar). The support for Myrinet is in development. 

2.6.4 MPI Implementation on the NTSC VIA cluster 

The National Center for Supercomputing Applications (NCSA) has implemented a Fast, 

Messages layer on top of VIA for their large scale Windows N T  Super Cluster (NTSC); so that 

MPI-FM, which is derived from MPICH that uses Fast Messages Interface, can run 011 top of 

VIA through the Fast Message layer (Pan). 

2.6.5 MPLite M-VIA 

In the next chapter, we will discuss the implementation of MPLite on top of M-VIA. By 

combining the light weight, highly eficient MPLite with high performance M-VIA, we will be 

able to  deliver most of the available performance that the underlying hardware offers to  the 

application layer. 
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CHAPTER 3. IMPLEMENTATION OF MPLITE FOR M-VIA 

Using M-VIA to implement message-passing libraries has several advantages. For slower 

networks such as Fast Ethernet, M-VIA provides much lower latency, For faster networks such 

as Gigabit Ethernet, M-VIA offers much higher throughput because memory-to-memory copies 

are minimized. M-VIA can use hardware acceleration to further improve the performance. By 

combining the light-weight MPLite with M-VIA, we will be able to fully utilize the benefits 

of both in order to deliver low latency and high bandwidth communication to applications in 

a portable manner. The goals of this research project are: 

e High performance (low latency, high throughput and low CPU load). The MP-Lite 

M-VIA module will deliver almost all the performance that M-VIA can offer to the 

application layer in an optimal situation. 

Chmicl- honding capability. MPLite M-VIA will have the capability to  use multiple 

nct work interface controllers simultaneously to improve potential bandwidth. 

hliiiiiiiixiiig resource usage. MPLite should minimize memory utilization and CPU work- 

load. This is important for scalability. 

e L’wr fricwlly. Reduce M-VIA related configuration for MPLite and provide the same 

ii i t  cv-f;ic*tt and configuration mechanisms as other MPLite modules. 

3.1 System Overview 

Tliv MP-Lite library already provides the high level functions that are independent of the 

uiidcrlyiiig communication protocols. These include global reduction functions and gather/scatter 

functions. Therefore, what is required for a module is the implementation of the point-tepoint 
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send-q recv-q msg_q 

functions, buffer management message management, queue control, data segmentation and as- 

mbuf, dbuf 

sembly, as well as initialization and finalization procedures. The components of the system 

and their respective relationships are shown in Figure 3.1. 

initialization n 
I Dynamic Memory Registration I 

I i Finalization 

Figure 3.1 MPLite M-VIA module overview 

The initialization procedure checks input parameters, allocates memory and sets up con- 

nections. The point-to-point functions include blocking and non-blocking asynchronous send 

and receive commands using two different transmission protocols: the eager protocol and the 

handshake protocol. Dynamic memory registration is critical for the performance of long mes- 

sage transfers. Data segmentation and assembly is necessary during transmission because of 

the 32 KB limit of the maximum transfer unit in M-VIA. It is also imperative since we need to 

use multiple network interface controllers for channel-bonding. The important data structures 
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in message queue management are the receive queue, send queue and message queue. Buffer 

management controls the memory resource usage. The finalization stage frees the allocated 

memory and shuts down related processes. 

In the following section, the details of the module implementation of M-VIA for each of 

the sub-modules are delineated. 

3.2 Queue Management 

Queue management provides a mechanism to buffer and access outstanding messages. The 

send and receive queues are used to manage the asynchronous messages. The message queue 

is used to buffer incoming messages that do not have a matching receive. Messages are queued 

and dequeued in First In First Out (FIFO) order. The related data structures are: 

s t ruc t  MPmsg-entry: The MPLite message data structure which contains all the nec- 

essary information €or a message, such as the message id, source, destination, buffer 

address, length, tag and segmentation information for channel-bonding. 

struct MP-msg-entry *send-q[]: Each node has a send queue for all other destination 

nodes. A message of destination dest is appended to the end of send-q[desi]. The send 

function dequeues messages from the head of send-q[dest] as it deIivers the message to 

the destination node. 

struct MP-msg-entry *recv-q[]: Each node has a receive queue for each source nodes. 

Messages expected from source src are posted to the end of recv-q[src]. When a message 

is coming from src, the recv-q[src] is searched from the beginning for a match. recv-q[-l] 

is reserved for messages whose source is a wildcard. 

struct MP-msg-entry *msg-q[]: The buffered message queue is for incoming messages that 

do not have a match in recv-q. A message that is sent to itself is also posted to msg-q. 

The separation of queues by message destination or source speeds up the demultiplexing of 

incoming and outgoing messages which enhances the performance. An example of the recv-q 

is shown in Figure 3.2 
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recv-q 

Figure 3.2 An example of the receive queue 

Functions related to queue operation are: 

post(): Post a message to the send-q, recv-q or msg-q 

send-to-q(): Send a message directly to msg-q, which is used only when a node sends a 

message to itself. 

recvfrorn-q(): Try to retrieve a message from the msg-q. This is the first step to rwcivc! 

any message. When a match is found, the data is copied to the destination l d f r r  a i d  

the message in msg-q is dequeued and destroyed. A receive message matches i f  t 110 tags 

of these two messages are the same or the tag of the receive message is a wild(:iird iiiid 

the number of bytes is less than or equal to the expected length. 

find-a-postedreceive(): Find a matching receive in recv-q when a message is coniing. If il 

match is found, the message is returned and dequeued from the recv-q. 

3.3 Buffer Management 

Sending and receiving is accomplished by posting descriptors, which describe the data 

address, length and registered memory handle. The short messages are copied to the pre- 

registered buffers for sending (long messages use user buffers directly). Receive descriptors 

need to be pre-allocated before connection is setup in order to receive unexpected data before 

user buffers are available. Because limited memory resources, buffer management is needed 
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Descriptor 

Buffer 

Descriptor 

Buffer 

to control the memory usage. In o w  implementation, we use the concept of mbuf, which is 

- 

Next 
Descriptor 

* 
- 

Next 
Descriptor 

similar to the data structure used in many operating system memory management designs. 

A mbuffis a block of memory that contains both the buffer description (in our case, the VI 

descriptor) and the actual buffer space. An mbuf is linked as a queue. Functions are provided 

to queue and dequeue a block of mbuf from the head of the queue. An mbllfs is allocated in 

a contiguous address space so that when it is registered, we get only one memory handle to 

make things easier. This is illustrated in Figure 3.3. 

mbuf 

Figure 3.3 mbufs 

In addition to mbuf, there is another type of buffer unit called dbuf. A block of dbufoonly 

contains a VI descriptor and does not have its own buffer space. An mbufis for sending and 

receiving small messages, which are always be buffered in mbujs before sending or receiving. 

A dbuf is for sending large messages. The buffer pointer will be redirected to the actual user 

buffer. The advantages of the separation of mbuf and dbuf are: 

1. Because the size of dbuj is small, we can allocate a lot of dbufs for sending large messages 

without greatly increasing the system resource utilization. For example, we can allocate 

300 dbufs (descriptors) for sending messages of up to 8 MB (each descriptor can point to 

a 32 KB block of user data). 
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2. We can increase the size of mbuf to improve the short message performance. Because 

an mbuf is only used for sending small messages, which do not require many descriptors, 

we can increase the size of an mbuf without greatly increasing the total system memory 

usage. For example, we can set the size of an mbufto 16 KB, so that a message smaller 

than 16 KB can be sent in one descriptor. 

In the MVICH implementation, there is only one type of buffer vbuf, which is similar to 

mbuf. An vbufis used to  send both small and large messages. To send a large message, lots 

of vbufs are needed. Because each vbuf has its own buffer space, to reduce resource usage, the 

vbufsize should be small. For example, set the vbufsize to 1 KB in MVICH. A message of size 

5 KB needs to be send 5 times, which limits the MVICH performance. 

Functions related to mbuf (dbuf is similar) are: 

via-descsequest0:  In response to the user buffer request, dequeue a block of mbuffrom the 

mbuf list for usage. 

via-descrelease0:  When finished using an mbuf, queue the mbufto make it available again. 

v ia -descres tore0 :  Restore the default value of the descriptor in an mbuj .  

3.4 Important Data Structures 

s t ruc t  via-conn: This is the data structure represents the VIA connection. All the informa- 

tion of a VI connection, such as the VI handle, the connection handle and the remote 

address, is included in this data structure. Since the current M-VIA implementation 

.does not provide fully reliable data transfer, a sending sequence n u m b e r  and an expected 

receiving sequence number are added to improve the error detection. 

Message headers: Message headers tell the destination what type of incoming message it 

is. They can be used to distinguish messages and selectively receive them. They are 

also called message envelopes. To reduce transfer overhead, we use variable size headers 

instead of a large fixed one to keep the header as small as possible. A few fields of the 
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beginning of these headers are identical, so they have a common small header for easy 

analysis. There are four types of headers used in different transmission modes: 

1. OP-SEND: Normal send by using the eager protocol. Data is accompanied with the 

header. The message length and tag are included in the header. 

2. OPRDMAW-RTS: RDMA Write request-to-send. Parameters include message length, 

tag and source message id. 

3. OPIEDMAW-CTS: RDMA Write clear-to-send. Parameters include destination 

buffer length, tag, source message id, destination message id, and registered desti- 

nation memory handle. 

4. OPRDMAW-DONE: This is used to notify the data destination that an RDMA 

Write operation is done. This header contains the message length, tag, destination 

message id and destination memory handle. This header can be eliminated if using 

the ImrnediateData field of the descriptor to inform the completion of tlic RDhiIA 

opertion. 

3.5 Initialization 

Initialization is done in the MPlni t ( j  function. The library needs to read aiitl i t 1 1 i ~ l ~ ~ ~  

input arguments, determine the process id, initialize log and status files, allocate ai i ( l  c:rttat.c 

data structures and setup VI connections. 

The run-time parameters are stored in a configuration file .mplite. config in thc! currcnt 

working directory. The configuration file is created by the mprun startup script. The format 

of this file is: 

<number of nodes> 

<number of NICs> 

<program name and arguments> 

0 <node0 N I C O > ,  <node0 NICf>, . . .  
1 <nodel. NICO>, <node1 NICl>, . . .  
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... 

Each node started by mprun reads those parameters and begins to determine its own process 

id. The process id is an integer starting at zero and uniquely identifies each node. Because 

multiple nodes can run on the same machine (especially on an SMP machine), and they are 

basically identical, we need a mechanism to avoid contention in determining the process id. 

It would be easy if the mprun script could determine the process id when it launches each 

process, and then transfer this id as an input argument to  each process. However, because 

Fortran support for command line arguments is limited, it is not easy to deliver the process 

id to  the correct process if multiple identical processes are running on the same machine. So 

each process has to determine the id independently. 

Our approach is to use System V shared memory to determine the unique process id. A11 

the nodes on the same machine try to create a named shared memory region. The name 

of the shared memory region is unique to each mprun session. If the shared memory region 

already exists, then the processes try to attach to this memory region. The shared memory 

region contains an integer. The initial value of this integer is zero. Each process grabs the 

current value in the shared memory region and increments the value by one. Of course the 

shared memory needs to be locked using a semaphore to  avoid contention from other processes 

accessing the same shared memory region. All the processes running on the same machine 

will get different values and can be ordered accordingly. Each process uses the grabbed value 

combined with the value read from the file .mpZite.config to determining its unique process id. 

, The last process closes the shared memory region. 

After determining the unique process id, the next step is to determine the network devices 

to be used (the VIA device name), such as "/dev/via-ethO" for the first NIC, "/dev/via-ethl" 

for the second NIC, etc. The NIC name or IP address must be translated to the specific device 

name. In MVICH, the device name is fixed in the source code, so if you want to use another 

NIC on your machine instead of the default one, you have to recompile the MVICH package. 

The M-VIA implementation of LAM MPI uses a configuration file to  store the VIA device 
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names; so you have to manually modify the configuration file if you want to use another NIC'. 

MPLite can stripe data across multiple NICs simultaneously to increase the transmission 

bandwidth. The MPLite implementation dynamically determines the device from the user 

provided NIC name at run-time. It works by getting the IP address of the specified NIC name, 

using the iocdE() function to get a list of all the network interfaces installed on the system 

and comparing the IP address with each of these interfaces. Dynamic configuration eliminates 

the need for special configuration options for the M-VIA module and keeps the arguments of 

mprun the same as for other modules. 

The VI initialization procedure also allocates memory and creates data structures. This 

includes allocating all the message and queue structures, allocating and registering mbllfs and 

dbujs (whose address must be properly aligned for performance), opening the VI devices and 

creating VIS. 

The last step of the MPLite initialization stage is to set up a fully-connected network. 

Connections must be made between each pair of nodes. Each VI can only represent one 

connection, so we have to create nprocs - 1 VIS and make nprocs - 1 connections in each 

node for nprocs nodes. Each VI is given the local and remote address when created. The 

descriminator (similar to the port number in TCP, but not restricted to integers) of each VI is 

specified as a triplet {local node id, remote node id, NIC id}. Thus different VIS on the same 

node have different descriminators. 

The connection sequence is determined by the process ids. Each node accepts a connection 

from nodes with a smaller id, then each node initiates connections to nodes with larger id 

values. To synchronize this procedure, every node will send a go signal to its upper neighbor 

and receive a go signal from its lower neighbor after all connections are generated. 

3.6 Communication Protocols 

Two communication protocols have been implemented in the MPLite M-VIA module: the 

eager protocol and the handshake protocol. The eager protocol is for short message, and 
'In fact, due to at least one bug, you can only use the &st NIC unless you utilize some non-trivial hacks. 
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the handshake protocol is €or long messages. 

3.6.1 The Eager Protocol 

The eager protocol assumes the receive node has enough pre-posted buffers to hold the 

incoming messages. Once messages are posted for sending, messages accompanied with headers 

are sent to the destination node immediately. On the destination node, the arriving messages 

are stored in the pre-posted buffers and copied to the user buffers when a matching receive is 

posted. Because of limited buffer resources, this protocol is only suitable for small messages. 

The eager protocol is illustrated in figure 3.4. 

Sender 

I Header-tData I 

Receiver 

f 

Memory Ciip / 
VI Receivc Qucue VI Send Queue 

Figure 3.4 Diagram of the eager protocol 

The eager protocol can significantly reduce the communication latency since messages are 

sent without delay. However, it requires pre-posting enough buffers to hold the incorning data 

from arbitrary sources and at  least one memory copy is needed at the destination node to copy 

data from the preposted buffers to the user buffers. 

The MPLite M-VIA implementation involves an additional memory copy at the source 

node, from the user buffers to the pre-registered mbufs. A procedure can be implemented 

that dynamically registers the user buffers and posts the user buffer directly to the VI send 

queue. However, for small messages, it takes more time to register/deregister buffers than to 
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Data size (bytes) 
8 
64 
256 

copy data to preregistered buffers. Table 3.1 shows the time comparison of memory copy and 

registration/deregistration. of different data sizes on an Intel PI11 PC. 

Memory copy ( p s )  Registration/deregistration (ps)  
0 4 
0 4 
0 4 

Table 3.1 Memory copy compared to memory registration 

2048 
4096 

1 4 
2 5 

8192 4 6 

The table shows that when the data size is less than 8 KB, the memory copy is faster than 

memory registrd,ion/deregistration. Therefore, for smalI messages, it is more efficient to use 

the memory copy. For large messages, we switch to the handshake protocol and use the RDMA 

Write to achieve high performance, zero-copy data transfer. 

16384 

3.6.2 The Handshake Protocol 

47 8 

The handshake protocol requires handshaking between the source and destination nodes. 

Because of the handshake delay, it is suitable only for large messages. The source node sends out 

a request-to-send control message that includes the message size and tag. When the destination 

hffer  is available, the destination node replies with a clear-to-send message containing the 

destination buffer address and the registered memory handle. The source node then uses an 

RDMA Write mechanism to deliver data directly into the destination buffer. No extra memory 

copy is needed2. This is ihstrated in figure 3.5. 

The handshake protocol is more robust than the eager protocol since the source will not 

send messages until there is enough room at the destination. It can deliver very high band- 

width when combined with the RDMA Write mechanism to achieve a zero memory copy data 

32768 91 
65536 i 181 

*In fact, M-VIA still has one internal memory copy at the receive side if no hardware acceleration is available. 

12 
21 
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Sender 

request-to-send (message tag + length) 

Receiver 

User Buffer 

clear-to-send (destination buffer address) - 

- 
RDMA Write 

Data 

VI Send Queue 

RDMA Write Done 

Figure 3.5 Diagram of the handshake protocol 

transfers. Although handshaking delays exist, for large messages, the data transmission time 

is sigiiificaritly larger than any such delay. 

It is possible to devise another simple handshaking protocol that reduces one handshake 

and ca11 overlap communication and computation at the receive side. Whenever a receive 

is postvcl. t t iv  destination node just sends out a cEear-to-send message to the source node, 

t h i  r r m t  inuc*s working on other computational components. The source node does not send 

out itxi!. Iwss;igc? when a send message is posted. Instead, the source node just waits €or a 

11i;it c*tiiIig rhw-to-send message, then starts the RDMA Write procedure to send data without 

thv  h t v t w t i o ~ i  of the destination node. After the message is written remotely, a RDMAW 

Doiir nit-ssap. is sent, to the destination to notify that the transfer is complete. 

T h  i iwt hod has problems however. Consider what happens if both nodes are going to 

w ~ i ( I .  T h y  will both be waiting for cleur-to-send messages, which leads to deadlock. Another 

p r d h i ~  txists in channel-bonding. Because the receive node can have a larger buffer than 

sotm*o ii~~~ssiigc: it is unable to determine how to segment the data and register the buffer 

uiilcss it receives the source buffer length information. Therefore it can not send a clear-io- 
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3.7 Dynamic Memory Registration 

In the RDMA Write mode, whenever a send or receive is posted, the corresponding buffer 

is dynamically registered. The registration of a buffer is to pin the buffer into the physical 

memory, When the data transfer is finished, the buffer is deregister. The frequent registration 

and deregistration may decrease performance. 

One optimization in MPLite M-VIA is to keep the registration information for the last few 

registered buffers. When a buffer is registered, the buffer address, length and the registered 

memory handle are put into a memory registration cache. When the data transfer is completed, 

the buffer is not deregistered immediately. Instead, the buffer registration informiation is still 

stored in the cache. Before registering a buEer, the cache is searched to see whether a registered 

buffer is available for use. In case of a cache hit, the registration informiation in the cache can 

be used immediately, thus eliminating the overhead of memory registration. 

There are three statuses of a cache entry: INVALID, CACHED and IN-USE. An empty 

cache entry is marked INVALID thus can be used to register a new buffer. If a c a c h  mitry is 

being used by any of the MPI send or receive commands, it is marked IN-USE. If all o f  thc. hlPI 

send or receive comands that use the cache entry are completed, the cache entry is mirkcd 

CACHED. In case of a cache miss, an empty cache entry is searched first to registcbr t h  new 

buffer. If the cache is full, the least recently used cache entry is replaced. Howcwr. ii cache 

entry that is in IN-USE status can’t be replaced because the data transfer is riot c:onipleted 

for this entry. If all the cache entries are in use, then the newly registered buffer will not use 

the cache. 

In M-VIA, there are limitations on the the size of buffers and the number of buffers that 

can be registered. It is neccessary to clean the cache if the memory registration will exceed 

those limitations. 

3.8 Send 

In MPLite, there are two essential send functions: MP-Send() and MPASendO. MP-Send() 

is a blocking function that does not return until the message is received or stored somewhere 
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so that the send buffer is free for reuse by the sending process. The MPASend() function is 

a non-blocking, asynchronous function that returns after the function is called. It only indi- 

cates that the sending mechanism has started; it has not completed. The buffer can not be 

reused until a matching MP-Wait() is called. The implementation of MP-Send() is just an 

MPASend() followed by an MP-WaitO. 

In MPASendO, the message destination is checked first. Messages sent to oneself are copied 

directly to  msg-q. Other messages are posted to send-q. MPASendO does not actually start 

sending the message. The actual sending begins only when MP-Wait() is called. MP-Wait() 

takes a message from the head of the send-q and begins to deliver the message. This message 

might not be the message that matches the MP-Wait() call. The procedure is repeated until 

the message corresponding to  the MP-Wait() call is taken out of the send-q and has been 

delivered. 

The send is implemented by using two transmission protocols described in the last section, 

eager protocol and handshake protocol. Small messages are sent using eager protocol. Messages 

less than 12 K3 accompanied with OP-SEND headers are copied to the pre-registered rnbufs 

and put into the send queue. IA the eager protocol, we assume the destination has enough 

space lo store small messages, so in most cases sends will not be blocked. If the destination 

node does not have enough buffers, data will be lost. In a reliable version of M-VIA, the lost 

data is supposed to be re-transmitted by M-VIA. In an unreliable version of M-VIA, currently 

only error messages are generated by MPLite. 

Large messages use the handshake protocol and RDMA Write mechanism. The source 

node sends an OPBDMAWATS (RDMA Write request-to-send) message to the destination 

node with the buffer length and tag being specified in the header. The sender then waits 

for the OPRDMAW-CTS (RDMA Write cleur-to-send) message. It is necessary to check the 

destination buffer length in the reply. If the destination buffer is large enough, then we can 

begin the RDMA Write session by transferring data from the source buffer directly to the 

destination buffer. No additional memory copy is needed. If the destination buffer is too 

small, it is not considered an match. Because of the maximum 32 KB transfer size limits of 
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M-VIA, for messages larger than 32 KB, we need to segment (e.g., packetize) the data before 

transmission. 

There are two choices when sending large messages. The first one sends out a 32 KB 

descriptor, waiting for it to complete then using the same descriptor to send another 32 KB 

of data. This method requires only one descriptor, thus reducing the memory usage. The 

second approach, which is the default method, posts as many descriptors as necessary to send 

a message. Although this method requires more descriptors, the throughput is better for 

Gigabit Et her net. 

3.9 Receive 

MPLite has two types of receive functions: MPRecvO and MPARecvO. MPBecv() is 

a blocking receive function, and MPARecvO is a non-blocking, asynchronous receive. In the 

actual implementation, MP_Recv() is just a MPARecvO followed by a blocking MP-Wait(). 

MP-ARecv() does nothing other than put the message into the recv-q. The MP-Wait() handles 

the actual data transfer. 

The rcicc?ivc procedure in MP-Wait() starts by checking the msg-q. The message might 

haw alrc*iicly been received and buffered in msg-q. If a matching message is found, the data 

is rapid from the msg-q to the destination buffer and the buffer in msq-q is freed. Before 

copyitig t l i t .  ( l i l t  a. it is important to wait until the message is completely received. If the receive 

1)riffi.r is Iargvr than the buffered message in recv-q, after data is copied to the receive buffer, 

tlit. st*ilrt.ll i r i  r i i s q x ~  should be continued to find another match that can fill the availabe space 

i n  t l i t 1  riv.viv!E I)id€cr. 

1 f I I i i s  IIlt'ssilg(: is not found in msg-q, it needs to be actually received over the network. The 

1'1 rcwivc~ futic'tion is called to wait on the VI receive queue until a message header is received. 

By distitiguisliiiig different types of message headers, different operations are performed: 

e If t l i ~  header is OP-SEND, it is a small message sequence that will use the eager protocol. 

Tiici receive side extracts the message length and tag and tries to find a matched receive 

in the recv-q. If the tags of the send and receive message are the same, or if the receive 
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tag is a wildcard, then they are matched. If no such match is found in the recv-q, the 

incoming message needs to be buffered. This is done by allocating a temporary buffer 

and creating a new message. After receiving the incoming message in the temporary 

buffer, the message is posted to the msg-p. If a posted receive is found that matches the 

incoming message, then the incoming message stored in the preposted mbufs is copied 

to the destination user buffer. 

Things would be easy if all the matched send and receive messages were the same size. 

If the receive buffer is smaller than the send buffer, it is a mismatch and another posted 

receive should be searched. In the case where the message sent is smaller than the receive 

buffer, the message is copied to the receive buffer and the progress of the receive buffer 

is adjusted. The receive buffer is put in the recv-q again. This allows following incoming 

messages being received into this receive buffer. 

0 If the header is OPRDMAWRTS, it is an RDMA Write request-to-send message. First 

recv-q is checked to  find a matching receive. If no such match is found, a temporary 

message buffer is created for the incoming data. This buffered message is put in the 

msg-q even though no data has been received. An OPXDMAW-CTS message is sent to 

allow the RDMA Write to begin. If the receive buffer is larger than the send buffer, after 

data transfer is completed, the progress of the receive buffer is adjusted and the receive 

buffer is put in the recv-q again. 

0 If the header is OPRDMAW-CTS, it is an RDMA Write deer-to-send message, and is 

a response to the previous OPADMAW-RTS request. The message id is extracted from 

the header to find out which message made the request and the RDMA Write operation 

is started for this message. 

0 If the header is OPRDMAW-DONE, it is an acknowledgment from the source node 

that an RDMA Write operation has been completed. The destination node extracts the 

message id from the header to know which message has been done, then adjusts the 

number of bytes left field of the message to adjust the current state. It is not necessary 
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for the entire message to have been received because the receive buffer may be larger 

than the message sent. The actual implementation uses the ImmediateData field of the 

descriptor to send the last data packet, so that the last packet will consume one descriptor 

at the destination side to indicate the completion of the data transfer. 

The destination node repeatedly receives headers and progresses each receive until the 

desired message is received. A special case is when the source of the receive message is a 

wildcard, matching any source. The destination node cycles through each source by using a 

method outlined above to see whether a matching header has arrived. This is not very efficient, 

since we must check each source, but it is convenient at this time. 

3.10 C hannel-Bonding 

Channel-bonding is the ability to stripe messages across multiple network interface cards to 

improve the potential bandwidth between machines in PC and workstation clusters. Channel 

bonding was first introduced in the Beowulf parallel workstation (SSB+95), where using two 

Ethernet channels could sustain 70% or greater throughput than a single network alone. 

Compared to channel-bonding on multiple Fast Ethernet cards, using one Gigabit Ethernet 

card in the same situation does provide higher throughput, but this greatly increases the cost 

of the whole computer system. Channel-bonding on multiple Fast Ethernet cards provides an 

economic and scalable way to improve the communication performance in clusters. 

To enable channel-bonding, it is neccessary to allocate a copy of related data structures 

such as the NIC handle, VI handle, m h f ,  and connection descriptor for each NIC. During the 

initialization stage, a full connection network is constructed for each NIC. That is, NIC 0 011 

all nodes will form a fully Connected network, NIC 1 on all nodes will form a separate fully 

connected network, etc. 

MPLite M-VIA defines a size threshold for starting channel-bonding. Long messages 

usually can use channel-bonding. For small messages sent by the eager protocol, if the message 

size is larger than the channel-bonding threshold, the message can also be sent using multiple 

NICs. The data buffer is divided into blocks of data, where each data segment is stored in one 
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NIC 0 NIC 1 NIC 0 

VI descriptor. For two NICs, a header with the first block of data is posted to the send queue 

of the first NIC, the second block of the data is posted to the send queue of the second NIC. 

After both sends have completed, the third block of data, if available, is posted to the send 

queue of the first NIC again. This procedure continues until all the data is sent. Each NIC 

sends one descriptor each time, in order. The destination node receives blocks of data from 

each NIC in the same order, as in figure 3.6.  

NIC 1 NIC 0 

Figure 3.6 Channel-bonding for small messages 

For large messages, it is neccessary to register buffers used by every NIC, so it is better 

t o  divide the buffer into approximately equal length segments with each NIC handling one 

segment of data. Remember that the destination node needs to reply with the address arid the 

registered memory handle of each segment to the source node. The destination nodc is ~ i ~ ~ i h l c  

to do so before the request-to-send message is received from the source node, since t lw rtwivr!  

buffer may have a different size than the send buffer thus the receiver does not know how t 0 

segment the buffer using the same mechanism as the source node. But it can be a s s i i ~ ~ i c d  t.hilt. 

the size of the receive buffer is equal to the size of the send buffer, so the receivc litiff(!r (:mi 

be registered before the arrival of OPRDMAW-RTS. This improves the performanr:v i i i  most, 

situations. Finally, if the sizes are different, the buffer can be deregistered and re-registm using 

the new buffer size. The segmentation is illustrated in figure 3.7 

I I NIC 0 NIC 1 I 
Figure 3.7 Channel-bonding for large messages sent by the RDMA Write 

After a segment has been transfered, the NIC needs to notify the destination node of the 

completion of the data transfer. Only when all notifications from each NIC have been received, 
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the data transfer is completed. 

3.11 Finalization 

The finalization step frees all of the resources allocated by the MPLite library. This include 

disconnecting all of the connections, deregistering and freeing all mbufs and dbujs, destroying 

VI data structures, and freeing all other memory allocated by the library. It is necessary to  

synchronize the execution of each node before cleaning up. 

3.12 Porting M-VIA to  the Alpha Platform 

Currently M-VIA is only tested for PC x86 platforms running Linux. We have made some 

changes to the source code of M-VIA so that it also works on the Alpha Linux. 

The first change needed is the doorbell type. The doorbell is an operating system mech- 

anism for a process to notify the VI NIC that a descriptor has been placed on a work queue. 

Three doorbell types are provided by M-VIA: fast i m p ,  ioctl and register. The register door- 

bell is not yet implemented in M-VIA. The x86 version uses fast trap. However, the fast trap 

code is written by using x86 assembly language to bypass the OS system calls. For the Alpha 

platform, it is neccessary to disable the fast trap and use ioctl doorbell instead. The descriptor 

u$set into the physicd page field in the doorbell token format needs to be slightly increased 

because the page size on Alphas is 8 KB compared to  4 KB on the x86 platform. 

Another problem is the mapping among user virtual addresses, kernel virtual addresses 

(linear address) and physical addresses. In the memory registration function, a user vir- 

tual address needs to be mapped to a physical address. This is accomplished in the macro 

generic_virt_to_phys(), which walks through page tables to get the physical address. The result 

of the page table walking in the current M-VIA implementation is the kernel virtual address on 

Alpha instead of the physical address. It needs to be further translated to a physical address 

by adding a PAGE-OFFSET. Also, the input parameter to the kernel function MAPAW() ,  

gets a memory map index for a page in the kernel memory, should be a kernel virtual address 

instead of a physical address as in the current MI-VIA. 
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One problem still not solved is the size of the memory handle. It is defined as a 32 bit 

unsigned integer. However, according to the VI specification and the actual programming, the 

memory handle is obtained by (Virtual Address > > PAGE-SHIFT - PROTECTION INDEX). 

On the Alpha platform, the address is 64 bit, so theoretically, a 32 bit memory handle is not 

enough. In our changes to the source code, we did not increase the size of the memory handle 

because it is related to many other data structures, and thus a non-trivial aspect of the port. 

The M-VIA implementation should handle this through a normal abstraction mechanisms and 

this advice has been sent to  the developers. 
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Pc cluster 

Alpha cluster 

, .  

CHAPTER 4. PERFORMANCE OF MPLITE M-VIA ON LINUX 

CPU memory Fast Ethernet Gigabit Ethernet 
DEC Tulip Syskoiirwrt 

Pentinurn 111 450MHz 256MB Scorn 3C59X Harrliidti 

Intel/Pro 100 
Compaq DS20 500MHz 1.5GB Syskaiir i w t .  

4.1 Experimental Environment 

4.1.1 Configuration 

The performance evaluation environment consists of two test clusters. The first cluster 

contains two Pentinum 111 PCs connected back-to-back by multiple Fast Ethernet and Gigabit 

Ethernet cards. The second test-bed consists of two Cornpaq DS20 Alpha workstations, also 

connected by multiple Fast Ethernet and Gigabit Ethernet cards. The configurations of these 

two clusters are shown in table 4.1. 

The clusters are running the Red Hat 6.2 Linux distribution with kernel version 2.2.19. 

The M-VIA version is 1.2b2, which supports reliable delivery. We applied our Alpha patch to 

this version of M-VIA. In the experiment, three different M-VIA implementations of MPI are 

compared as shown in table 4.2. 

Table 4.2 Installed M-VIA implementation for MPI 
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4.1.2 NetPIPE Performance Evaluator 

For all tests we used the NetPIPE (SMG97) performance evaluation tool. NetPIPE stands 

for the Network Protocol Independent Performance Evaluator. The network performance is 

evaluated using multiple ping-pong tests. The transfer block size is increased from a single 

byte until transmission time exceeds one second. The transmission of each size of data block is 

repeated enough times so that the total time is far greater than the timer resolution. NetPIPE 

reports the block size in bytes, throughput in Mbps (Megabits per second), and transfer time 

in microseconds. The latency for a l-byte message is also reported. 

Two types of graphs are presented using the NetPIPE output: 

Throughput graph: This is the graph of the throughput versus the message size on a log- 

arithmic scale. The throughput graph is the traditional way to  show the transfer rate 

for each different block size. It is easy to see the maximum throughput in this type of 

graph. 

Signature graph: The throughput versus the elapsed time on a logarithmic scale. This graph 

shows the network transfer latency and the network transfer “acceleration”. The latency 

is the time of the first data point on the graph (l-byte round-trip time divided by 2). 

4.2 Point-to-Point Communication 

1x1 this section, the results of the performance comparison for various communication li- 

haries are presented. The communication is between a pair of Fast Ethernet or Gigabit 

Ethernet interfaces on one of the test clusters. 

4.2.1 Fast Ethernet on the PC Cluster 

Figure 4.1 shows the throughput comparison of MPLite M-VIA, MVICH, LAM MPI M- 

VIA, MPICH and raw TCP between Tulip Fast Ethernet cards on two PCs. Raw TCP offers 

a maximum of 89 Mbps throughput. Both MPLite  M-VIA and MVICH can deliver the 

maximum TCP performance adequately. The maximum throughput of MP-Lite M-VIA is 91 
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Mbps, which is a little better than the maximum throughput of TCP. MPICH loses 10% of the 

TCP performance. The LAM MPI M-VIA has 80% of the TCP performance. For LAM MPI 

M-VIA, there are stability problems in the current version, so we had to reduce the repeat 

times when testing using NetPIPE, so the result are a little noiser than other tests. 
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Message size in Bytes 

Figure 4.1 The throughput between Tulip Fast Ethernet cards on two PCs 

For messages smaller than 8 KB, MPLite M-VIA and MVICH provide better performance 

than TCP. Around 10 KB, both MPLite M-VIA and MVICH switch from the eager protocol to 

the handshake protocol and start using the RDMA Write mode. There is a little performance 

decrease at this point, but after 12 KB, the performance increases over TCP. 

Figure 4.2 illustrates the matching signature graph of the above message transfer. The 

signature graph clearly shows the latency, which coincides with the time of the first data point 

on the graph, of each communication library. 

M-VIA based communication libraries provide much lower latency than raw TCP. MPLite 

M-VIA has the lowest latency at 40ps. MVICH and LAM MPI M-VIA are 45ps and 56ps 

respectively, Compared to TCP at 52ps and MPICH a t  121ps, M-VIA based libraries have 

advantages for codes that send many small messages. The M-VIA OS bypass mechanism and 
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Figure 4.2 The communication. latency between Fast Ethernet cards 

eager transfer protocol both contribute to the low latency and the characteristirs of t h e  

libraries. 

4.2.2 Gigabit Ethernet on the P C  Cluster 

The difference between the message-passing libraries is more evident for fast VI' wt.works 

such as Gigabit Ethernet. Gigabit Ethernet, also known as the IEEE 802.32 staId;ud. offers 

a 1 Gbps raw bandwidth which is 10 times faster than Fast Ethernet. It operatcs in a very 

efficient full-duplex, point-to-point mode in our experimental configuration. Initially Packet 

Engine I1 Hamachi cards were used as our test NICs, but they can deliver at most 330 KB 

of data due to some bugs in the device driver. Therefore, we switched to Syskonnect Gigabit 

Ethernet cards. 

Figure 4.3 shows that MPLite  M-VIA and MVICH reach a maximum of 425 Mbps. Com- 

pared to raw TCP, which has a 290 Mbps maximum, the result is very impressive. TCP based 

MPICH tops out at 230 Mbps, which is only a little more than half of MP-Lite M-VIA and 

MVICH. For messages sizes between 2 KB and 16 KB: the throughput of MPLite M-VIA 
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Figure 4.3 The throughput between Syskonnect Gigabit Ethernet cards on 
the PC test cluster 

is much better than MVICH. This is because MPJlite can use larger buffers to send small 

iiiessages without increasing the system memory usage much. 

The latency of MPLite M-VIA is 45ys, which is the best of the communication libraries 

t.csted. The 51ps latency of MVICH is also very low. TCP and MPICH are at 53ps and 1 2 7 ~ s  

rcspectively. 

The Syskonnect Gigabit Ethernet cards support TCP jumbo frames, in which the MTW 

(Maximum Transfer Unit) of 9000 bytes is used instead of the standard 1500 bytes. Figure 

4.3 shows that by enabling jumbo frames, the performance of TCP will reach 580 Mbps. The 

latency remains the same as with the standard MTU. The native MTU of M-VIA is only 1480 

bytes, and currently it does not support jumbo frames. It would be nice to run MPLite M-VIA 

in conjunction with jumbo frames in the future. 

Although the MPICH we tested is based on TCP, enabling jumbo frames does not improve 

the performance of MPICH. This is because MPICH initializes the TCP buffer to a fixed 4096 

bytes, thus a large MTU does not improve the performance of MPICH much (OFOO). 
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4.2.3 Gigabit Ethernet on the Alpha Cluster 

This section focuses on the performance of the communication on the Alpha Linux cluster 

connected by Syskonnect Gigabit Ethernet cards. Figure 4.4 illustrates the throughput as a 

function of message size for MPLite M-VIA, MPICH, TCP and T C P  with jumbo frames. 

The curve for MVICH is not shown here because currently MVICH does not work on Alpha 

workstations. Figure 4.5 is the corresponding signature graph, which shows the latency (the 

time of the first data point) of each communication library. 
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Fixurv 4.4 The throughput as a function of message size on the Alpha 
cluster 

7'h(n jwrfoniiarice of each communication library on the Alpha platform is much better 

t,11it11 { I l l  PCs duc to less strain put on the memory bus. The maximum throughput of MP-Lite 

AI-1'1.4 is x s  high as 720 Mbps, with a 36ps latency. The throughput of raw TCP and MPICH 

arc' 390 Mt~ps and 350 Mbps respectively, with latencies of 38ps and 93,~s .  

Tlic~ TCP with jumbo frames again has the highest 880 Mbps maximum throughput. How- 
'Tlir results are tested using Linux non-SMP kernel. Using SMP kerne1 will greately increase the latency of 

TCP. 
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ever, this requires a switch that supports jumbo frames, which limits its use currtwtly. The  

support of jumbo frames in M-VIA is expected in future releases. The performaw(. o f  AIPICH 
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actually decreases by enabling jumbo frames. 

4.3 Channel-Bonding on Linux Clusters 

Channel-bonding is the ability to stripe messages across multiple NICs to itrcw;wsc! thc: 

communication rate between machines. Figure 4.6 shows that channel-bonding three! 3Con1 

Fast Ethernet cards on PCs triples the communication bandwidth. Channel-bonding four Fast 

Ethernet cards provides 332 Mbps, or nearly 90% of the potential bandwidth. However, the 

tested M-VIA does not have full reliability built in yet, but these results are encouraging. 

Currently we can use three Scorn cards or two Tulip cards for channel-bonding. Using 

the fourth Scorn card or the third Tulip card can pass the NetPIPE test, but exhibits errors 

during bi-directional transfers. W-e are unable to install the fourth TuIip driver on the Linux 

system, and unable to install two Intel/Pro 100 M-VIA drivers. 
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Figure 4.6 Channel-bonding up to four 3Com Fast Ethernet cards between 
PCS 

Figure 4.7 is the result of channel-bonding two Syskonnect Gigabit Ethernet cards on Alpha 

systems. The result is not as good as on PCs. Using two Gigabit Ethernet cards only offers 

a 20% improvement, nearly 150 Mbps extra bandwidth over using a single NIC. Because M- 

VIA still has one memory copy on the receive side, the performance is limited by the internal 

memory bandwidth, which limits the flow of data through the PCI bus. 

4.4 Summary 

In this chapter, the performance of MPLite M-VIA, MVICH, MPICH, LAM MPI M-VIA: 

TCP and TCP with jumbo frames using Fast Ethernet and Gigabit Ethernet cards on both the 

PC and Alpha platforms are presented. Generally, VIA based communication libraries have 

better performance on throughput and latency. MPLite M-VIA has impressive performance 

on both Fast Ethernet and Gigabit Ethernet. It has the lowest latency and nearly double thc 

performance of MPICH. The low latency is achieved by the M-VIA operating system bypass 

mechanism for reducing system overhead, and by using the eager communication protocol as 
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Figure 4.7 Channel-bonding two Gigabit Ethernet cards on the Alpha clus- 
ter 

well as buffering mechanisms to reduce the transfer delay. The small message header and large 

buffers also reduce the communication overhead for small messages. The higher throughput 

is ~ h t . i i i ~ 1 ( ~ ~ 1  twcause of the very efficient RDMA Write mechanism. The memory copies are 

miniiiiizcd. Although reliability support needs to be further optimized and tested, the results 

art' w r y  proiiiising. 

~ ~ I ~ ~ i ~ i ~ ~ ~ ~ l - ~ ~ o ~ i ~ l i n ~  of three Fast Ethernet cards provides a nearly idea1 tripling of the comrnu- 

uicxt i c r r i  raft,. This is a good way to increase the communication performance without greatly 

iiicrtxsiliz t I N -  ovcraI1 system cost. Although we can channel-bonding two Gigabit Ethernet 

ci1rtl.s. t f r l -  ~~c~ i imnance  improvement is not as much as for Fast Ethernet cards, due to the 

liiiii~iit icm of t h  internal memory bandwidth. 
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CHAPTER 5. DISCUSSION AND CONCLUSIONS 

This chapter will give a summary of the implementation and discuss the limitations and 

issues of M-VIA and the MPLite library. Possible countermeasures and future work will also 

be proposed. 

5.1 Features 

The design and implementation of MPLite for M-VIA has achieved several objectives: 

high performance, channel-bonding capability, portability, and a user friendly system. 

5.1.1 High Performance 

The high performance of MPJIite M-VIA is demonstrated in the low latency and maximuni 

throughput. The implementation also tries to use wait functions instead of polling functions 

to minimize the CPU load. 

For both Fast Ethernet and Gigabit Ethernet, MPLite M-VIA has a much lower latency 

than MPICH, and is also better than MVICH. The OS-bypass mechanism of M-VIA and the 

light-weight nature of the MPLite library are the main factors that contribute to the low 

latency. However, the following implementation choices are also important: 

1. The eager protocol sends small messages without delay. 

2. Pre-registered buffers are used to send and receive small messages to  avoid dynamic 

memory registration, which is more expensive than memory copies for small messages. 

3. The small message envelop (message header) reduces the overhead. 
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For large messages, the handshake protocol triples the latency. However sending a large 

message requires much more time, so the latency is not a significant part of the total commu- 

nication time. The time to send the data essentially hides the extra latency. 

MPLite M-VIA has much better throughput compared to MVICH if the message size 

is smaller than 16 KB. This is because MPLite M-VIA uses larger buffer size so that a 

small message can be sent in one descriptor. The large buffer reduces the overhead of data 

segmentation, assembly and transmission. Using large buffer does not increase the system 

memory usage in MPLite  M-VIA. For larger .messages, MPLtite M-VIA and MVICH have 

almost the same throughput. Both can deliver almost all the performance that M-VIA provides. 

The high throughput for large messages is due to the highly efficient RDMA mechanisms that 

reduce the extra memory- t o-memory copies. 

5.1.2 Channel-Bonding 

MPlLite M-VIA can safely use at least three network interface controllers simultaneously on 

a computer to increase the potential bandwidth. Channel-bonding three Fast Ethernet cards 

triples the maximum throughput without increasing the cost greatly. Using four Fast Ethernet 

cards has the potential to further increase the the maximum throughput, but this is still under 

development and testing. MPLite M-VIA is the first channel-bonding implementation on 

M-VIA. Neither MPICN (MVICH) or LAM MPI have this capability. 

5.1.3 Portability 

MPLite  M-VIA is programmed using the API defined by the VIA specification. The 

implementation does not rely on M-VIA in any way. Therefore, the module should be able 

to use other VIA-enabled networks without much modification. Furthermore, we have ported 

the current release of M-VIA to the Alpha architecture running Linux. The performance of 

MP-Lite M-VIA is also good on Alpha. 
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5.1.4 User Friendly System 

MPLite M-VIA provides the same interface for applications as other MPLite modules. 

MPLite M-VIA will automatically determine the devices to be used. Except for installing 

and configurating the M-VIA software package, or another M-VIA network system, no extra 

configuration work is required to run MPLLite M-VIA. The execution procedures and command 

line arguments are exactly the same as for other MPLite modules. There is also debugging 

information available if compiled with the requisite debug options. 

5.2 Limitations 

As a research project, the implementation of MPLite on M-VIA exploits the basic func- 

tionality and performance potential of M-VIA. Although the results are encouraging, there are 

still many issues that may further improve the performance. 

5.2.1 Reliability 

The VIA supports three levels of communication reliability at the NIC level: i i i m ~ l i x l ) h ~  

delivery, reliable delivery and reliable reception. Reliable reception bas the highst I P V C ~  of 

overall reliability, and is necessary before MPLite M-VIA is practical for real appliriit iotis. 

An unreliable delivery VI guarantees that data will arrive on the receiving sidv i i t  iiiosi 

once and the corrupted data will be detected. The data may be lost, or arrive in an {woiwoiis 

order. The VI will not re-transmit data when these errors occur. 

For the reliable delivery mode, data will arrive at the destination exactly once. aiid ill  thc! 

order submitted. This requires that the destination side replies with an acknowledgrmnt, to 

the source, either in a stand-alone package or by a piggy-backing mechanism to include the 

acknowledgment in the next set of data sent. 

For reliable reception, in addition to the requirements of reliable delivery, the transmission 

is successful only when the data has been delivered into the targetted user memory. This level 

of reliability is not yet supported in the current M-VIA release. 

Table 5.1 lists the features of these reliability levels. (CCC97) 
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Property 
corrupt data detected 

data delivered at most once 
data delivered exactly once 

Table 5.1 Reliability guarantees 

Unreliable Reliable Delivery Reliable Reception 
Yes Yes Yes 
Yes Yes Yes 
no ves ves 

data order guaranteed no Yes Yes 
data lost detected no Yes Yes 

connection broken on error no Yes Yes 
state of send/RDMAW in-flight in-flight completed on 
when request completed 
state of send/RDMAW unknown unknown first one unknown, 

- when error occurs others not delivered 

remote end also 

M-VIA version 1.2b2 supports reliable delivery, It introduces the windows and acknowledg- 

ments to enhance the transmission reliability between sending and receiving VIS in the gener- 

alized Ethernet ring device layer, which is on top of the device driver layer. It is not surprising 

that the performance is slightly degraded due to the added handshaking and re-transmission. 

Our experiments show that the latency is increased by lops, and the throughput has a 5% 

degradation, when compared to unreliable service. 

M-VIA version 1.2b2 does not support reliable reception. The current implementation 

of MP-Lite M-VIA associates two sequence numbers for each connection to improve error 

detection. The next sequence number holds the number €or the next sending packets. Each 

data packet is sent alone with the sequence number. The sequence number expected field records 

the next expected packet. If the received sequence number does not coincide with the sequence 

number expected, data has been lost. Data will not be duplicated because even for unreliable 

service, data is only delivered once. Sequence numbers provide a simple method to detect data 

lost in some situations. However, for mssages sent by using an RDMA Write, since receiving 

VI does not consume descriptors except for the last packet, the system is unable to detect a 

packet lost by using the added sequence number. 

Implementing reliable reception may add more overheads and impact performance, but it 

should be minimal. Most of the time-critical overhead has been added in the reliable delivery 

service. 
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5.2.2 Resource Reservation 

Each receive VI pre-posts some descriptors (buffers) to receive unexpected data. In MPLite 

M-VIA, the buffer resource is organized as the rnbufdata structure. Such buffer reservations 

should be done before the connection is set up. If the descriptors are posted after the connection 

is in place, and the data arrives before buffers are posted, there will be no place to hold the 

data, so it will be silently lost. This data loss, due to insufficient pre-posting of buffers, will 

only happen for small messages sent using the eager protocol. For the RDMA write mode, the 

data transfer can start only after the destination buffer is ready. 

One question is how many buffers should be reserved and the size of each buffer. Suppose 

that a 32 KB buffer block is associated with each descriptor, which is the maximum, and 

10 such descriptors are posted in each VI. The total buffer reserved for each VI is 320 KB. 

Also assume that the average size of short messages is 8 KB. In this configuration, at most 

10 unexpected short messages can be received without posting any receive (each message will 

consume one descriptor). If a 4 KB block is associated to each descriptor, and the total buffer 

space reserved is still 320 KB, then 80 descriptors need to be posted. Each short message of 

size 8 KB will consume 2 descriptors, and 40 unexpected messages can be received, which is 

more than the first configuration. Although using a smaller buffer block is more efficient for 

resource utilization, sending messages larger than the block size requires the consumption of 

more than one descriptor and multiple sends. This impacts the overall performance. In the 

actual implementation of MPLite M-VIA, we chose the size of 16 KB. This could be tuned, 

either larger or smaller, for specific applications. 

The buffer reservation has scalability issues. In a system that has 64 nodes, on every 

node, 63 VIS need to  be created and 63 connections need to be setup. If a 320 KB buffer is 

reserved for each VI: the total buffer reserved is at least 320KB x 63 = 20MB in each node, 

which is impossible because the maximum memory region that can be registered in the M-VIA 

implementation is currently 16 MB. 

A better solution is to have a flow control mechanism. The source node has an initial 

window that tells how many buffers are available on the destination. Whenever it sends out a 
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packet, it decreases the window size by one. It does not send out more packets if the window 

size becomes zero. The destination node informs the source node of the availability of buffers 

in a timely manner. By using this technique, the risk of insufficient buffers and the resulting 

loss of data can be eliminated. Each VI can safely pre-post a small number of buffers. This 

procedure may have a performance penalty because of the overhead of transmitting window size 

information. There are complicated optimization techniques available such as Silly Window 

Syndrome (Com95). 

5.2.3 Channel-Bonding Issues 

Channel-bonding provides higher bandwidth, but requires more memory and marginally 

increases latency. Each network interface needs a copy of the related data structures. The 

resources reserved as discussed in the previous subsection will also be doubled if using two 

interfaces. The connection set up procedure will be impeded because more connections are to 

be established. This may also lead to scalability problems. 

5.2.4 Overlapping Communication and Computation 

Overlapping cominunication and computation is a nice way to improve the j w f i ) t l l l i u l c - t ~  

of parallel applications, if they can adequately take advantage of it. This requires t 11v I ~ S P  of‘ 

non-blocking asynchronous communications. An application posts a send or receivv t o  start. 

the communication: then continues working on the computation. The communicxt ioii and 

computation are performed concurrently until the application calls the wait functioii to firiisli 

the communication. Overlapping can give a speedup of at most a factor of 2. 

One thing related to the performance of overlapping is the processor overhead in the corn- 

inuiiication subsystem or what is left over for the application. A polling implementation usually 

leads to a heavy CPU workload, and therefore leaves little for the application to use during 

overlapped communication and computation. 

MP-Lite M-VIA currently does not support overlapping communicatioii and computation. 

For noii-blocking MPASendO and MPARecv() functions, we just put the message into the 
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send-q or recv-q. It is MP-Wait() that actually performs the communication. The reason for 

this is that we are using the M-VIA blocking send and receive functions, which wait on the 

VI send and receive queues. So the communication can not be started before the MP-Wait() 

function call. 

The handshake protocol also limits the ability to overlap communication and Computation. 

The source node needs to wait for a reply after sending out the request, and the receiver is 

required to wait for the request before replying with the destination buffer address. 

One solutions is to use the M-VIA asynchronous communication. M-VIA does provide 

some asynchronous communication functions. They are implemented as signal notification 

mechanisms. Whenever a send or receive descriptor has completed, a call-back function is 

called to notify the completion. However, these asynchronous functions have not been fully 

optimized yet. In the current version of M-VIA, the asynchronous receive takes three times the 

latency compared to the blocking function. Asynchronous communications are quite promising 

and need to  be explored in the future. 

Another way to overlap communication and computations is to use threads. A commu- 

iiication thread can be created to  control the transfer of the messages. The communication 

t h e a d  works concurrently with the main thread. Either blocking or non-blocking communica- 

t ions can be implemented with the communication thread. A synchronization method, such as 

~{~i i i~phores  or mutexes, would be required to synchronize the thread interactions. This would 

solvc: the contention between the main thread and the communication thread. 

The disadvantage of the thread based approach would be the synchronization delay. The 

st:lit:duling of threads would add latency to the communication. The current M-VIA VIPL (VI 

Provider Library), is also not a thread safe library. Explicit locking is required when multiple 

threads are accessing the same queue within a VI. 

5.2.5 Other Issues 

The number of VI connections is one of the scalability issues. MPliite M-VIA requires 

a fully coiinected network. Large configurations will introduce significant delay in the con- 
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nection start up procedure. A simple solution is to establish connections only when they are 

needed. Some applications do not require a fully connected network. For example, applica- 

tions using a tree-like structure for communications may onIy need to establish connections 

between different tree layers. For these applications, establishing connections only when send 

or receive operations are requested may reduce the initialization overhead. However, this has 

several drawbacks: performance degradation that each communication operation may incur 

Connection setup and breakdown overheads. Only problem is when the connection needs to 

be established. Since the connection setup procedure requires the co-operation of the source 

and the destination nodes, if the send and receive pairs are not the exact match, some com- 

plicated buffering and re-connect machanisms many be required. Moreover, if a wildcard 

(MPIANY-SOURCE) is used in a receive function, a fully connected network may be needed. 

One possible solution is to assign a “master” node. Each node establishes a connection to 

the master node initially. The connection request to other nodes can via the master node. 

However, this wilI increase the work load of the master node. 

Another issue is the dynamic memory registration. The use of DMA to transfer data di- 

rectly into and out of user buffer requires that the data page be locked and cannot be paged-out 

by the operating system. To avoid an extra memory copy, user buffers need to be dynamically 

registered before data transfer and deregistered when the transfer is completed. Currently we 

only have a simple memory registration cache to keep the last few sets of registration infor- 

mation. Without a more efficient memory registration manager, the frequent registration and 

deregistration of large buffers may be too expensive, and lead to fragmentation of the page 

tables (SASB99; BM00). 

5.3 Conclusions and Future Efforts 

The implementation of MPLite for M-VIA incorporates the efficiency of MPLite with the 

high Performance features of M-VIA, resulting in a small, high-performance message-passing 

library that has much lower latency and better throughput on both Fast Ethernet and Gigabit 

Ethernet. The eager protocol and the handshake protocol provide a better balance between 
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latency and throughput .for different message sizes. Channel-bonding based on the VIA is a 

unique feature of MP-Lite M-VIA, providing from double to triple the performance of a single 

network interface. 

The limitations discussed in the previous section imply that further improvement is possible 

in a number of directions: 

0 Improved reliability 

Asynchronous or thread-based communications 

0 More testing 

Application utilization 

The VIA is supposed to work on System Area Networks, which are usually connected by 

fabrics that have very low error rates. For networks such as traditional LANs, it is iniportant 

to provide full reliability support for the upper layers. As discussed in the previous sortion. M- 

VIA currently does not support reliable reception. This limits its overall applicability. Bornrise 

reliable reception and reliable delivery are very similar, it is expected that the i i i i ~ i l t ~ i r t c ~ t r t  ation 

will not degrade performance much. The MPLite  M-VIA module does not nectl iitly triodifi- 

cation to support higher reliability because it will automatically choose the higllclst rc.1 iikl>ilit,JJ 

level supported by the underlying network interface controller. 

A fiow control mechanism in MPLite M-VIA would be useful. The currtwt h?P-Lite 

M-VIA assumes the data destination has pre-posted enough buffers to receive unexpected 

small messages, which is the usual case. However, if an application continuously sends many 

small messages without posting any receives, the destination may run out of buffer resources. 

Currently only error messages will be generated in this situation. Usiiig data windows to 

control data flow as discussed in the previous subsection is a better solution. 

It may be beneficial to improve the asynchronous communication so that conirnunication 

and computation can be overlapped. Asynchronous communication (signal-based) or the use 

of threads are two approaches. They need careful design and implementation so that perfor- 
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mance will not be overtly impacted. A possible method is to combine them with synchronous 

communications. 

More testing is needed for MPLite M-VIA to improve the stability and usability. Currently 

it is quite stable for running on small clusters and can successfully run some benchmarks and 

rea1 applications such as the Arnes Lab Classic Molecular Dynamics program. Further testing 

is still required, €or more applications and larger configurations. We are currently building 

a channel-bonded PC clusters with 24 nodes and three 3Com cards per machine. It is also 

imperative that we test the functionality on other VI-enabled networks, such as Giganet. 
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