SAND REPORT

SAND2002-1015
Unlimited Release
Printed April 2002

Evaluation Techniques and Properties of an Exact Solution to a Subsonic Free Surface Jet Flow

Allen C. Robinson
Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831
Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161
Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

Evaluation Techniques and Properties of an Exact Solution to a Subsonic Free Surface Jet Flow

Allen C. Robinson
Computational Physics Research and Development
Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185-0819

Abstract

Computational techniques for the evaluation of steady plane subsonic flows represented by Chaplygin series in the hodograph plane are presented. These techniques are utilized to examine the properties of the free surface wall jet solution. This solution is a prototype for the shaped charge jet, a problem which is particularly difficult to compute properly using general purpose finite element or finite difference continuum mechanics codes. The shaped charge jet is a classic validation problem for models involving high explosives and material strength. Therefore, the problem studied in this report represents a useful verification problem associated with shaped charge jet modeling.

Acknowledgments

J. D. Cole pointed out the work of Nieuwland. D. E. Amos, M. E. Kipp and J. M. McGlaun of Sandia National Laboratories provided valued expertise and insight during this work. Chris Garasi and Peter Stoltz provided invaluable instruction with respect to the IDL graphics language. Tim Trucano and Dan Carroll assisted by reviewing a draft of this document.

Nomenclature

ρ	density
p	pressure
ν	specific volume
c	sound speed
e	specific internal energy
γ	power coefficient in isentropic equation of state relation
Γ	Grüneison coefficient
q	velocity magnitude or flow speed
$q_{\infty}, \rho_{\infty}$	subscript ∞ denotes a free streamline value in dimensional units
c_{0}, ρ_{0}	subscript 0 denotes stagnation point value in dimensional units
q_{1}, ρ_{1}	subscript 1 denotes a free streamline value in non-dimensional units
$q_{\text {max }}$	maximum speed
$q_{c r}$	critical speed
τ	$\left(q / q_{\text {max }}\right)^{2}$
θ	angular flow direction
M	Mach number
u	$q \cos \theta$
v	$q \sin \theta$
ϕ	velocity potential
ψ	stream function
$\psi_{n}(\tau)$	fundamental Chaplygin function
$F_{n}(\tau)$	Chaplygin function given by Gauss hypergeometric series
β	incoming jet angle
a_{n}, b_{n}	useful parameters related F_{n}
W	complex potential
Ω	complex hodograph variable $=\left(q / q_{1}\right) e^{-i \theta}$
Θ	generic phase offset in series representations

1 Introduction

Transient dynamic continuum mechanics codes can be used to analyze the effects of explosive-metal interaction and ballistic penetration events. These general purpose codes allow the use of many materials and complex configurations. The complexity of such codes is such that it is extremely important to test the results, methodologies and applicability regions of the codes relative to exact solutions (verification) and experimental data (validation) [27]. A methodology which has been found to be very successful in some physical regime or for certain problems may fail when applied to a new class of problems. This report is concerned with the detailed description of a steady plane isentropic subsonic jet impinging on a flat wall. The problem is a prototype for the formation of a shaped charge jet and is a high strain and strain rate flow. This work was briefly summarized in Chapter 16 of Volume 2 of Avner Friedman's series Mathematics in Industrial Problems after the present author's presentation to the Institute for Mathematics and Its Applications on May 19, 1989 [12]. Friedman proposed several mathematical problems in cylindrical coordinates in the same chapter. Due to current interest in the computational science and engineering community in issues of verification and validation of computational simulations, it seems useful to make a full accounting of this work.

A conical shaped charge consists of a cylinder of high explosive containing a hollowed out cone surfaced with a metal liner. The detonation products collapse the liner and a high velocity metallic jet is formed. During this process the jet heats due to shock loading and plastic work [36, 26, 32]. It is widely believed that typical copper lined shaped charges form jets of material in the solid state. Historically, this was substantiated mainly by observation of the solid fracture characteristics observed in jet breakup. Confirmation of the existence of a solid state for aluminum jets and on the surface of copper jets has been made from x-ray diffraction patterns [16, 17]. For copper jets temperature measurements in the $400-600^{\circ} \mathrm{C}$ range, which are well below the melt temperature of $1080^{\circ} \mathrm{C}$, have been made based on two-color IR radiometry [15]. Jet particles in the solid state have also been recovered using soft catch techniques [35].

The shaped charge jet problem during the quasi-steady collapse phase may be idealized with a steady compressible fluid model. Key features in this model include large velocity gradients in small spatial regions as well as very large strains in a steady subsonic isentropic free-surface flow. The features
combine to generate computational difficulties with the shaped charge jet problem. The shaped charge jet is very difficult to model correctly by either a Lagrangian finite element code or an Eulerian code. Lagrangian codes tend to experience severe deformation in the jet leading to a breakdown of the numerical method due to element distortion. The Eulerian codes may have difficulty with interfaces and excessive heating of jet material. This problem also represents a reasonably severe test of arbitrary LagrangianEulerian (ALE) and h and h-p adaptive modeling capabilities.

The above mentioned heating problem for Eulerian codes may include unrealistic temperature diffusion into the liner from the explosive products, unphysical numerical exchange of kinetic energy to internal energy [19, 28] and heating due to artificial viscosity terms in high compression rate shockless processes [24]. Variations in numerical algorithms can produce dramatic differences in estimates of internal energy and temperature. The question is really one of entropy. In any numerical calculation one wishes any excess numerical production of entropy to be much smaller than the correct entropy increase. The numerical difficulties may be particularly acute when the flow to be computed is isentropic. If confidence is to be placed in calculations which purport to include advanced material modeling, it is necessary to develop reliable numerical methods and practical calculational rules of thumb to deal with the shaped charge jetting problem in the case of simple hydrodynamic material modeling. For example, temperature dependent yield and fracture models require that heating in flows with or without shocks as well as heating due to plastic work be calculated accurately. Mechanical response is affected by solid-solid, solid-liquid and liquid-vapor phase transitions and these transitions will appear in the numerical simulation correctly only if the thermodynamic state space is traversed correctly. The proper application of advanced material modeling in shaped charge simulations thus depends upon proper energy partitioning in the numerical method. In particular it may be difficult for a numerical method to distinquish a rapid shockless transition from a true shock which is to be captured by the numerical method. Of course, it does not follow that an algorithm which can effectively compute a shockless flow properly will necessarily capture shocks well. The complete shaped charge jet problem requires consistent and effective modeling for both shocks and subsonic quasi-steady state flow. This report is concerned with a specific test problem which may be used, for example, to test the capability of a shock capturing code to model shockless high-strain-rate isentropic subsonic flow.

The conical shaped charge jet has been reasonably modeled in a gross engineering sense for years by the assumption that the jet collapse process is approximately a steady state in the frame of reference of the collapse point and that free-surface jet theory can be applied [3]. Operational shaped charges collapse the liner at a subsonic velocity in order to form coherent jets. Supersonic collapse speeds result either in no jet formation or incoherent jets [8]. Steady compressible subsonic plane and axis-symmetric free surface jet flows may be effectively calculated with specialized finite difference codes employing boundary fitting coordinate systems or by computing in the hodograph plane [25, 9]. The hodograph plane uses velocity and flow angle, (q, θ), as independent variables. However, as discussed above these same flows can still represent a significant challenge for general purpose transient dynamics codes. Exact solutions can be used as test cases. Karpp developed a test problem, the symmetrical impact of two plane jets, for the purpose of comparison with hydrodynamic code solutions and in order to better understand compressible jet flow [18]. He used the Chaplygin pressure-density relation given by

$$
\begin{equation*}
p=\left(\rho_{\infty} c_{\infty}\right)^{2}\left(1 / \rho_{\infty}-1 / \rho\right)=\left(\rho_{\infty} c_{\infty}\right)^{2}\left(\nu_{\infty}-\nu\right) \tag{1}
\end{equation*}
$$

where p is pressure, ρ_{∞} is the reference or free surface density, $\nu=1 / \rho$ is the specific volume, and c_{∞} is the reference sound speed. A material with the above response is often termed a Chaplygin gas. The Chaplygin gas has the well-known property that the hodograph plane equations of motion can be manipulated to give the incompressible equations of motion for which standard incompressible methods apply. Thus any free-surface flow which can be solved by the usual methods of incompressible plane flow analysis can be solved for the Chaplygin gas. Karpp's work was used to assist in verifying a version of the HELP code which conserved internal energy instead of total energy in the remap step of the calculation [19].

The two parameters of the Chaplygin gas can be chosen to match any reference sound speed and pressure to give a linear curve in $p-\nu$ space. It is desirable to have an additional test problem for which the pressure-volume relation is concave upward. This is not simply an academic extension since curvature in the $p-\nu$ relation is necessary for heat addition in a shock process. Extremely high strain rate isentropic processes may have every appearance of a shock process to a finite resolution numerical grid. It order to fully test numerical methods, it appears that one is required to test with a pressurevolume relation which stiffens under compression. To this end one may chose
the isentropic relation

$$
\begin{equation*}
p=\bar{p}(\rho)=\kappa_{\infty}\left(\left(\rho / \rho_{\infty}\right)^{\gamma}-1\right) \tag{2}
\end{equation*}
$$

where $\kappa_{\infty} \equiv \rho_{\infty} c_{\infty}^{2} / \gamma$ and $p\left(\rho_{\infty}\right)=0$. This relation is known as the Tait or Murnaghan equation of state and is clearly of the same form as that for an ideal gas with the pressure at reference density set to zero by subtracting a constant. The Chaplygin gas is a particular case of the above relation and is chosen by setting $\gamma=-1$.

One can choose κ_{∞} and γ in Equation 2 to match the first and second derivatives with respect to ρ at ρ_{∞} for any given isentrope. Of course the Hugoniot may also be used, if this is more convenient, since the Hugoniot and isentrope are the same to third order in the strain. Appendix A gives a derivation for a Hugoniot which is linear in the shock velocity - particle velocity plane. It is convenient to develop a simple general equation of state relationship which matches the Murnaghan gas isentropic relations. The most obvious candidate for such an equation of state for test purposes would be a Mie-Grüneison relation for the pressure $p(e, \rho)$. In this case,

$$
\begin{equation*}
p(e, \rho)=\bar{p}(\rho)+\rho \Gamma(e-\bar{e}(\rho)) \tag{3}
\end{equation*}
$$

where \bar{e} satisfies the isentropic differential equation for the internal energy,

$$
\begin{equation*}
d e=-p d \nu \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\bar{e}-e_{\infty}=\frac{\kappa_{\infty}}{\gamma-1}\left(\frac{1}{\rho}\left(\rho / \rho_{\infty}\right)^{\gamma}-\frac{1}{\rho_{\infty}}\right)+\kappa_{\infty}\left(1 / \rho-1 / \rho_{\infty}\right) . \tag{5}
\end{equation*}
$$

The Grüneison coefficient $\Gamma=\nu(\partial p / \partial e)_{\nu}$ is an arbitrary function of volume. For convenience, $\rho \Gamma=\alpha$ is taken to be constant. The heat capacity at constant volume, $c_{\nu}=(\partial e / \partial T)_{\nu}$, is also assumed constant. One can then derive equations for the energy, temperature, entropy and other fundamental quantities as outlined in Appendix A.

Figure 1 shows the pressure volume isentrope for a Chaplygin gas isentrope and for a Murnaghan isentrope which is matched to a standard Hugoniot relation for copper. The Mie-Grüneisen formulation using the Murnaghan isentropic relation as a reference curve represents a reasonable copper

Figure 1: Comparison of Chaplygin and Murnaghan gas isentropes for Cu .
equation of state for conditions of interest and can be easily implemented as a simple equation of state model in any compressible fluid modeling code.

In this report computational procedures for evaluation of steady isentropic subsonic jet flows for the pressure-density relation of Equation 2 will be outlined. It will be seen that the steady plane irrotational compressible fluid equations of motion in the hodograph plane variables, (q, θ), are separable and particular solutions can be obtained in terms of products of trigonometric functions and Gauss hypergeometric functions. These can be used to solve certain problems of a particular form that arise frequently in free surface flow theory. The original ideas and procedures are due to Chaplygin who solved the problem of a plane jet emerging from a slot in a wall [6]. A great many problems can be solved by Chaplygin's technique or variants of it [31]. These techniques will be applied to the solution of a plane free surface jet of subsonic velocity impinging at an angle β onto a rigid wall. Solutions are described in great detail. The basic methods outlined here will carry over in a fairly straightforward way to the evaluation of solutions of other flows of interest.

2 Steady Plane Gas Dynamics in Hodograph Variables

The theory of steady plane irrotational adiabatic compressible inviscid flow theory in the hodograph variables, (q, θ), is well documented $[2,4,13,14,22$, 29]. A short summary of pertinent equations for our purposes follows below in the the notation of Bers [2]. In steady irrotational isentropic flow, with an assumed $p=p(\rho)$ relation, Bernoulli's theorem says that

$$
\begin{equation*}
\frac{q^{2}}{2}+\int \frac{d p}{\rho}=\frac{q^{2}}{2}+\int \frac{c^{2} d \rho}{\rho} \tag{6}
\end{equation*}
$$

is constant and thus gives a relation between density and flow speed. The density, sound speed, $c, \quad\left(c^{2}=d p / d \rho=-\rho q / \rho^{\prime}(q)\right)$, and Mach number, $M,\left(M^{2}=-q \rho^{\prime}(q) / \rho\right)$, are then computable as a function of speed alone. For the case of Equation 2 these relationships may be given explicitly. The Bernoulli equation becomes

$$
\begin{equation*}
\frac{q^{2}}{2}+\frac{c^{2}}{\gamma-1}=\frac{c_{0}^{2}}{\gamma-1} \tag{7}
\end{equation*}
$$

where the subscript zero denotes stagnation point conditions $(q=0)$. The stagnation point density and sound speed are given by

$$
\begin{array}{r}
c_{0}^{2}=c_{\infty}^{2}\left(1-\frac{\gamma-1}{2} M_{\infty}^{2}\right) \\
\rho_{0}=\rho_{\infty}\left(1-\frac{\gamma-1}{2} M_{\infty}^{2}\right)^{1 /(\gamma-1)} \tag{9}
\end{array}
$$

For convenience, units are now chosen such that, at the stagnation point ($q=0$), the density $\rho_{0}=1$, and sound speed $c_{0}=1$. Thus

$$
\begin{array}{r}
c^{2}=1-\frac{\gamma-1}{2} q^{2} \\
\rho=\left(1-\frac{\gamma-1}{2} q^{2}\right)^{1 /(\gamma-1)} \\
M^{2}=\frac{q^{2}}{1-\frac{\gamma-1}{2} q^{2}} \\
q^{2}=\frac{M^{2}}{1+\frac{\gamma-1}{2} M^{2}} . \tag{13}
\end{array}
$$

The maximum speed for which ρ and c^{2} are positive is

$$
\begin{equation*}
q_{\max }=\left(\frac{2}{\gamma-1}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

for $\gamma>1$ and unbounded otherwise. The critical speed for the transition to supersonic flow is

$$
\begin{equation*}
q_{c r}=\left(\frac{2}{\gamma+1}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

for $\gamma>-1$, unbounded for $\gamma=-1$ and non-existent otherwise. The maximum Mach number is unbounded for $\gamma \geq 1$ and is given by $(2 /(1-\gamma))^{1 / 2}$ for $\gamma<1$.

The irrotationality assumption

$$
\begin{equation*}
\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}=0 \tag{16}
\end{equation*}
$$

implies the existence of a velocity potential ϕ such that $d \phi=u d x+v d y$ where u and v are the x and y velocity components, respectively. Conservation of mass,

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}=0 \tag{17}
\end{equation*}
$$

implies the existence of a stream function, ψ, such that $d \psi=-\rho v d x+\rho u d y$ represents the mass flux across a differential line element from left to right. The relations

$$
\begin{gather*}
u=\frac{\partial \phi}{\partial x}, \quad v=\frac{\partial \phi}{\partial y} \tag{18}\\
\rho u=\frac{\partial \psi}{\partial y}, \quad \rho v=-\frac{\partial \psi}{\partial x} \tag{19}
\end{gather*}
$$

follow.
Assuming a one-to-one mapping between the physical plane (x, y) and the hodograph or velocity-angle space, (q, θ) with $(u, v)=(q \cos \theta, q \sin \theta)$, one obtains equations for the variation of the stream function and velocity potential in terms of q and θ. Thus

$$
\begin{gather*}
d \phi=u d x+v d y=q(\cos \theta d x+\sin \theta d y) \tag{20}\\
d \psi=-\rho v d x+\rho u d y=\rho q(-\sin \theta d x+\cos \theta d y) \tag{21}
\end{gather*}
$$

or

$$
\begin{equation*}
d z=d x+i d y=\frac{e^{i \theta}}{q}\left(d \phi+\frac{i}{\rho} d \psi\right) \tag{22}
\end{equation*}
$$

Since $d z$ is a perfect differential, so that the line integral in the physical plane is path independent, one obtains, considering that ϕ and ψ are functions of q and θ, the equations

$$
\begin{equation*}
\frac{\partial \phi}{\partial \theta}=\frac{q}{\rho} \frac{\partial \psi}{\partial q}, \quad \frac{\partial \phi}{\partial q}=-\frac{\left(1-M^{2}\right)}{q \rho} \frac{\partial \psi}{\partial \theta} \tag{23}
\end{equation*}
$$

Elimination of ϕ leads to an equation for the stream function

$$
\begin{equation*}
q^{2} \frac{\partial^{2} \psi}{\partial q^{2}}+q\left(1+M^{2}\right) \frac{\partial \psi}{\partial q}+\left(1-M^{2}\right) \frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{24}
\end{equation*}
$$

This is termed the Chaplygin equation for the stream function. It is a separable linear second order equation whose coefficients depend only on the speed q. This equation possesses separable solutions of the form $\psi=\psi_{n}(q) e^{i n \theta}$. In the case of the isentropic ideal gas relation, Chaplygin noted that if one writes

$$
\begin{equation*}
\psi=\tau^{n / 2} F_{n}(\tau) e^{i n \theta}=\psi_{n}(\tau) e^{i n \theta} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=\left(q / q_{\max }\right)^{2}=(\gamma-1) q^{2} / 2 \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tau_{c r}=(\gamma-1) /(\gamma+1) \tag{27}
\end{equation*}
$$

then substitution in Equation 24 yields

$$
\begin{equation*}
\tau(1-\tau) F_{n}^{\prime \prime}+\left[n+1-\left(a_{n}+b_{n}+1\right) \tau\right] F_{n}^{\prime}-a_{n} b_{n} F_{n}=0 \tag{28}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{n}+b_{n}=n-\frac{1}{\gamma-1} \tag{29}\\
a_{n} b_{n}=-\frac{n(n+1)}{2(\gamma-1)} \tag{30}
\end{gather*}
$$

Clearly, a_{n} and b_{n} are roots of a quadratic. In addition, we adopt the convention, $a_{n}<b_{n}$. For the convenience of avoiding complex values of a_{n} and b_{n},
γ will be restricted to satisfy either $\gamma>1$ or $\gamma \leq-1$. This is easily shown. a_{n} and b_{n} are roots of the equation

$$
\begin{equation*}
x^{2}-\left(n-\frac{1}{\gamma-1}\right) x-\frac{n(n+1)}{2(\gamma-1)}=0 . \tag{31}
\end{equation*}
$$

Let $y=1 /(\gamma-1)$. All roots of Equation 31 will be real for every real n, if the discriminant

$$
\begin{equation*}
(n-y)^{2}+2 n(n+1) y \geq 0 \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{2}+n^{2}(2 y+1) \geq 0 \tag{33}
\end{equation*}
$$

This inequality will be satisfied for all n provided $y \geq-1 / 2$. Thus either $\gamma>1$ or $\gamma \leq-1$ is required in order that a_{n} and b_{n} be real for every n.

One recognizes the solutions of Equation 28 as Gauss hypergeometric functions. The solution regular at $\tau=0$ is of particular interest to us and is given by

$$
\begin{equation*}
F_{n}(\tau)={ }_{2} F_{1}\left(a_{n}, b_{n} ; n+1 ; \tau\right)=\sum_{m=0}^{\infty} \frac{\left(a_{n}\right)_{m}\left(b_{n}\right)_{m}}{(n+1)_{m}} \frac{\tau^{m}}{m!} \tag{34}
\end{equation*}
$$

in the notation of Abramowitz and Stegun with $(a)_{m} \equiv(a)(a+1) \cdots(a+m-$ 1) [1]. For the Chaplygin gas, $\gamma=-1$, so that $a_{n}=n / 2$ and $b_{n}=(n+1) / 2$. Then by a quadratic transformation formula,

$$
\begin{equation*}
{ }_{2} F_{1}(n / 2,(n+1) / 2 ; n+1 ; \tau)=\left(\frac{2}{1+\sqrt{1-\tau}}\right)^{n} . \tag{35}
\end{equation*}
$$

(See 15.3.19 of [1].) Since Equation 24 is linear, boundary value problems may be solved by appropriate linear combinations of solutions.

Figure 2: Plane Jet Flow

3 Chaplygin Solution to Free Surface Wall Jet Problem

Imagine a plane free surface jet of unit width impinging on a wall at an angle β and subsonic velocity $q_{1}<q_{c r}$ with an incoming flux $\Delta \psi=\rho_{1} q_{1}$ where ρ_{1} is the free streamline density and q_{1} is the free streamline velocity. The jet splits into two outgoing streams of asymptotic widths $(1+\cos \beta) / 2$ on the left and $(1-\sin \beta) / 2$ on the right as is required from mass and linear momentum conservation. See Figure 2.

The Chaplygin procedure takes a solution of the incompressible problem and provides a similar subsonic compressible solution. The incompressible wall jet solution for this problem can be determined by standard complex variable techniques [4, 18]. The incompressible complex potential, $W=$ $\phi+i \psi$, is given by

$$
W(\Omega)=\quad\left(q_{1} / \pi\right)\left\{\log \left(1+\Omega e^{i \beta}\right)+\log \left(1+\Omega e^{-i \beta}\right)\right.
$$

$$
\begin{equation*}
-(1-\cos \beta) \log (1-\Omega)-(1+\cos \beta) \log (1+\Omega)\} \tag{36}
\end{equation*}
$$

where $\Omega=\left(q / q_{1}\right) e^{-i \theta}$ is the incompressible velocity in complex form. Another representation for this solution may be given by expanding each of the \log functions in a Taylor series about $\Omega=0$. Thus

$$
\begin{array}{rll}
W= & -\left(q_{1} / \pi\right) & \left\{\sum_{n=2}^{\infty} \frac{1}{n}\left(q / q_{1}\right)^{n} e^{-i n(\theta-\beta+\pi)}\right. \\
& +\sum_{n=2}^{\infty} \frac{1}{n}\left(q / q_{1}\right)^{n} e^{-i n(\theta+\beta-\pi)} \\
-(1-\cos \beta) & \sum_{n=2}^{\infty} \frac{1}{n}\left(q / q_{1}\right)^{n} e^{-i n \theta} \\
-(1+\cos \beta) & \left.\sum_{n=2}^{\infty} \frac{1}{n}\left(q / q_{1}\right)^{n} e^{-i n(\theta-\pi)}\right\} \tag{37}
\end{array}
$$

The $n=1$ terms in each series sum exactly to zero as a consequence of the required mass and momentum balance and thus do not appear. The Chaplygin procedure for writing a corresponding subsonic compressible solution from an incompressible solution is to make the correspondence

$$
\begin{equation*}
\left(\frac{q}{q_{1}}\right)^{n} \Rightarrow \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \tag{38}
\end{equation*}
$$

in the formula for the stream function ψ where τ_{1} is the value of τ on the free streamlines. Thus the stream function for compressible flow is

$$
\begin{align*}
\psi= & \left(\left(\rho_{1} q_{1}\right) / \pi\right) \quad\left\{\sum_{n=2}^{\infty} \frac{1}{n} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \sin n(\theta-\beta+\pi)\right. \\
& +\sum_{n=2}^{\infty} \frac{1}{n} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \sin n(\theta+\beta-\pi) \\
-(1-\cos \beta) & \sum_{n=2}^{\infty} \frac{1}{n} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \sin n \theta \\
+(1+\cos \beta) & \left.\sum_{n=2}^{\infty} \frac{1}{n} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \sin n(\theta-\pi)\right\} . \tag{39}
\end{align*}
$$

An extra factor of ρ_{1} is applied in the above formula since the stream function in the compressible case represents a mass flux.

The convergence theory for this series, called a Chaplygin series, has been described by Sedov [29]. A summary of the theory is given in Appendix C. The critical results give upper and lower bound solutions for $(2 \tau / n) \psi_{n}^{\prime} / \psi_{n}$. With natural assumptions about the shape of the isentrope ($d \rho / d \tau \leq 0$), it is shown that

$$
\begin{equation*}
(2 \tau / n) \psi_{n}^{\prime} / \psi_{n} \geq \sqrt{1-M^{2}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \tau / n) \psi_{n}^{\prime} / \psi_{n} \leq \sqrt{\left(1-M^{2}\right)+C \rho^{2} \tau / n^{3 / 2}} \tag{41}
\end{equation*}
$$

where C is a positive constant which depends on the particular equation of state chosen. In Appendix C we derive another upper bound function to $(2 \tau / n) \psi_{n}^{\prime} / \psi_{n}$. This upper bound solution then provides an additional check on the numerical computation technique for large n. The series of Equation 39 are convergent for $0 \leq \tau<\tau_{1}<\tau_{c r}$, since by integrating Equation 40

$$
\begin{equation*}
\frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \leq \exp \left(-\frac{n}{2} \int_{\tau}^{\tau_{1}} \sqrt{1-M^{2}} d \tau / \tau\right) \tag{42}
\end{equation*}
$$

For $\tau=\tau_{1}$ one obtains the appropriate Fourier series for the stepwise constant boundary values of the stream function. Since each term in the series is also a solution of Equation 24, Equation 39 is a valid representation for the compressible subsonic wall jet problem. Clearly, since $F_{n}(\tau) \rightarrow 1$, as $q_{1} \rightarrow 0$ the solution reduces to the incompressible solution in the limiting case. From this representation of the stream function, all quantities of interest may be obtained.

Integration to obtain the physical plane may be accomplished in several ways since the physical plane is independent of integration path in the (q, θ) plane. As a check, two different approaches were implemented. In the first approach $\partial z / \partial q$ was evaluated for each point (q, θ) and then $z(q, \theta)$ was obtained by numerical integration with respect to q subject to $z(0, \theta)=0$. The general term in each of the four series in Equation 39 is given by

$$
\begin{equation*}
\Psi_{n}=\frac{1}{n} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \sin n(\theta-\Theta) \tag{43}
\end{equation*}
$$

where Θ is a constant depending on the particular series.
Thus utilizing Equations 23,

$$
\begin{equation*}
z_{n q}=\frac{\partial z_{n}}{\partial q}=\frac{e^{i \theta}}{\rho q}\left(-\frac{1-M^{2}}{q} \frac{\partial \Psi_{n}}{\partial \theta}+i \frac{\partial \Psi_{n}}{\partial q}\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
z_{n q}=\frac{e^{i \theta}}{\rho q^{2}} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)}\left(-\left(1-M^{2}\right) \cos n(\theta-\Theta)+i \frac{2 \tau}{n} \frac{\psi_{n}^{\prime}(\tau)}{\psi_{n}(\tau)} \sin n(\theta-\Theta)\right) . \tag{45}
\end{equation*}
$$

Given these quantities $\partial z / \partial q$ is determined by replacing the Ψ_{n} in Equation 39 by $z_{n q}$. The values $\partial z / \partial q$ are obtained by summation and then z is determined by numerical integration with respect to q. The trapezoidal rule was exclusively used for this integration. For $\tau=\tau_{1}<\tau_{c r}$, the z_{q} series is divergent. For $\tau=\tau_{1}=\tau_{c r}$, the z_{q} series may be shown to be conditionally convergent by the Dirichlet test using the upper bound solution estimate of Equation 41. These facts imply that summation for points near the free surface will require the use of some type of non-linear convergence accelerator for summing the slowly convergent and divergent series.

The second technique is to integrate $\partial z / \partial \theta$ with respect to θ analytically and sum the resultant series of integrated terms. Again utilizing Equation 23

$$
\begin{gather*}
z_{n \theta}=\frac{\partial z_{n}}{\partial \theta}=\frac{e^{i \theta}}{\rho q}\left(q \frac{\partial \Psi_{n}}{\partial q}+i \frac{\partial \Psi_{n}}{\partial \theta}\right) \tag{46}\\
z_{n \theta}=\frac{e^{i \theta}}{\rho q} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)}\left(\frac{2 \tau}{n} \frac{\psi_{n}^{\prime}(\tau)}{\psi_{n}(\tau)} \sin n(\theta-\Theta)+i \cos n(\theta-\Theta)\right) . \tag{47}
\end{gather*}
$$

Integration with respect to θ leads to the particular indefinite integrals

$$
\begin{gather*}
z_{n}=\frac{e^{i \theta}}{\rho q} \frac{n}{n^{2}-1} \frac{\psi_{n}(\tau)}{\psi_{n}\left(\tau_{1}\right)} \times \\
\left(-\left(\frac{1}{n}+\frac{2 \tau}{n} \frac{\psi_{n}^{\prime}(\tau)}{\psi_{n}(\tau)}\right) \cos n(\theta-\Theta)+i\left(1+\frac{2 \tau}{n^{2}} \frac{\psi_{n}^{\prime}(\tau)}{\psi_{n}(\tau)}\right) \sin n(\theta-\Theta)\right) \tag{48}
\end{gather*}
$$

By use of Equations 21 and 22, it is seen that the derivative of Equation 48 with respect to q is exactly $z_{n q}$ of Equation 45. Chose $z=0$ at $q=0$. Since $z_{n}=0$ at $q=0$ for $n \geq 2, z$ is obtained by substituting z_{n} for the Ψ_{n} in Equation 39 and summing the series. For $\tau=\tau_{1}<\tau_{c r}$, the z_{n} series are conditionally convergent except at the singular points $\theta=\Theta$ where they are divergent. For $\tau=\tau_{1}=\tau_{c r}$, the z_{n} series are convergent which implies that the incoming and outgoing jets become subsonic at finite points in the physical plane.

4 Evaluation of the Solution

The exact solution discussed in the previous section can be written down with relative ease. The difficulty now with this solution (as with many non-trivial exact solutions) is that the properties of the solution are not immediately obvious and an efficient and accurate numerical evaluation of the solution is needed. For purposes of verification of other more general numerical techniques to compute this solution, one would like to evaluate the exact solution with a maximum of accuracy and a minimum of effort and computer time for any chosen value of the Mach number, M, and the collapse angle, β. This turns out to require a significant effort. There are two major computational tasks: first, the Chaplygin functions, $F_{n}(\tau)$, must be computed, and second, the infinite series related to the solution must be effectively summed. This summation is a particular problem near the free surface since the convergence of the series is very slow. Each of these questions will be dealt with in turn.

A number of options for computing the hypergeometric functions $F_{n}(\tau)$ are available. The most obvious approach is to sum the hypergeometric series directly. This has the disadvantage of requiring very high precision arithmetic in order to obtain reasonable relative accuracy at large order n. This is the approach of Nieuwland who estimated for example that to obtain a relative accuracy of 10^{-10} in the computation of $\psi_{100}(.16)$ for $\gamma=1.4$ at least 27 significant figures would be required [23]. High precision is required due to the fact that the series is alternating and the first few coefficients can be very large which results in extreme loss of significant digits. Another proposed approach is to transform the series in a way which overcomes the cancellation problem [7]. An implementation of the Miller algorithm [34] or a direct numerical solution of the differential equation might also be feasible. A general comparison of evaluation techniques was not attempted. The continued fraction algorithms described below were implemented as several desirable features were apparent at the outset.

In [6], Chaplygin used a continued fraction approximation to compute

$$
(2 \tau / n) \psi_{n}^{\prime} / \psi_{n}=1+(2 \tau / n) F_{n}^{\prime} / F_{n} .
$$

This was sufficient to allow the computation of the contraction ratio for a planar jet emanating from a slit in a semi-infinite reservoir. Frank has given a number of continued fraction representations for ratios of Gauss hypergeometric functions [11]. The representations were derived by manipulation of the three term contiguous relations for the hypergeometric function. Two of
these representations were implemented in this work and will be discussed below. Consider continued fractions of the form

$$
\begin{equation*}
\beta_{0}+\frac{\alpha_{1} \mid}{\mid \beta_{1}}+\frac{\alpha_{2} \mid}{\mid \beta_{2}}+\frac{\alpha_{3} \mid}{\mid \beta_{3}}+\cdots . \tag{49}
\end{equation*}
$$

where, for example, three terms of the continued fraction give

$$
\begin{equation*}
\beta_{0}+\frac{\alpha_{1}}{\beta_{1}+\frac{\alpha_{2}}{\beta_{2}}} \tag{50}
\end{equation*}
$$

The first continued fraction representation (Equation (2.5') vii of [11]) is given by the coefficients

$$
\begin{array}{r}
\alpha_{k}=-\frac{(b+k)(c-a+k-1)}{(c+k-1)(c+k)} \tau, \quad k=1,2,3, \cdots \\
\beta_{k}=\frac{b-a+k}{c+k} \tau+1, \quad k=1,2,3, \cdots \tag{52}
\end{array}
$$

with $\beta_{0}=1$. This continued fraction converges to the generating function

$$
\begin{equation*}
\frac{F(a, b ; c ; \tau)}{F(a+1, b+1 ; c+1 ; \tau)}+\frac{a \tau}{c}=\frac{a b F(a, b ; c ; \tau)}{c F^{\prime}(a, b ; c ; \tau)}+\frac{a \tau}{c} \tag{53}
\end{equation*}
$$

provided $|\tau|<1$. The prime represents differentiation with respect to τ. The limit characteristic equation associated with the forward difference equation for the continued fraction is

$$
\begin{equation*}
\sigma^{2}-(1+\tau) \sigma+\tau=0 \tag{54}
\end{equation*}
$$

and has roots 1 and τ. See Appendix B. Thus for $\gamma>1$ and subsonic values of $\tau(0<\tau<(\gamma-1) /(\gamma+1)<1)$, this continued fraction leads to an effective computation of the ratio F^{\prime} / F.

The second continued fraction (Equation (2.6') ii of [11]) is given by the coefficients

$$
\begin{array}{r}
\alpha_{k}=\frac{(a+k)(b+k)}{(c+k-1)(c+k)} \tau(1-\tau), \quad k=1,2,3, \cdots \\
\beta_{k}=1-\frac{a+b+2 k+1}{c+k} \tau, \quad k=0,1,2,3, \cdots \tag{56}
\end{array}
$$

where an equivalence transformation has been applied to the coefficients given by Frank so that α_{p} and β_{p} have finite limits as p tends to infinity [5]. This continued fraction converges to the generating function

$$
\begin{equation*}
\frac{F(a, b ; c ; \tau)}{F(a+1, b+1 ; c+1 ; \tau)}=\frac{a b F(a, b ; c ; \tau)}{c F^{\prime}(a, b ; c ; \tau)} \tag{57}
\end{equation*}
$$

provided $\operatorname{Re}(\tau)<1 / 2$. The limit characteristic equation

$$
\begin{equation*}
\sigma^{2}-(1-2 \tau) \sigma-\tau(1-\tau)=0 \tag{58}
\end{equation*}
$$

has roots $1-\tau$ and $-\tau$. The requirement that the root $1-\tau$ be the dominant root of the forward difference equation for the continued fraction leads to the condition $\operatorname{Re}(\tau)<1 / 2$. For $\gamma \leq-1$, subsonic values of τ will lie in the range $-\infty<\tau \leq 0$, so that this second expansion provides an efficient means of evaluating F^{\prime} / F for negative values of τ. This second continued fraction representation may be derived directly from the differential equation by successive differentiation.

The ratios F^{\prime} / F are needed to compute shapes of free streamlines and related fundamental quantities (e.g. the compression ratio for a jet from a slit). For some applications this may be sufficient and no further information about F would be necessary. However, since the whole flow field is of interest for code verification studies, the F^{\prime} / F information obtained above can be used to compute F in a useful form. Numerical integration leads immediately to values of $\log F(\tau)$ with $\log (F(0))=0$. The trapezoidal rule with Romberg extrapolation was used for the numerical integration scheme. The ratio $\psi_{n}(\tau) / \psi_{n}\left(\tau_{1}\right)$ is given by

$$
\begin{equation*}
\psi_{n}(\tau) / \psi_{n}\left(\tau_{1}\right)=\exp \left\{(n / 2) \log \left(\tau / \tau_{1}\right)+\log F_{n}(\tau)-\log F_{n}\left(\tau_{1}\right)\right\} \tag{59}
\end{equation*}
$$

Forming sums and differences of logs prior to exponentiation has the advantage of avoiding underflow errors for large values of n. The above algorithm was found to be accurate, reliable and effective with no apparent numerical difficulties. Results were compared with tables of the Chaplygin functions, $F_{n}(\tau)$, given by Ferguson and Lighthill [10] and with the exact solution for $\gamma=-1$.

Figures 3 through 5 show the form of $F_{n}(\tau), \psi_{n}(\tau) / \psi_{n}\left(\tau_{1}\right)$ and $(2 \tau / n) \psi_{n}^{\prime} / \psi_{n}$, respectively, for increasing order n for the standard copper equation of state described in Appendix A and with $\tau_{1}=\tau_{c r}=0.664$. This $\tau=\tau_{1}$ location is
shown in the graphs as a vertical line. Figure 5 shows the lower bound curve $\sqrt{1-M^{2}}=\sqrt{\left(1-\left(\tau / \tau_{c r}\right)\right) /(1-\tau)}$ which is approached for large n (Sedov, 1965) and the upper bound estimate derived in Appendix C for $n=200$. Figure 6 shows the number of continued fraction terms utilized as a function of τ and n.

Once the Chaplygin functions are available, it is necessary to sum the series containing $z_{n q}$ and z_{n}. Evaluation of Equation 45 and 48 is straightforward for all values of q if it is observed that

$$
\begin{equation*}
\lim _{q \rightarrow 0} \frac{\psi_{n}(\tau)}{q^{m}}=\frac{\delta_{n, 2} \delta_{m, 2}}{q_{\max }^{2}}, \quad n \geq 2, m=1,2 . \tag{60}
\end{equation*}
$$

The series solutions given by the Chaplygin technique are very slowly convergent for points near to the free surface. For $q=q_{1}$ but away from the singular points the z_{n} series are conditionally convergent and the z_{q} series are divergent. It therefore seems necessary to sum the series using a convergence accelerator which will successfully accelerate the convergent series as well as sum the divergent z_{q} series on the boundary. Both summations are necessary because the value of z_{q} is needed to compute velocity gradients.

What is meant by the "sum" of a divergent series? A series can be thought of as a limited representation of an underlying function. This representation makes mathematical sense only where it is convergent. However, it can be meaningfully related to an extension of this function outside the original domain of validity of the representation. For example, the complex series $1+z+z^{2}+$. is convergent only for $|z|<1$ while the equivalent representation $1 /(1-z)$ is valid everywhere except at the pole $z=1$. Successful series acceleration and summation techniques essentially extract a more fundamental representation from a sequence of finite sums.

The algorithms tried were the ϵ-algorithm, the θ-algorithm and the Levint and Levin-u algorithms. Theorems on the regularity and accelerative properties of these various algorithms for various sequences are given by Wimp [33]. The accelerators were applied in turn to each of the four sums in the series representation for $\partial z / \partial q$ and z. The sums were computed separately and as complex sequences. This preserves the simple structure of the sums and precluded the failure of the acceleration algorithm due to the presence of zero or very small terms in the real or imaginary parts. Only the ϵ-algorithm was found to be successful in diagonal modes (algorithm order increasing with number of terms). The other three algorithms appeared to have a great deal

Figure 3: The function $F_{n}(\tau)$ for $M=1$ for the standard Cu isentrope. Solid $-n=1$ to 10 by 1 ; dashed $-n=20$ to 100 by 20 ; dash-dot $-n=200$.

Figure 4: The function $\psi_{n}(\tau) / \psi_{n}\left(\tau_{1}\right)$ for $M=1$ for the standard Cu isentrope. Solid $-n=1$ to 10 by 1 ; dashed $-n=20$ to 100 by 20 ; dash-dot $n=200$.

Figure 5: The function $(2 \tau / n) \psi_{n}^{\prime} / \psi_{n}$ for $M=1$ for the standard Cu isentrope. Solid $-n=1$ to 10 by 1 ; dashed $-n=20$ to 100 by 20 ; dash-dot $n=200$. Also shown is the lower bound solution $\left(\sqrt{1-M^{2}}\right)$ and the upper bound solution for $n=200$ in dotted lines.

Figure 6: Numbers of terms in continued fraction as a function of n for $M=1$ and the standard Cu isentrope. Solid $-n=1$ to 10 by 1 ; dashed $-n=20$ to 100 by 20 ; dash-dot $-n=200$.
of difficulty for parameter values near and on the free surface. An extensive study of the details of this apparent failure has not been attempted. However, it appears reasonable that the ϵ algorithm succeed for the series discussed here since the algorithm will successfully compute the analytic continuation of meromorphic functions in the complex plane with a finite number of poles. See page 131 of [33].

The ϵ-algorithm has been implemented previously by Nieuwland (1967) to accelerate the the convergence of Chaplygin series [23]. The ϵ-algorithm is an economical procedure for evaluating the Schmidt transformation or iterated Shank's transformation for accelerating the convergence of certain sequences. Given a sequence $s_{m}, m \geq 0$ with m integral the ϵ-algorithm is defined by

$$
\begin{array}{r}
\epsilon_{k+1}^{(m)}=\epsilon_{k-1}^{(m+1)}+\left(\epsilon_{k}^{(m+1)}-\epsilon_{k}^{(m)}\right)^{-1}, \quad m, k \geq 0 \\
\epsilon_{-1}^{(m)}=0, \quad \epsilon_{0}^{(m)}=s_{m}, \quad m \geq 0 . \tag{62}
\end{array}
$$

The values $\epsilon_{2 k}^{(m)}$ are used as estimates for the limit of the sequence s_{m} given by the partial sum of the series. An outline of the other unsuccessful algorithms is given in Appendix D.

5 Properties of the Jet Solutions

The solution outlined in the previous section varies with the incoming Mach number, the angle β and the equation of state parameter γ. This is a large parameter space. However, an attempt will be made to illustrate the various changes in solution characteristics. The basic equation of state values used here correspond to copper and are given in cgs-ev units in Appendix A. The length scale for the problem is set by the incoming jet width and is assumed to be 1 centimeter.

The variation of the pressure, density and energy are all computable from the velocity, q. Additional kinematic quantities are also of great interest and are easily accessible during the course of the solution. In particular, the velocities $u=q \cos \theta$ and $v=q \sin \theta$ along with the gradients $u_{x}=\partial u / \partial x$, $u_{y}=\partial u / \partial y=\partial v / \partial x=v_{x}$, and $v_{y}=\partial v / \partial y$ are important variables. Three additional measures of the velocity may also be instructive. These are the rate of expansion or dilatation, $u_{x}+v_{y}$, the norm of the rate-of-strain tensor, $|\mathbf{D}|$, and the norm of the deviatoric rate-of-strain tensor, $\left|\mathbf{D}-\frac{\mathbf{1}}{\mathbf{3}}(\operatorname{tr} \mathbf{D}) \mathbf{I}\right|$. This last quantity is of particular interest since, in the case of plastic deformation, it can be considered a measure of the rate of plastic work. The solution described here does not include, of course, plastic work, but it is thought that the metric may be useful when comparing with heating rates for jets in which the fluid motion is not highly perturbed by plasticity.

The gradients of velocity, (u, v) with respect to (x, y) must be computed from the derivatives of (x, y) with respect to (q, θ) which are known from the hodograph solution technique. The inversion formulas are given below.

Differentiating the equation $x=x(q, \theta)$ and $y=y(q, \theta)$ with respect to x and y yields

$$
\mathbf{I}=\left(\begin{array}{ll}
x_{q} & x_{\theta} \tag{63}\\
y_{q} & y_{\theta}
\end{array}\right)\left(\begin{array}{cc}
q_{x} & q_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right)
$$

where subscripts represent differentiation. Inversion then gives

$$
\left(\begin{array}{cc}
q_{x} & q_{y} \tag{64}\\
\theta_{x} & \theta_{y}
\end{array}\right)=\left(\begin{array}{cc}
y_{\theta} & -x_{\theta} \\
-y_{q} & x_{q}
\end{array}\right) /\left(x_{q} y_{\theta}-y_{q} x_{\theta}\right) .
$$

Now since $u=q \cos \theta$ and $v=q \sin \theta$, one obtains after differentiation, substitution and some manipulation

$$
\begin{equation*}
u_{x}=\left(\alpha_{1}+\alpha_{2} \cos 2 \theta-\alpha_{3} \sin 2 \theta\right) / \Delta \tag{65}
\end{equation*}
$$

$$
\begin{align*}
u_{y}=v_{x} & =\left(\alpha_{3} \cos 2 \theta+\alpha_{2} \sin 2 \theta\right) / \Delta \tag{66}\\
v_{y} & =\left(\alpha_{1}-\alpha_{2} \cos 2 \theta+\alpha_{3} \sin 2 \theta\right) / \Delta \tag{67}
\end{align*}
$$

where $\alpha_{1}=M^{2} F_{q} / 2, \alpha_{2}=\left(2-M^{2}\right) F_{q} / 2, \alpha_{3}=\left(1-M^{2}\right) G_{q}$, and $\Delta=$ $F_{q}^{2}+\left(1-M^{2}\right) G_{q}^{2}$. The real quantities F_{q} and G_{q} are defined by the complex valued equation

$$
\begin{equation*}
F_{q}+i G_{q} \equiv e^{-i \theta}\left(x_{q}+i y_{q}\right) \tag{68}
\end{equation*}
$$

Equations 23 have been used to write the x_{θ} and y_{θ} terms as functions of F_{q} and G_{q}. Note that at each evaluation point, z_{q} can be easily computed in the course of the integration to obtain the physical plane. Three important additional measures of strain rate are the rate of expansion or dilatation

$$
\begin{equation*}
\dot{\nu} / \nu=-\dot{\rho} / \rho=u_{x}+v_{y}=2 \alpha_{1} / \Delta \tag{69}
\end{equation*}
$$

the norm of the rate-of-strain tensor, \mathbf{D}, which due to irrotationality is the same as the velocity gradient tensor,

$$
\begin{equation*}
|\mathbf{D}|=|\nabla(u, v)|=\sqrt{u_{x}^{2}+v_{y}^{2}+2 u_{y}^{2}}=\sqrt{2\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)} / \Delta, \tag{70}
\end{equation*}
$$

and finally the norm of the deviatoric rate-of-strain tensor

$$
\begin{equation*}
\left|\mathbf{D}-\frac{1}{3}(\operatorname{tr} \mathbf{D}) \mathbf{I}\right|=\left(|\mathbf{D}|^{2}-\frac{1}{3}\left(\frac{\dot{\hat{\rho}}}{\rho}\right)^{2}\right)^{1 / 2} \tag{71}
\end{equation*}
$$

A stretched evaluation mesh is utilized in both the θ direction and the q direction. The θ mapping is two cubic polynomials connecting the θ values corresponding to the singularities. The θ values match at the singularities, but the slopes with respect to the linear θ are set zero at the singular values of θ. This has the effect of concentrating more points near singularities so that better coverage is obtained in physical space. The q mesh is a linear q mesh near the origin which switches to a linear τ mesh at a specified mesh number. This has the effect of generating smooth line plots in physical space. The code given in Appendix E allows for specification of the θ and τ stretching options.

Figure 8 through 16 show on the top and bottom plots on each page a comparison of on axis quantities for $\beta=90$ and 45 degrees, respectively. Shown are the results for the γ values:-1.0, 1.4 and 4.956 corresponding to s values $0 ., .6$ and 1.489 , respectively. The plots appear to terminate

Figure 7: On axis velocity, q, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 8: On axis density, ρ, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 9: On axis energy, e, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 10: On axis pressure, p, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 11: On axis Mach number, M, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed) , 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 12: On axis gradient, u_{x}, for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 13: On axis gradient v_{y} for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 14: On axis divergence $u_{x}+v_{y}$ for $M_{\infty}=0.9$ for γ values: -1.0 (dashed) , 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 15: On axis $|\mathbf{D}-(\operatorname{tr} \mathbf{D}) \mathbf{I} / 3|$ for $M_{\infty}=0.9$ for γ values: -1.0 (dashed) , 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.

Figure 16: On axis $|\mathbf{D}|$ for $M_{\infty}=0.9$ for γ values: -1.0 (dashed), 1.4 (dotted) and 4.956 (solid) for $\beta=90$ and 45 degrees.
prematurely in some cases. The location of the termination is a function of the finite number of velocity evaluation points.

The stiffer equations of states evidence smaller variation in the resulting flow parameters as well as a broader spatial extent for the jetting region.

Figures 17 shows the q, θ mesh in physical space. Figures 18 through 30 show contour plots of various parameters in the case of $\beta=90$ and $\beta=45$ degrees. Node that the largest values of the velocity gradients are at the free surface at the corner but that they are larger for the $\beta=45$ case.

Figure 17: Evaluation mesh in the physical plane for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 18: Velocity, q, for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 19: Density, ρ, for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 20: Internal energy, e, for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 21: Pressure, p, for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 22: Mach number, M, for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 23: u for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 24: v for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 25: u_{x} for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 26: $u_{y}=v_{x}$ for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 27: v_{y} for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 28: $u_{x}+v_{y}$ for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 29: $\left|\mathbf{D}-\frac{1}{3}(\operatorname{tr} \mathbf{D}) \mathbf{I}\right|$ for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

Figure 30: $|\mathbf{D}|$ for the $\beta=90$ and 45 degree cases for $M_{\infty}=0.9$

6 Summary

An effective numerical technique for the evaluation of the Chaplygin functions $\psi_{n}(\tau) / \psi_{n}\left(\tau_{1}\right)$ and $(2 \tau / n) \psi_{n}^{\prime}(\tau) / \psi_{n}(\tau)$ without recourse to high precision floating point arithmetic has been outlined. These functions were used to compute the solution to the subsonic free-surface wall jet problem for a Murnaghan isentropic relation. In addition, formulas for various measures of strain rate have been given in terms of the hodograph variables. For particular cases detailed maps in the physical plane showing velocities, velocity gradients and several velocity gradient measures were given. These results may be used for verification comparisons with other more general purpose numerical methods.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1972.
[2] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons, New York, 1958.
[3] G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. I. TayLOR, Explosives with lined cavities, J. Appl. Phys., 19 (1948), pp. 563582.
[4] G. Birkhoff and E. H. Zarantonello, Jets, wakes and cavities, in Applied Mathematics and Mechanics, vol. II, Academic Press, New York, 1957.
[5] G. Blanch, Numerical evaluation of continued fractions, SIAM Review, 4 (1964).
[6] S. A. Chaplygin, On gas jets, tech. rep., Moscow University, 1902. In Russian, Translated in NACA Technical Memorandum No. 1063, 1944.
[7] G. Chiocchia and B. Gabutti, A new transformation for computing hypergeometric series and the exact evaluation of the transonic adiabatic flow over a smooth bump, Computers and Fluids, 17 (1989), pp. 13-23.
[8] P. C. Chou, J. Carleone, and R. Karpp, Criteria for jet formation from impinging shells and plates, J. Appl. Phys., 47 (1976).
[9] L. P. Cook, E. Newman, S. Rimbey, and G. Schleiniger, Sonic and subsonic axisymmetric nozzle flows, SIAM J. Appl. Math., 59 (1999), pp. 1812-1824.
[10] D. F. Ferguson and M. J. Lighthill, The hodograph transformation in transonic flow, IV. tables, Proc. Roy. Soc, A192 (1947), pp. 135142.
[11] E. Frank, Continued Fraction Expansions for the Ratios of Hypergeometric Functions Evaluated on Computers, vol. 419, Springer, Berlin, 1974, pp. 110-119.
[12] A. Friedman, Mathematics in Industrial Problems, Part 2, vol. 24, Springer-Verlag, 1989, ch. Shaped Charge Jets and Subsonic Free Surface Flow Theory, pp. 145-155.
[13] K. G. Guderley, The Theory of Transonic Flow, Pergamon Press, 1962.
[14] M. I. Gurevich, The Theory of Jets in an Ideal Fluid, Pergamon Press, Oxford, 1965.
[15] W. G. V. Holle and J. J. Trimble, Temperature measurement of shocked copper plates and shaped charge jets by two-color ir radiometry, J. Appl. Phys., 47 (1976), pp. 2391-2394.
[16] F. Jamet, Investigation of shaped charge jets using flash x-ray diffraction, in Proceedings of the 8th International Symposium on Ballistics, Orlando, Florida, American Defense Preparedness Association, Oct 1984.
[17] ——, A flash x-ray diffraction system for shaped charge jets analysis, in Proceedings of the 1986 Flash Radiograph Topical, Columbus, Ohio, American Society for Nondestructive Testing, 1986.
[18] R. R. Karpp, An exact partial solution to the compressible flow problems of jet formation and penetration in plane, steady flow, Quart. Appl. Math, (1984), pp. 15-29.
[19] R. R. Karpp and S. Goldstein, Modifications to the hydrodynamic computer code HELP, Tech. Rep. M-4-1596, Los Alamos National Laboratory, December 1977. Work for U. S. Army Ballistic Research Lab. under Army Project Order N721-77.
[20] R. Kinslow, ed., High-Velocity Impact Phenomena, Academic Press, New York, 1970.
[21] W. C. Mills-Curran, A. P. Gilkey, and D. P. Flanagan, Exodus: A finite element file format for pre- and postprocessing, Tech. Rep. SAND87-2997, Sandia National Laboratories, 1977.
[22] R. V. Mises, Mathematical Theory of Compressible Fluid Flow, Academic Press, Inc., New York, 1958.
[23] G. Y. Nieuwland, Transonic potential flow around a family of quasielliptical aerofoil sections, Tech. Rep. T-172, National Aerospace Lab NLR, Amsterdam, 1967.
[24] W. F. Noh, Errors for calculation of strong shocks using an artificial viscosity and an artificial heat flux, J. Comp. Phys., 72 (1978), pp. 78120.
[25] C. E. Pearson, Extension of a numerical streamline method, Comm. Appl. Num. Meth., 1 (1985), pp. 177-181.
[26] E. Racah, Shaped charge jet heating, Propellants, Explosives, Pyrotechnics, 13 (1988), pp. 178-182.
[27] P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, 1998.
[28] J. A. Schmitt, Truncation error terms in the kinetic energy calculation in the HELP algorithm and their consequences, J. Comp. Phys., 35 (1980), pp. 206-228.
[29] L. I. Sedov, Two-dimensional Problems in Hydrodynamics and Aerodynamics, Interscience Publishers, New York, 1965.
[30] W. J. Thron and H. Waadeland, Accelerating convergence of limit periodic continued fractions $k\left(a_{n} / 1\right)$, Numer. Math., 34 (1980), pp. 155170.
[31] E. D. Tomilov, Two-Dimensional Subsonic Gas Flows: Basic Methods and Problems, Novosibirsk, Izdatel'stvo Nauka, 1980. Available in Russian from AIAA TIS as A81-31825.
[32] W. P. Walters and J. A. Zukas, Fundamentals of Shaped Charges, John Wiley and Sons, New York, 1989.
[33] J. Wimp, Sequence Transformations and Their Applications, Academic Press, New York, 1981.
[34] _-, Computation with Recurrence Relations, Pitman, Boston, 1984.
[35] L. Zernow, Recovery of shaped charge jet samples for x-ray diffraction studies, in Proceedings from the Tenth International Symposium on Ballistics, Vol. II, American Defense Preparedness Association, October 1987.
[36] J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, and D. R. Curran, Impact Dynamics, John Wiley and Sons, 1982.

A Equation of State Relations

The Murnaghan isentrope given by Equation 2 has two free parameters, κ_{∞} and γ. A common form for the description of a metal Hugoniot is

$$
\begin{equation*}
p_{H}=\rho_{\infty} c_{\infty}^{2} \eta /(1-s \eta)^{2} \tag{72}
\end{equation*}
$$

where $\eta=1-\rho_{\infty} / \rho$. The Hugoniot and the isentrope are equal to third order in the strain. Thus one may match either of these two curves locally near $\rho=\rho_{\infty}$ to the same order by the Murnaghan relation. Setting the first and second derivatives with respect to $1 / \rho$ of Equations 72 and 2 equal at reference conditions leads to the equations

$$
\begin{gather*}
\gamma \kappa_{\infty}=\rho_{\infty} c_{\infty}^{2} \tag{73}\\
\gamma(\gamma+1) \kappa_{\infty}=4 \rho_{\infty} c_{\infty}^{2} s . \tag{74}
\end{gather*}
$$

Solving for κ_{∞} and γ yields the equations

$$
\begin{gather*}
\gamma=4 s-1 \tag{75}\\
\kappa_{\infty}=\rho_{\infty} c_{\infty}^{2} / \gamma \tag{76}
\end{gather*}
$$

The Chaplygin gas may be obtained by setting $s=0$.
Assume a Mie-Grüneisen equation of state

$$
\begin{equation*}
p(e, \rho)=\bar{p}(\rho)+\rho \Gamma(e-\bar{e}(\rho)) \tag{77}
\end{equation*}
$$

where \bar{e} satisfies the isentropic differential equation for the internal energy,

$$
\begin{equation*}
d e=-p d \nu=-p d(1 / \rho) \tag{78}
\end{equation*}
$$

so that

$$
\begin{equation*}
\bar{e}=e_{\infty}+\frac{\kappa_{\infty}}{\gamma-1}\left(\frac{1}{\rho}\left(\rho / \rho_{\infty}\right)^{\gamma}-\frac{1}{\rho_{\infty}}\right)+\kappa_{\infty}\left(1 / \rho-1 / \rho_{\infty}\right) . \tag{79}
\end{equation*}
$$

The Grüneison coefficient $\Gamma=\nu(\partial p / \partial e)_{\nu}$ is an arbitrary function of volume. It is common to chose $\rho \Gamma=\alpha$ constant.

In order to derive simple relations for the temperature and entropy, assume that the heat capacity at constant volume, $c_{\nu}=(\partial e / \partial T)_{\nu}$, is constant. Thus

$$
\begin{equation*}
e-\bar{e}(\rho)=c_{\nu}(T-\bar{T}(\rho)) \tag{80}
\end{equation*}
$$

and

$$
\begin{equation*}
p(\rho, T)=\bar{p}(\rho)+\alpha c_{\nu}(T-\bar{T}(\rho)) . \tag{81}
\end{equation*}
$$

Application of the second law of thermodynamics allows the determination of the variation of \bar{T} with ρ.

$$
\begin{align*}
d S & =\frac{d e}{T}+p \frac{d \nu}{T} \tag{82}\\
& =\frac{c_{\nu}}{T} d T+\left((\partial e / \partial \nu)_{T}+p\right) \frac{d \nu}{T} \tag{83}\\
& =\frac{c_{\nu}}{T} d T+(\partial p / \partial T)_{\nu} d \nu \tag{84}
\end{align*}
$$

The identity $T(\partial p / \partial T)_{\nu}=(\partial e / \partial \nu)_{T}+p$ has been used in the final formula above. This identity follows from the consistency condition for $d S$ to be an exact differential. Since $(\partial p / \partial T)_{\nu}=\alpha c_{\nu}$, Equation 84 is solvable on an isentrope. The solution of the differential equation for \bar{T} is

$$
\begin{equation*}
\bar{T}=T_{\infty} e^{-\alpha\left(\nu-\nu_{\infty}\right)} . \tag{85}
\end{equation*}
$$

Integrating at constant volume to obtain the entropy, S, yields

$$
\begin{align*}
S & =\bar{S}+\int_{\bar{T}}^{T} \frac{c_{\nu}}{T} d T \tag{86}\\
& =S_{\infty}+c_{\nu} \log \left(T / T_{\infty}\right)+\alpha c_{\nu}\left(\nu-\nu_{\infty}\right) \tag{87}
\end{align*}
$$

A general relation for the sound speed is

$$
\begin{align*}
c^{2} & =(\partial p / \partial \rho)_{S}=(\partial p / \partial \rho)_{T}+(\partial p / \partial T)_{\rho}(\partial T / \partial \rho)_{S} \tag{88}\\
& =(\partial p / \partial \rho)_{T}+\frac{T}{\rho^{2} c_{\nu}}(\partial p / \partial T)_{\rho}^{2} \tag{89}
\end{align*}
$$

Since $(\partial p / \partial T)_{\rho}=\alpha c_{\nu}$ and $(\partial p / \partial \rho)_{T}=d \bar{p} / d \rho-\alpha^{2} \nu^{2} c_{\nu} \bar{T}$,

$$
\begin{equation*}
c^{2}=d \bar{p} / d \rho+\alpha^{2} \nu^{2} c_{\nu}(T-\bar{T}) \tag{90}
\end{equation*}
$$

The above equations should be sufficient to provide enough information to implement this equation of state in any code framework. Note that for the reference isentrope, $p\left(\rho_{\infty}, T_{\infty}\right)=0$. Copper parameters used in this report are listed in Table 1 in cgs units. These were obtained from the copper table on page 532 of Appendix E of Kinslow [20]. Only the first three parameters are relevant to the isentropic flows presented in this report. The remaining parameters may be useful for comparison with codes utilizing the full equation of state listed above in this Appendix. Note that a linear isentrope may be obtained with $s=0(\gamma=-1)$.

ρ_{∞}	$8.94 \mathrm{gm} / \mathrm{cc}$
c_{∞}	$3.94 \quad 10^{5} \mathrm{~cm} / \mathrm{s}$
s	$1.489 \quad(\gamma=4.956)$
Γ	1.99
c_{ν}	$3.718 \quad 10^{6} \mathrm{erg} /(\mathrm{cm}-\mathrm{deg} \mathrm{K})$
T_{∞}	293 deg K
e_{∞}	arbitrary
S_{∞}	arbitrary

Table 1: Reference parameter values for a copper equation of state.

B Evaluation of Continued Fractions

Continued fractions may be evaluated by the forward recursion algorithm for the numerator and denominator of the k -th approximate. That is, given the continued fraction

$$
\begin{equation*}
\beta_{0}+\frac{\alpha_{1} \mid}{\mid \beta_{1}}+\frac{\alpha_{2} \mid}{\mid \beta_{2}}+\frac{\alpha_{3} \mid}{\mid \beta_{3}}+\cdots=\beta_{0}+\frac{\alpha_{1}}{\beta_{1}+\frac{\alpha_{2}}{\beta_{2}+\cdots}} . \tag{91}
\end{equation*}
$$

the numerator, A_{k}, and the denominator, B_{k}, of the k-th approximate, C_{k}, are given by

$$
\begin{array}{r}
A_{k}=\beta_{k} A_{k-1}+\alpha_{k} A_{k-2}, \quad B_{k}=\beta_{k} B_{k-1}+\alpha_{k} B_{k-2}, \quad k=1,2,3, \cdots \\
A_{-1}=1, \quad A_{0}=\beta_{0}, B_{-1}=0, \quad B_{0}=1 \tag{92}
\end{array}
$$

with

$$
\begin{equation*}
C_{k}=A_{k} / B_{k} \tag{93}
\end{equation*}
$$

If the continued fraction is convergent, $\lim _{k \rightarrow \infty} C_{k}$ exists and is defined as the value of the continued fraction. For fixed values of $\alpha_{k}=\tilde{\alpha}$ and $\beta_{k}=\tilde{\beta}$ is

$$
\begin{equation*}
\sigma^{2}-\tilde{\beta} \sigma-\tilde{\alpha}=0, \tag{94}
\end{equation*}
$$

is the characteristic equation for the difference equation given in 92 . The roots of this equation give the fundamental solutions σ_{1}^{k} and σ_{2}^{k} of the constant coefficient difference equation for A_{k} and B_{k}. A continued fraction is termed limit periodic if α_{k} and β_{k} approach constants $\tilde{\alpha}$ and $\tilde{\beta}$, respectively, as $k \rightarrow \infty$. The limit characteristic equation is given by Equation 94.

An acceleration technique for limit periodic continued fractions can be given by defining

$$
\begin{equation*}
C_{k}(w)=\frac{A_{k}-w A_{k-1}}{B_{k}-w B_{k-1}} \tag{95}
\end{equation*}
$$

If $w=\sigma_{2}$ and σ_{2} is the subdominant root of the limit auxiliary equation ($\left.\left|\sigma_{2}\right|<\left|\sigma_{1}\right|\right)$, then $C_{k}(w)$ may converge faster that C_{k}. A thorough analysis of this approach is given by Thron and Waadeland [30]. In the present application the acceleration is not particularly fast due to the slow asymptotic approach to the limiting coefficients in the difference equation, i.e. $\alpha_{k}=\tilde{\alpha}+O(1 / k), \beta_{k}=\tilde{\beta}+O(1 / k)$. As a result this technique was not utilized, but is included in this report for the sake of completeness as the FORTRAN code of Appendix E includes this option.

C Upper and Lower Bounds

The convergence theory for Chaplygin series is described by Sedov [29] and is based on analysis of the first order non-linear Ricatti equation derived from the linear second order differential equation for ψ_{n}. Let $Q=(2 \tau / n) \psi_{n}^{\prime}(\tau) / \psi_{n}(\tau)$ then the Ricatti equation for Q is

$$
\begin{equation*}
H(Q)=\frac{d Q}{d \tau}+\frac{M^{2}}{2 \tau} Q+\frac{n}{2 \tau}\left\{Q^{2}-\left(1-M^{2}\right)\right\}=0 \tag{96}
\end{equation*}
$$

with $Q(0)=1$. To find upper and lower bounds for Q , concepts from the theory of differential inequalities may be applied. Suppose a comparison function $\bar{Q}(\tau)$ with $\bar{Q}(0)=1$ can be found such that $H(\bar{Q}) \geq 0$ for $\tau \in\left[0, \tau_{c r}\right]$, then it is claimed that $Q \leq \bar{Q}$ for $\tau \in\left[0, \tau_{c r}\right]$. The proof follows by writing the differential equation for $Q-\bar{Q}$:

$$
\begin{equation*}
\frac{d}{d \tau}(Q-\bar{Q})=-\frac{d \bar{Q}}{d \tau}-\frac{M^{2}}{2 \tau} Q-\frac{n}{2 \tau}\left\{Q^{2}-\left(1-M^{2}\right)\right\} \tag{97}
\end{equation*}
$$

or, by expanding about \bar{Q},

$$
\begin{equation*}
\frac{d}{d \tau}(Q-\bar{Q})=-H(\bar{Q})-\left(\frac{M^{2}}{2 \tau}+\frac{n}{\tau}\right)(Q-\bar{Q})-\frac{n}{4 \tau}(Q-\bar{Q})^{2} \tag{98}
\end{equation*}
$$

Thus, at any point $\tau \in\left[0, \tau_{c r}\right]$ such that $Q=\bar{Q}, d(Q-\bar{Q}) / d \tau=-H(\bar{Q}) \leq 0$. It is thus impossible for $Q-\bar{Q}$ to be greater than zero. Similarly, for $H(\bar{Q}) \leq$ 0 , then $Q-\bar{Q} \geq 0$. In practice one finds a reasonable approximation, \bar{Q}, to the solution and evaluates $H(\bar{Q})$. If $H(\bar{Q}) \geq 0$, then \bar{Q} is an upper bound. If $H(\bar{Q}) \leq 0$, then \bar{Q} is a lower bound.

For $n \gg 1$, the equation for Q suggests the approximation

$$
\begin{equation*}
\bar{Q}=\sqrt{1-M^{2}} . \tag{99}
\end{equation*}
$$

One finds that

$$
\begin{equation*}
H(\bar{Q})=\left(\tau \frac{d(\log \rho)}{d \tau}-\frac{M^{4}}{2 \tau}\right) / \sqrt{1-M^{2}} \leq 0 \tag{100}
\end{equation*}
$$

provided $d \rho / d \tau \leq 0$. This assumption is physically correct since the density should decrease with increasing flow speed and lower pressure. Thus $\bar{Q}=$ $\sqrt{1-M^{2}}$ is a lower bound and leads directly by integration to Equation 42, the result giving the convergence proof for Chaplygin series.

We also found it useful to compute an upper bound solution of the form

$$
\begin{equation*}
\bar{Q}=\rho \sqrt{K+\epsilon^{\delta} \alpha(\tau)} \tag{101}
\end{equation*}
$$

where $K=\left(1-M^{2}\right) / \rho^{2}$ and $\epsilon=1 / n$. Substitution yields

$$
\begin{equation*}
H(\bar{Q})=\frac{\rho}{2} \frac{d K / d \tau+\epsilon^{\delta} d \alpha / d \tau}{\sqrt{K+\epsilon^{\delta} \alpha(\tau)}}+\frac{\epsilon^{\delta-1} \rho^{2} \alpha}{2 \tau} \tag{102}
\end{equation*}
$$

Sedov (1965) chose $\alpha(\tau)$ to be $C \tau$ where C is a positive constant. The value of $\delta=2 / 3$ was chosen in order to provide estimates on the sign of $H(\bar{Q})$ which were independent of n.

Assuming for the moment that $d \alpha / d \tau$ is bounded as ϵ goes to zero yields the dominant balance equation for α

$$
\begin{equation*}
\frac{\rho}{2} \frac{d K / d \tau}{\sqrt{K+\epsilon^{\delta} \alpha(\tau)}}+\frac{\epsilon^{\delta-1} \rho^{2} \alpha}{2 \tau}=0 \tag{103}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha^{3}+\frac{K}{\epsilon^{\delta}} \alpha^{2}-\epsilon^{2-3 \delta}\left(-\frac{\tau}{\rho} \frac{d K}{d \tau}\right)^{2}=0 \tag{104}
\end{equation*}
$$

The single non-negative real root of the above cubic is of interest. In order that α be independent of ϵ for $\tau=\tau_{c r}$, one specifies $\delta=2 / 3$. Values of $\alpha(\tau)$ are easily found by Newton iteration, but may also be given explicitly:

$$
\begin{equation*}
\alpha=\frac{A^{1 / 3}}{2(a / 3)^{1 / 2} \cos \left(\cos ^{-1}(z) / 3\right)} \text { for } z \leq 1 \tag{105}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha=\frac{A^{1 / 3}}{2(a / 3)^{1 / 2} \cosh \left(\log \left(z+\sqrt{z^{2}-1}\right) / 3\right)} \text { for } z \geq 1 \tag{106}
\end{equation*}
$$

where $z=(3 / a)^{3 / 2} / 2, a=K \epsilon^{-2 / 3} A^{-1 / 3}$ and $A=(-(\tau / \rho) d K / d \tau)^{2}$. Figure 31 shows values of $\alpha(\tau)$ for several values of n. The value of the functional H is then

$$
\begin{equation*}
H(\bar{Q})=\frac{\rho}{2} \frac{\epsilon^{2 / 3} d \alpha / d \tau}{\sqrt{K+\epsilon^{2 / 3} \alpha(\tau)}} \geq 0 \tag{107}
\end{equation*}
$$

since we show below that $d \alpha / d \tau \geq 0$. Thus \bar{Q} is an upper bound estimate. The behavior of $d \alpha / d \tau$ may be investigated by differentiating the cubic equation for α.

$$
\begin{equation*}
\frac{d \alpha}{d \tau}=\frac{\epsilon^{2 / 3} d A / d \tau-d K / d \tau \alpha^{2}}{3 \epsilon^{2 / 3} \alpha^{2}+2 K \alpha} \geq 0 \tag{108}
\end{equation*}
$$

Figure 31: The function $\alpha(\tau)$ for $M=1$ for the standard Cu isentrope. Solid $-n=1$ to 10 by 1 ; dashed $-n=20$ to 100 by 20 ; dash-dot $-n=200$.
since it is assumed that $d K / d \tau \leq 0$. This is easy to show for the Murnaghan relations assumed in this report. For fixed $\tau<\tau_{c r}(K \neq 0)$, then it is seen that $H(\bar{Q})=O\left(\epsilon^{2 / 3}\right)$ as $\epsilon \rightarrow 0$. For fixed $\tau=\tau_{c r}(K=0)$, then $H(\bar{Q})=O\left(\epsilon^{-1 / 3}\right)$ as $\epsilon \rightarrow 0$. This result indicates a basic non-uniformity inherent in the approximation to the differential equation. However, it is still interesting to inquire as to the magnitude of the error between Q and \bar{Q}. A careful comparison of the difference between the exact value of Q computed according to the methods outlined in the text and the upper bound approximation, \bar{Q}, has yielded convincing numerical evidence that $\bar{Q}\left(\tau_{c r}\right)$ $Q\left(\tau_{c r}\right)=O\left(\epsilon^{1 / 2}\right)$ as $\epsilon \rightarrow 0$. This suggests that the function \bar{Q} is a leading order asymptotic approximation to Q as well as an upper bound since it would follow that $(\bar{Q}-Q) / \bar{Q}=O\left(\epsilon^{1 / 6}\right)$.

D Several Sequence Transformations

Although the θ, Levin-u and Levin-t algorithms were not successful in accelerating the complex sequences given by the partial sums of z_{q} and z_{n} for all needed parameter values, a short summary of these algorithms is given here as the coding is included in the program listing.

The θ-algorithm is given by

$$
\begin{gather*}
\theta_{-1}^{(m)}=0, \quad \theta_{0}^{(m)}=s_{m}, \quad m \geq 0 \tag{109}\\
\theta_{2 k+1}^{(m)}=\theta_{2 k-1}^{(m+1)}+\left(\theta_{2 k}^{(m+1)}-\theta_{2 k}^{(m)}\right)^{-1}, \quad k \geq 0 \tag{110}\\
\theta_{2 k+2}^{(m)}=\frac{\theta_{2 k}^{(m+2)} \Delta \theta_{2 k+1}^{(m+1)}-\theta_{2 k}^{(m+1)} \Delta \theta_{2 k+1}^{(m)}}{\Delta^{2} \theta_{2 k+1}^{(m)}}, \quad k \geq 0 \tag{111}
\end{gather*}
$$

Only the $\theta_{2 k}^{m}$ terms are used as estimates for the sum.
The Levin transforms are given by

$$
\begin{equation*}
t_{k}\left(s_{m}\right)=t_{k}^{(m)}=\frac{\sum_{j=0}^{k}\left(s_{m+j} / a_{m+j+1}\right)(m+j+1)^{k-1}(-1)^{j}\binom{k}{j}}{\sum_{j=0}^{k}\left(1 / a_{m+j+1}\right)(m+j+1)^{k-1}(-1)^{j}\binom{k}{j}} \tag{112}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k}\left(s_{m}\right)=u_{k}^{(m)}=\frac{\sum_{j=0}^{k}\left(s_{m+j} / a_{m+j+1}\right)(m+j+1)^{k-2}(-1)^{j}\binom{k}{j}}{\sum_{j=0}^{k}\left(1 / a_{m+j+1}\right)(m+j+1)^{k-2}(-1)^{j}\binom{k}{j}} \tag{113}
\end{equation*}
$$

where a_{j} are terms of the series leading to the partial sums $s_{m}=\sum_{j=0}^{m} a_{j}$ for $m \geq 0$. The u-transform and the t-transform may be evaluated using a similar Lozenge type diagram just as in the case of the ϵ and θ-algorithms. Define for all $m \geq 0$

$$
\begin{gather*}
Q_{0}^{(m)}=\frac{s_{m}}{(m+1)^{p} a_{m+1}} \tag{114}\\
Q_{k}^{(m)}=Q_{k-1}^{(m+1)}-\left(\frac{m+1}{m+k+1}\right)\left(\frac{m+k}{m+k+1}\right)^{k-1} Q_{k-1}^{(m)}, \quad k \geq 1 \tag{115}
\end{gather*}
$$

and

$$
\begin{gather*}
\tilde{Q}_{0}^{(m)}=\frac{1}{(m+1)^{p} a_{m+1}} \tag{116}\\
\tilde{Q}_{k}^{(m)}=\tilde{Q}_{k-1}^{(m+1)}-\left(\frac{m+1}{m+k+1}\right)\left(\frac{m+k}{m+k+1}\right)^{k-1} \tilde{Q}_{k-1}^{(m)}, \quad k \geq 1 \tag{117}
\end{gather*}
$$

then

$$
\begin{align*}
t_{k}^{(m)} & =Q_{k}^{(m)} / \tilde{Q}_{k}^{(m)} \quad \text { with } p=1 \tag{118}\\
u_{k}^{(m)} & =Q_{k}^{(m)} / \tilde{Q}_{k}^{(m)} \quad \text { with } p=2 . \tag{119}
\end{align*}
$$

The above evaluation algorithm is derived by Fessler, Ford and Smith (1983) for the u-algorithm and easily generalizes for the t-transform.

E Verification testing using CJETB

When using a general purpose numerical code to compute the wall jet solutions, it is possible to verify some aspects of the solutions by checking simple consistency conditions. For example, in the case of a normal incidence free surface wall jet of subsonic inflow velocity $\left(\beta=90^{\circ}\right)$, one can easily check a necessary condition for the computed steady state flow to be correct. Since the steady flow is isentropic and thus reversible, there must be a symmetry of all state variables about a 45° line in the first quadrant. Thus, for this case, any reasonable equation of state can be used for testing. One must be careful to check all variables as it has been found, in one instance, that the pressure profile computed was highly symmetric, while the internal energy and temperature profiles were quite asymmetric indicating non-physical dissipation in a subsonic isentropic flow.

Setting up a useful verification problem using a transient flow shock capturing code may require some ingenuity since the solution presented here is steady state. Since the flow has a stagnation point, it will take some time for any initial transient response to be advected out of the problem. Another possibility is to implement an approximate initial condition based on the incompressible solution. The steady state defined by this exact solution could also be used as a test of a mesh to mesh interpolation capability and thus would also be useful for setting up a precise initial steady state flow distribution to avoid the initial transient problem.

A copy of the relevant code, CJETB, and related subroutines used to evaluate the wall jet solution described in the text is given below. The code
writes out some data in the EXODUS I finite element database format as well as x-y pair data for plotting [21]. It is expected that any user interested in running the CJETB code will have access to reasonable postprocessing procedures for this type of data and may modify the code with little effort to be compatible with any particular finite element database format.

```
C *******************************************************************
C
C CJETB (Compressible JET (Blot compatible output) )
    Two Dimensional Output in EXODUS I Finite Element Format
    BLOT may be used to display this file
    1D output in ASCII tables
C
C *********************************************************************
C
C Author:
C
C
    Allen C. Robinson
    Sandia National Laboratories
    MS 0819
    Albuquerque, NM 87122-0819
    acrobin@sandia.gov
Background: This program evaluates the solution to the
    problem of a plane compressible free surface jet
    impinging at any angle to a fixed wall. The incompressible
    complex potential for this problem is known in closed form
    and leads immediately to the solution for a subsonic
    compressible jet by Chaplygin's method.
    The series representation for this solution
    converges very slowly for points on and near the free
    surface. This difficulty is overcome using non-linear
    convergence accelerators. We assume a Murnaghan equation
    of state leading to hypergeometric functions as solutions
    to the reduced Chaplygin equation. The functions F are
    evaluated using continued fraction representations
    for F'/F. Log F is then obtained
    by numerical integration. The physical plane z mau be computed
    by two schemes. The first computes dz/dq by summing series
    and then integrating numerically with respect to q.
    Alternatively z may be computed
    in terms of an analytical integration of dz/d(theta).
    Velocity, pressure, internal energy, density, Mach number,
    and several strain rate measures are computed as a function
    of the physical plane position z.
```



```
C Disclaimer:
C
***SUED BY SANDIA***
4 7 \text { C * NATIONAL LABORATORIES *}
48 C * A PRIME CONTRACTOR *
49 C ********* TO THE *
```

45 C


```
3 FPDF(NUMAX,NQMAX),XLNF (NUMAX,NQMAX),
F(NUMAX,NQMAX),FP(NUMAX,NQMAX),
5 PSI(NUMAX,NQMAX),PSIP (NUMAX,NQMAX),
6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)
    DIMENSION XDQ(NTMAX,NQMAX),YDQ(NTMAX,NQMAX)
    DIMENSION XT(NTMAX,NQMAX),YT(NTMAX,NQMAX)
    DIMENSION X(NTMAX,NQMAX),Y(NTMAX,NQMAX)
    DIMENSION XO(NTMAX,NQMAX),YO(NTMAX,NQMAX),DIS(NTMAX,NQMAX)
    DIMENSION U(NTMAX,NQMAX),V(NTMAX,NQMAX)
    DIMENSION DIVU(NTMAX,NQMAX)
    DIMENSION UX(NTMAX,NQMAX),UYORVX(NTMAX,NQMAX),VY(NTMAX,NQMAX)
    DIMENSION XMAGDU(NTMAX,NQMAX),DEVU(NTMAX,NQMAX)
    DIMENSION TMPA(4),TMPB(4)
    DIMENSION THETA(NTMAX),TX(3),TF(3),TDF(3)
    DIMENSION NEST(NTMAX,NQMAX,2,4),KEST(NTMAX,NQMAX,2,4)
    DIMENSION OUT(NQNTMX,2),ICONK(4,NQNTMX)
    NAMELIST /EOS/ RHOINF,CINF,SINF,EINF
    DATA RHOINF/8.94/,CINF/3.94E+5/,SINF/1.489/,EINF/0./
    NAMELIST /JET/ XLINF,XMCHMN,XMCHMX,NMACH,BETDMN,BETDMX,NBETA
    DATA XLINF/1./,XMCHMN/.9/,XMCHMX/.9/,NMACH/1/
    DATA BETDMN/90./,BETDMX/90./,NBETA/1/
    NAMELIST /TEKNIK/ NTPNTS,NQPNTS,NQSW,RELERR,SSLP,
    1 RELER1,NUBIG,KBIG,ISUM, INTFLG,IUNIT
    DATA NTPNTS/51/,NQPNTS/51/,NQSW/0/,RELERR/1.E-6/,SSLP/O./
    DATA RELER1/1.E-4/,NUBIG/200/,KBIG/201/
    DATA ISUM/2/,INTFLG/1/,IUNIT/1/
    DATA CNAME1/'CJETB'/,CNAME2/'V1.0'/
    PI = 4.*ATAN(1.)
    get first argument in list
    call getarg ( 1, runid)
    do 10 idlen=1,len(RUNID)-4
        if(runid(idlen:idlen).eq.' ') then
            goto 11
        endif
        1 0 ~ c o n t i n u e
        1 1 \text { continue}
C Unit numbers: input = 5
            output log =6
    On axis data output in GRAPH format = 8
    Chapylgin function output in GRAPH format =10
    Full data output =11 in EXODUS format for use with BLOT
        postprocessing graphics.
    C Respective file suffixes are runid.inp,runid.out,runid.axs,runid.chp,runid.exo
        NAB = 8
        NCB = 10
        NDB = 11
    C To compute the tables of Ferguson and Lighthill for subsonic tau
    C then input NQPNTS = 9, NQSW=1, SINF=.6 (GAMMA=1.4) and XMCHMN=SQRT(20./21.)'
    C The value SINF = 0. is the Chaplygin gas.
    runid(idlen:idlen+3)='.inp'
    OPEN(UNIT=5,FILE=runid,STATUS='old',FORM='formatted')
```

164		READ (5,EOS)
165	C	RHOINF=freestreamline density
166	C	CINF=freestreamline soundspeed
167	C	SINF=value of s in Us-Up relation
168	C	EINF=freestreamline internal energy
169	C	
170		READ (5, JET)
171	C	NAMELIST /JET/ XLINF, XMCHMN, XMCHMX,NMACH, BETDMN, BETDMX,NBETA
172	C	XLINF=width of incoming jet at infinity
173	C	XMCHMN=minimum value of Mach number ($0<X M C H M N<1$)
174	C	XMCHMX=maximum value of Mach number ($0<X M C H M X<1$)
175	C	NMACH=number of Mach numbers to compute
176	C	BETDMN=minimum value of BETA in degrees ($0<B E T D M N<180$)
177	C	BETDMX=maximum value of BETA in degress ($0<B E T D M X<180$)
178	C	NBETA=number of BETA values to compute
179		READ (5, TEKNIK)
180	C	NTPNTS=number of evaluation points in theta direction
181	C	NQPNTS=number of evaluation and trapezoidal rule integration
182	C	points in Q direction
183	C	NQSW=switch to change from constant dQ to constant dtau
184	C	RELERR=relative error check value for Chaplygin function evaluation
185	C	RELER1=relative error check value for series summation
186	C	SSLP=slope of stretch mapping near singular points (0.LE.SSLP.LE.1.)
187	C	NUBIG=maximum number of terms in column summation
188	C	KBIG=maximum row value in Lozenge scheme for acceleration schemes.
189	C	ISUM=acceleration sum type $=\begin{array}{llllll} \\ \text { a }\end{array}$
190	C	for valid SUMFLG values =NONE, EPSILON, THETA, LEVINU, LEVINT
191	C	INTFLG=type of integration for basic physical plane
192	C	=1 Q integration
193	C	$=2$ theta integration
194	C	IUNIT =output scaling
195	C	=1 for dimensional units
196	C	$=2$ for stagnation point scaling
197	C	=3 for freestreamline scaling
198	C	See code interior for definitions
199		IF (NQSW.EQ.0) NQSW=NQPNTS/5
200		NQSW=MAX (1,MIN (NQSW, NQPNTS))
201		IF (NUBIG.GT.NUMAX) THEN
202		WRITE (6,*) 'NUBIG . GT . NUMAX'
203		STOP
204		ENDIF
205		IF (KBIG.GT. KMAX) THEN
206		WRITE (6,*) 'KBIG .GT. KMAX'
207		STOP
208		ENDIF
209		IF (ISUM.EQ.1) SUMFLG= 'NONE'
210		IF (ISUM.EQ.2) SUMFLG='EPSILON'
211		IF (ISUM.EQ.3) SUMFLG='THETA'
212		IF (ISUM.EQ.4) SUMFLG= 'LEVINU'
213		IF (ISUM.EQ.5) SUMFLG= 'LEVINT'
214		IF (ISUM.LT.1.OR.ISUM.GT.5) THEN
215		WRITE (6,*) 'BAD VALUE OF ISUM'
216		STOP
217		ENDIF
218		IF (INTFLG.NE.1.AND. INTFLG.NE.2) THEN
219		WRITE (6,*) 'BAD VALUE OF INTFLG'
220		STOP

```
            ENDIF
            IF(IUNIT.LT.1.AND.IUNIT.GT.3) THEN
            WRITE(6,*) 'BAD VALUE OF IUNIT'
            STOP
            ENDIF
    CLOSE(UNIT=5)
    runid(idlen:idlen+3)='.out'
    call date_and_time(cdate,ctime,czone,dtval)
    WRITE(6,*) 'Begin code ',CNAME1,' ',CNAME2,' at ',
    1 CTIME,' on ',CDATE,'.'
    WRITE(6,EOS)
    WRITE(6,JET)
    WRITE(6,TEKNIK)
    GAMMA=4.*SINF-1.
    XKPINF=RHOINF*CINF**2/GAMMA
    WRITE(6,*) 'XKPINF and GAMMA chosen to fit slope and curvature'
    WRITE(6,*) 'XKPINF = ',XKPINF,' GAMMA = ',GAMMA
    IF(GAMMA.GT.-1.AND.GAMMA.LE.1.) THEN
        WRITE(6,*) 'THIS VALUE OF GAMMA NOT ALLOWED'
        STOP
    ENDIF
C compute various functions of GAMMA
    GM1D2=(GAMMA-1.)/2.
    QMAX2=1./GM1D2
    IF(GAMMA.LE.-1.) THEN
        QCR2 = 1. E+30
    ELSE
        QCR2 =2./(GAMMA +1.)
    ENDIF
    TAUCR=QCR2/QMAX2
C ******************** Begin Mach Number Loop *****************************
    DO 5000 IMVARY=1,NMACH
    XMACHI = XMCHMN
    IF(IMVARY.GT.1)
    1 XMACHI=(XMCHMX-XMCHMN)*FLOAT (IMVARY-1)/FLOAT(NMACH-1)+XMCHMN
    WRITE(6,*) 'XMACHI = ',XMACHI
    XMCHI2=XMACHI **2
    Q1=SQRT(XMCHI2/(1.+GM1D2*XMCHI2))
    TAU1=Q1**2/QMAX2
C Compute stagnation point parameters in dimensional units
    TMP = 1.+GM1D2*XMCHI2
    RHOO= RHOINF*TMP**(1./(GAMMA-1.))
    CO = CINF*SQRT(TMP)
    XKPO = RHOO*CO**2/GAMMA
    PO = XKPO-XKPINF
```

```
    EO = (XKPO/RHOO-XKPINF/RHOINF)/(GAMMA-1.)
    1 + XKPINF*(1./RHOO - 1./RHOINF) + EINF
C Output stagnation points values
    WRITE(6,*) 'Stagnation point density =',RHOO
    WRITE(6,*) 'Stagnation point sound speed =',CO
    WRITE(6,*) 'Stagnation point pressure =',PO
    WRITE(6,*) 'Stagnation point internal energy =',EO
C Basic variables are in stagnation point units.
C Pressure and energy are in input units.
    DO 500 J = 1,NQPNTS
        Q(J) = (J-1)*Q1/FLOAT(NQPNTS-1)
        TAU(J)=Q(J)**2/QMAX2
        IF(J.GT.NQSW) THEN
                TAU(J) =
        1 (J-NQSW)*(TAU1-TAU(NQSW))/FLOAT(NQPNTS-NQSW)+TAU(NQSW)
                Q(J)=SQRT(QMAX2*TAU(J))
        ENDIF
        TMP=1.-TAU(J)
        RHO(J)=TMP**(1./(GAMMA-1.))
        PRES(J)=(XKPO*RHO(J)**GAMMA-XKPINF)
        ENERGY(J) =(XKPO*TMP/RHOO-XKPINF/RHOINF)/(GAMMA-1.)
    1
                +XKPINF*(1./(RHOO*RHO(J))-1./RHOINF) +EINF
            XMACH2(J)=Q(J)**2/TMP
        CONTINUE
        Set roundoff to zero
        PRES(NQPNTS)=0.
        ENERGY(NQPNTS)=EINF
C Compute Chaplygin functions for this value of Mach number
    CALL CHPLGN(NQPNTS,RELERR)
    WRITE(6,*) 'CHAPLYGIN FUNCTIONS COMPUTED TO ORDER ',NUMAX
    runid(idlen:idlen+3)='.chp'
    OPEN(UNIT=NCB,FILE=runid,STATUS='unknown',FORM='formatted')
    WRITE(NCB,557) GAMMA,TAU1,TAUCR
    FORMAT(' !CHAPLYGIN FUNCTIONS FOR GAMMA,TAU1,TAUCR=',3E15.6)
    DO 555 NU=1,NUMAX
        WRITE(NCB,558) NU
558 FORMAT(' !CHAPLYGIN FUNCTIONS OF ORDER =',I5,/,
    1 , ! TAU $
    3 ' PSIP/PSI1 $(2T/N)PSIP/PSI$ NCHPSM$')
        DO 550 J=1,NQPNTS
            WRITE(NCB,560)TAU(J),FPDF(NU,J), XLNF(NU,J),F(NU,J),FP(NU,J),
    1 PSI(NU,J),PSIP(NU,J),PSIRAT(NU,J),NCHPSM(NU,J)
            FORMAT(1X,8E15.6,I10)
        CONTINUE
        WRITE(NCB,'(', $ $ $ $ $ $ $ $ $'')')
        CONTINUE
    CLOSE(UNIT=NCB)
```

```
    WRITE(6,*) 'CHAPLYGIN FUNCTIONS WRITTEN TO CHPFNC'
C ********************* BETA variation *************************************
    DO 5000 IBVARY=1,NBETA
    BETAD=BETDMN
    IF(IBVARY.GT.1)
    1 BETAD=(BETDMX-BETDMN)*FLOAT(IBVARY-1)/FLOAT(NBETA-1)+BETDMN
        WRITE(6,*) 'BETAD = ',BETAD
    BETA=BETAD*PI/180.
    TMPB (1)=1.
    TMPB(2)=1
    TMPB (3)=-(1.-COS (BETA ))
    TMPB (4)=-(1.+COS (BETA))
    DO 900 J=1,NQPNTS
    DO 900 I=1,NTPNTS
        XDQ(I,J)=0.
        YDQ(I,J)=0.
        XT(I,J)=0.
        YT (I,J)=0.
        CONTINUE
    TMPA(1)=-BETA+PI
        TMPA (2)=BETA-PI
        TMPA (3)=0.
        TMPA (4)=-PI
        use equal number of theta points on each side of singularity
        IBETA=(NTPNTS+1)/2
C Stretch coordinates to get better coverage.
C Stretch slope 0.LE.SSLP.LE.1.
TX(1) = 0.
TX(2) = PI-BETA
TX(3) = PI
TF(1) = 0.
    TF(2) = PI-BETA
    TF(3) = PI
    TDF(1)= SSLP
    TDF(2)= SSLP
    TDF(3)= SSLP
    DO 950 I = 1,NTPNTS
        IF(I.LE.IBETA) THEN
            TMP=(TF (2)-TF(1))*(I-1)/FLOAT(IBETA-1)+TF(1)
            CALL HERMIT(TX,TF,TDF,2,2,TMP,TMP1,TMP2)
        ELSE
            TMP=(TF (3)-TF(2))*(I-IBETA)/FLOAT(NTPNTS-IBETA) +TF(2)
            CALL HERMIT(TX(2),TF(2),TDF(2),2,2,TMP,TMP1,TMP2)
        ENDIF
        THETA(I)=-TMP1
```

336
337


```
    LNPSNL=1
    NUMESS=1
    LESSEL=1
    LESSNL=1
    WRITE (NDB) NUMNOD, NDIM, NUMEL, NELBLK,
        NUMNPS,LNPSNL, NUMESS, LESSEL,LESSNL,1
    DO 4100 K=1,2
    ITMP=0
    DO 4100 J=1,NQPNTS
    DO 4100 I=1,NTPNTS
        IF(J.EQ.NQPNTS.AND.(I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))
        GOTO 4100
        ITMP=ITMP+1
        OUT(ITMP,K)=(2-K)*X(I,J)+(K-1)*Y(I, J)
    continue
    WRITE(NDB) ((OUT(I,J),I=1,NUMNOD),J=1,NDIM)
    DO 4200 I=1,NUMEL
    ICONK}(1,I)=
    WRITE(NDB)((ICONK(J,I),J=1,1),I=1,NUMEL)
    NATRIB=1
    WRITE (NDB) 1,NUMEL,4,NATRIB
    ITMP=0
    DO 4300 J=1,NQPNTS-1
    DO 4300 I=1,NTPNTS-1
    ITMP2=I+J *NTPNTS
    IF(J.EQ.NQPNTS-1) THEN
        IF(I.EQ.1) GOTO 4300
        IF(I.EQ.IBETA-1.OR.I.EQ.IBETA) GOTO 4300
        IF(I.EQ.NTPNTS-1) GOTO 4300
        ITMP2=ITMP2-1
        IF(I.GT.IBETA) ITMP2=ITMP2-1
    ENDIF
    ITMP1=I+(J-1)*NTPNTS
    ITMP4=ITMP1+1
    ITMP3=ITMP2+1
    ITMP=ITMP+1
    ICONK(1,ITMP)=ITMP1
    ICONK(2,ITMP)=ITMP2
    ICONK (3,ITMP)=ITMP3
    ICONK(4,ITMP)=ITMP4
CONTINUE
WRITE(NDB) ((ICONK(J,I),J=1,4),I=1,NUMEL)
WRITE(NDB) ((OUT(I,J),J=1,NATRIB),I=1,NUMEL)
WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)
WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)
WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)
WRITE(NDB) (ICONK(J,1),J=1,LNPSNL)
WRITE(NDB) (OUT(J,1),J=1,LNPSNL)
WRITE(NDB) (ICONK(J,1),J=1,NUMESS)
WRITE(NDB) (ICONK(J,1),J=1,NUMESS)
WRITE(NDB) (ICONK(J,1),J=1,NUMESS)
WRITE(NDB) (ICONK(J,1),J=1,NUMESS)
WRITE(NDB) (ICONK(J,1),J=1,NUMESS)
WRITE(NDB) (ICONK(J,1),J=1,LESSEL)
WRITE(NDB) (ICONK(J,1),J=1,LESSNL)
WRITE(NDB) (OUT(J,1),J=1,LESSNL)
WRITE (NDB) 1
```

```
    WRITE (NDB) CNAME1,CNAME2,CDATE,CTIME
    WRITE (NDB) 0
    NAMECO(1)='X'
    NAMECO(2) = 'Y'
    WRITE (NDB) (NAMECO(I), I=1,NDIM)
    NAMELB (1)='QUAD'
    WRITE (NDB) NAMELB(1)
    NAMEGV (1) ='MACHINF'
    NAMEGV (2) =' BETA'
    NVARGL=2
    NAMENV (1) ='DISPX'
    NAMENV(2)='DISPY'
    NAMENV (3)='ERRQT'
    NAMENV(4)='U'
    NAMENV (5) ='V'
    NAMENV (6)='Q'
    NAMENV (7) ='DENSITY'
    NAMENV(8)='PRESSURE'
    NAMENV(9) = 'ENERGY'
    NAMENV (10)= 'MACH'
    NAMENV (11)= 'DIVUV'
    NAMENV(12)= 'DUDX'
    NAMENV (13)= 'DVDY'
    NAMENV (14) = 'DUDYDVDX'
    NAMENV (15)='MGGDUV'
    NAMENV (16)= 'MGDVGDUV'
    NAMENV (17)= 'NSUM1'
    NAMENV (18)= 'NSUM2'
    NAMENV (19)= 'NSUM3'
    NAMENV (20)= 'NSUM4'
    NAMENV (21)= 'KSUM1'
    NAMENV (22)= 'KSUM2'
    NAMENV (23)= 'KSUM3'
    NAMENV(24)= 'KSUM4'
    NVARNP=24
    WRITE (NDB) 1,NVARGL,NVARNP,1
    WRITE (NDB)'EMPTYSET',(NAMEGV(I),I=1,NVARGL),
    1
                            (NAMENV(I), I=1,NVARNP),'EMPTYSET'
        WRITE (NDB) O
C Output axis variable for use with GRAPH
        runid(idlen:idlen+4)='.axs'
        OPEN (UNIT=NAB,FILE=runid,STATUS='unknown',FORM='FORMATTED')
        WRITE (NAB,'('', !',,A80)') CHAR
        ENDIF
        TIMEN=IBVARY+(IMVARY-1)*NBETA
        WRITE (NDB) TIMEN, 0.
        WRITE (NDB) (OUT(J,1),J=1,1)
        OUT (1,1)=XMACHI
        OUT (2,1)=BETAD
        WRITE (NDB) (OUT(J,1),J=1,NVARGL)
        must have NVARNP calls to WRTNV
        CALL WRTNV(X,XO,2,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
        CALL WRTNV(Y,YO,2,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
```

```
CALL WRTNV(DIS,TMP,1,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
CALL WRTNV(U,TMP, 1,VUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
CALL WRTNV(V,TMP,1,VUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(Q,TMP,3,VUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(RHO,TMP,3,DUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(PRES,TMP,3,PUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(ENERGY,TMP, 3,EUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(XMACH2,TMP,4,1.,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(DIVU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(UX,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV (VY,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(UYORVX,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(XMAGDU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    CALL WRTNV(DEVU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
    DO 4950 NK=1,2
    DO 4950 L=1,4
    ITMP=0
    DO 4900 J=1,NQPNTS
    DO 4900 I=1,NTPNTS
        IF (J.EQ.NQPNTS.AND.
    1 (I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))GOTO4900
    IF(NK.EQ.1) TMP=NEST(I,J,INTFLG,L)
    IF(NK.EQ.2) TMP=KEST(I,J,INTFLG,L)
    ITMP=ITMP+1
    OUT(ITMP, 1)=TMP
4 9 0 0 ~ C O N T I N U E ~
    WRITE(NDB) (OUT(I,1),I=1,ITMP)
    CONTINUE
    On axis output for line graph
    WRITE(NAB,4975) TIMEN,XMACHI,BETAD
    4975 FORMAT(' !OUTPUT NUMBER = ',F5.0,
    ,', MACH = ',F10.4,', BETA = ',F10.2,/,
    , ! X $ U $ RHO $',
        PRES $ ENERGY $ MaCHNO $',
        DIVU $ UX $ VY $',
        XMAGDU $ DEVU $')
        DO 4980 I=NTPNTS,1,-NTPNTS+1
    IF(I.EQ.NTPNTS) THEN
        JMIN=NQPNTS-1
            JMAX=1
            JIT=-1
        ELSE
            JMIN=1
            JMAX=NQPNTS-1
            JIT=1
        ENDIF
        DO 4980 J=JMIN,JMAX,JIT
        OUT (1,1)=X (I,J)*XUNITS
        OUT (2,1)=U (I,J)*VUNITS
        OUT (3,1)=RHO(J)*DUNITS
        OUT(4,1)=PRES (J)*PUNITS
        OUT (5,1)=ENERGY(J)*PUNITS
        OUT (6,1)=0.
        IF(J.NE.1) OUT (6,1)=SQRT (XMACH2 (J))
        OUT (7,1)=DIVU(I,J)*GUNITS
```

734	OUT $(8,1)=\mathrm{UX}(\mathrm{I}, \mathrm{J}) *$ GUNITS
735	OUT $(9,1)=\mathrm{VY}(\mathrm{I}, \mathrm{J}) * \mathrm{GUNITS}$
736	$\operatorname{OUT}(10,1)=\operatorname{XMAGDU}(\mathrm{I}, \mathrm{J}) * \mathrm{GUNITS}$
737	$\operatorname{OUT}(11,1)=\operatorname{DEVU}(\mathrm{I}, \mathrm{J}) * \mathrm{GUNITS}$
738	WRITE(NAB,'(1X,11(1PE11.3))') (OUT (K,1), $\mathrm{K}=1,11$)
7394980	CONTINUE
740	
741	
742	WRITE(6,*) 'OUTPUT FOR COMPUTATION NUMBER ',TIMEN,' COMPLETED.'
7435000	CONTINUE
744	
745	WRITE(6,*) 'CJETB COMPLETED'
746	CLOSE (UNIT=NAB)
747	CLOSE(UNIT=NDB)
748	
749	STOP
750	END
751	
752 C auxilary subroutine to write out scaled and adjusted values.	
753	SUBROUTINE WRTNV(A1, B1, IFLAG,FACTOR,
754	1 NQPNTS , NTMAX, NTPNTS, IBETA , NDB , OUT)
755	DIMENSION A1 (NTMAX,1), B1 (NTMAX,1), OUT (1)
756	ITMP=0
757	DO $10 \mathrm{~J}=1$, NQPNTS
758	DO $10 \mathrm{I}=1$, NTPNTS
759	IF(J.EQ.NQPNTS.AND. (I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA)) GOTO10
760	IF (IFLAG.EQ.1) TMP1= A1 (I,J)*FACTOR
761	IF (IFLAG.EQ.2) TMP1=FACTOR*(A1(I,J)-B1(I,J))
762	IF (IFLAG.EQ.3) TMP1=FACTOR*A1 (1,J)
763	IF (IFLAG.EQ.4) THEN
764	IF (J.EQ.1) TMP1=0.
765	IF (J.NE.1) TMP1=FACTOR*SQRT (A1 (1, J))
766	ENDIF
767	ITMP $=1$ TMP +1
768	OUT (ITMP) =TMP1
76910	CONTINUE
770	WRITE(NDB) (OUT (I), I=1,ITMP)
771	RETURN
772	END
773	
774 C	General routine to a sum a series with option to use convergence
775 C	accelerators for sequences which can be written in terms of
776 C	a Lozenge diagram. Most theory for nonlinear algorithms
777 C	gives only regularity and acceleration results for vertical
778 C	sequences rather than diagonal sequences. The code checks
779 C	on relative error convergence using a comparision between three
780 C	elements of the Lozenge diagram: 3 vertical elements if KMAX $=1$
781 C	or the latest KMAX column term and two latest terms in the preceeding
782 C	column as the N increases. If N is less than KMAX then of course
783 C	only the largest available columns are checked.
784 C	Input:
785 C	A(I), $\mathrm{I}=1, \ldots . \mathrm{N}$; external function which evaluates the terms
786 C	of the series as a function of 1.
787 C	WARNING!!! All $A(I)$ must be non-zero. A zero value of $A(I)$
788 C	will be taken as indicative of convergence in the acceleration
789 C	algorithms.
790 C	RELERR ; Relative error desired between successive approximations.

791 C	NMAX ; maximum number of terms from series
792 C	ATYPE ; Character variable giving the requested
793 C	acceleration scheme.
794 C	Options : NONE
795 C	EPSILON (KMAX must be odd. Also known as SHANKS
796 C	transformation for KMAX $=3$ and iterated
797 C	SHANKS for KMAX greater than 3. Roughly
798 C	half of the significant figures will be
799 C	lost using this algorithm.)
800 C	THETA (KMAX must be odd.)
801 C	LEVINU KMAX must be GE 2
802 C	LEVINT KMAX must be GE 2
803 C	
804 C	Output:
805 C	SEST ; best estimate for sum
806 C	NEST ; row number of Lozenge giving best estimate
807 C	KEST ; column number of Lozenge giving estimate (usually KMAX)
808 C	S (NMAX,KMAX) ; Complete Lozenge diagram. S must be dimensioned
809 C	as S (NDIM, K) where K . GE. KMAX.
810 C	IERR ; 0 for successful completion; 1 for unsuccessful
811 C	
812 C	
813	SUBROUTINE CSUM(A,S,NDIM, SEST, RELERR, NEST, KEST, NMAX, KMAX,
814	1 ATYPE,IERR)
815	IMPLICIT COMPLEX ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
816	REAL RELERR
817	DIMENSION S (NDIM,KMAX)
818	PARAMETER (MAXQ=1000)
819	DIMENSION QN (MAXQ), QD (MAXQ)
820	CHARACTER*(*) ATYPE
821	EXTERNAL A
822	IERR=0
823	IF (ATYPE.EQ.'NONE') THEN
824 C	ignore KMAX
825	KEST = 1
826	$\mathrm{S}(1,1)=\mathrm{A}(1)$
827	$S(2,1)=S(1,1)+A(2)$
828	DO $20 \mathrm{~N}=3$, NMAX
829	$\mathrm{S}(\mathrm{N}, 1)=\mathrm{S}(\mathrm{N}-1,1)+\mathrm{A}(\mathrm{N})$
830	IF (S $(N, 1) . E Q .0$. . AND. $S(N-1,1)$.EQ.O. .AND.
831	1 S(N-2,1).EQ.0.) GOTO 30
832	IF (ABS ($(\mathrm{S}(\mathrm{N}, 1)-\mathrm{S}(\mathrm{N}-1,1)) / \mathrm{S}(\mathrm{N}, 1)$) .LE. RELERR. AND.
833	1 ABS ((S $(N, 1)-\mathrm{S}(\mathrm{N}-2,1)) / \mathrm{S}(\mathrm{N}, 1)$) .LE. RELERR) GOTO 30
83420	CONTINUE
835	WRITE (6,*) 'NO CONVERGENCE IN SUM. BEST ESTIMATE WILL BE USED.'
836	IERR=1
837	N=NMAX
83830	SEST $=\mathrm{S}(\mathrm{N}, 1)$
839	NEST $=\mathrm{N}$
840	ELSEIF (ATYPE.EQ.'EPSILON') THEN
841 C	KMAX = 1 implies simple summation.
842	IF (MOD (KMAX,2).NE.1.) THEN
843	WRITE (6,*) 'KMAX must be odd for epsilon algorithm.'
844	STOP
845	ENDIF
846	$\mathrm{S}(1,1)=\mathrm{A}(1)$
847	DO $200 \mathrm{~N}=2$, NMAX

```
        S(N,1)=A(N)+S(N-1,1)
        KEST=MIN(N,KMAX)
        DO 100 K=2,KEST
            TMP1 = S(N-K+2,K-1)-S (N-K+1,K-1)
            Assume no zero terms so that consecutive equality
            implies convergence.
            IF(TMP1.EQ.O.) THEN
                NEST=N-K+2
                KEST=K-1
                SEST=S(NEST,KEST)
                GOT0220
            ENDIF
            TMP2=0.
            IF(K.GE.3) TMP2=S(N-K+2,K-2)
            S(N-K+1,K) = TMP2 + 1./TMP1
        CONTINUE
        IF(MOD (N,2).EQ.1) THEN
            NEST = N-KEST+1
            SEST = S(NEST,KEST)
            SEST1 = S(MIN(NEST+2,N),MAX(KEST-2,1))
            SEST2 = S(MIN(NEST+1,N-1),MAX(KEST-2,1))
            IF(ABS((SEST-SEST1)/SEST).LE.RELERR.AND.
                    ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 220
            ENDIF
    CONTINUE
    WRITE(6,*) 'NO CONVERGENCE IN EPSILON ALGORITHM SUM.'
    WRITE(6,*) 'BEST ESTIMATE WILL BE USED.'
    IERR=1
    CONTINUE
ELSEIF(ATYPE.EQ.'THETA') THEN
    KMAX = 1 implies simple summation.
    IF(MOD(KMAX,2).NE.1.) THEN
        WRITE(6,*) 'KMAX must be odd for THETA algorithm.'
        STOP
    ENDIF
    S(1,1)=A(1)
    S(2,1)=S(1,1)+A(2)
    DO 1200 N=3,NMAX-1,2
        KTMP=MIN(N/2+1,KMAX)
    DO 1200 J=0,1
        S(N+J,1)=S(N-1+J,1)+A(N+J)
        NEST=N+J
        KEST=1
        NUP=N+J
        K=1
        DO 1100 K=2,KTMP
            NUP=N-2*K+2+J
            IF(MOD(K,2).EQ.0) THEN
                update even column: not an estimate
                TMP1 = S(NUP+1,K-1)-S(NUP,K-1)
                IF(TMP1.EQ.O.) THEN
                    NEST = NUP+1
                    KEST = K-1
                    SEST = S(NEST,KEST)
                    GOTO 1220
                ENDIF
```

905	TMP2 $=0$.
906	IF (K.GE.4) TMP2=S(NUP+1,K-2)
907	$S($ NUP , K $)=$ TMP2 + 1./TMP1
908	ELSE
909 C	update odd columns giving estimates
910	TMP1=S (NUP+1, K-1)-S(NUP, K-1)
911	TMP2=S (NUP +2, K-1)-S(NUP+1, K-1)
912	TMP3=TMP2-TMP 1
913	S (NUP , K) $=(\mathrm{S}(\mathrm{NUP}+2, \mathrm{~K}-2) * T M P 2-\mathrm{S}(\mathrm{NUP}+1, \mathrm{~K}-2) * T M P 1) / T M P 3$
914	KEST=K
915	NEST=NUP
916	ENDIF
9171100	CONTINUE
918	SEST $=$ S (NEST, KEST)
919	IF (KEST.EQ.1) THEN
920	SEST1=S (NEST-1, KEST)
921	SEST2=S (NEST-2,KEST)
922	ELSEIF (NEST.EQ.1)THEN
923	SEST1 $=$ S (NEST+3, KEST-2)
924	SEST2=S (NEST+4,KEST-2)
925	ELSE
926	SEST1 $=$ S (NEST-1,KEST)
927	SEST2=S (NEST+4,KEST-2)
928	ENDIF
929	IF (ABS ((SEST-SEST1)/SEST).LE.RELERR.AND.
930 1	1 ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 1220
9311200	CONTINUE
932	WRITE (6,*) 'NO CONVERGENCE IN THETA ALGORITHM SUM.'
933	WRITE (6,*) 'BEST ESTIMATE WILL BE USED.'
934	IERR=1
9351220	CONTINUE
936	ELSEIF (ATYPE.EQ. 'LEVINU'.OR.ATYPE.EQ.'LEVINT') THEN
937	IF (KMAX.GT.MAXQ. OR.KMAX.LT.2) STOP
938	$\mathrm{S}(1,1)=\mathrm{A}(1)$
939	$\mathrm{AN}=\mathrm{A}$ (2)
940 C Zero	terms imply convergence
941	IF (AN.EQ.O.) THEN
942	NEST=1
943	KEST=1
944	SEST $=$ S (NEST, KEST)
945	GOTO 3000
946	ENDIF
947	$Q \mathrm{D}(1)=1 . / \mathrm{AN}$
948	QN (1) $=\mathrm{S}(1,1) *$ QD (1)
949	DO $2000 \mathrm{~N}=2, \mathrm{NMAX}-1$
950	$\mathrm{S}(\mathrm{N}, 1)=\mathrm{S}(\mathrm{N}-1,1)+\mathrm{AN}$
951	AN $=\mathrm{A}(\mathrm{N}+1$)
952	IF (AN.EQ.O.) THEN
953	NEST=N
954	KEST=1
955	SEST $=$ S (NEST, KEST)
956	GOTO 3000
957	ENDIF
958	$Q \mathrm{D}(\mathrm{N})=1 . / A N / N$
959	IF (ATYPE.EQ. 'LEVINU') QD(N)=QD(N)/N
960	QN (N$)=\mathrm{S}(\mathrm{N}, 1) * \mathrm{QD}(\mathrm{N})$
961	DO $2000 \mathrm{~K}=2, \mathrm{MIN}(\mathrm{N}, \mathrm{KMAX})$

```
    NMKP1=N-K+1
    TMP1 = 1.
    IF(K.GT.2.) TMP1= (FLOAT(N-1)/FLOAT(N))**(K-2)
        TMP1 = FLOAT (NMKP1)/N*TMP1
        QN(NMKP1) = QN(NMKP1+1) - TMP1*QN(NMKP1)
        QD (NMKP1) = QD (NMKP1+1) - TMP1*QD(NMKP1)
        TMP=QD(NMKP1)
        IF(TMP.EQ.O.) TMP=1.E-15
        S(NMKP1,K) = QN(NMKP1)/TMP
        NEST = NMKP1
        KEST = K
        SEST=S(NEST,KEST)
        SEST1=S(NEST+1,KEST-1)
        SEST2=S(NEST,KEST-1)
        IF (ABS((SEST-SEST1)/SEST).LE.RELERR.AND.
            ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 3000
        continue
        WRITE(6,*) 'NO CONVERGENCE IN ',ATYPE,' SUM.'
        WRITE(6,*) 'BEST ESTIMATE WILL BE USED.'
        IERR=1
        continue
ELSE
    WRITE(6,*) 'bad value of acceleration flag in routine Sum'
    STOP
ENDIF
RETURN
END
COMPLEX FUNCTION ZN(I)
PARAMETER(NQMAX=100, NUMAX=200,NTMAX=100)
COMPLEX EITHTA
COMMON /FLOCOM/ IQ,IQ1,EITHTA,PI,SNTH(NUMAX),CNTH(NUMAX)
COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,
1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),
2 ENERGY(NQMAX), PRES(NQMAX),XMACH2 (NQMAX),
3 FPDF(NUMAX,NQMAX),XLNF (NUMAX,NQMAX),
4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),
5 PSI (NUMAX,NQMAX), PSIP (NUMAX,NQMAX),
6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)
IF(I.EQ.1) THEN
    ZN=0.
ELSE
    IF(IQ.EQ.1) THEN
        Q=0 value
        ZN =0.
    ELSE
            Q ne zero
            TMP3=-(1./I + PSIRAT(I,IQ))
            TMP4=1.+PSIRAT(I,IQ)/I
            TMP5=I/FLOAT(I*I-1)
            TMP5=TMP5*PSI(I,IQ)/(RHO(IQ)*Q(IQ))
            ZN =EITHTA*CMPLX(TMP3*CNTH(I),TMP4*SNTH(I))*TMP5
        ENDIF
ENDIF
ZN=ZN*Q1*RHO(IQ1)/PI
RETURN
END
```

```
1 0 1 9
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035 C
1036
1037
1038
1039
1040
1041
1042 C
1043
1044
1045
1046
1047
1048
1 0 4 9
1050
1051
1052
1053
1054 C
1055 C
1056 C
1057 C
1058 C
1059 C
1060 C
1061
1062
1063
1064 C
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
COMPLEX FUNCTION ZDQ(I)
PARAMETER (NQMAX=100,NUMAX=200,NTMAX=100)
COMMON /FLOCOM/ IQ,IQ1,EITHTA,PI,SNTH(NUMAX),CNTH(NUMAX)
COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,
1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),
2 ENERGY(NQMAX),PRES(NQMAX),XMACH2(NQMAX),
3 FPDF(NUMAX,NQMAX),XLNF (NUMAX,NQMAX),
4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),
5 PSI(NUMAX,NQMAX),PSIP (NUMAX,NQMAX),
6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)
COMPLEX EITHTA
IF(I.EQ.1) THEN
    ZDQ=0.
    ELSE
            IF(IQ.EQ.1) THEN
                Q=0 LIMITS
            IF(I.EQ.2) THEN
                    TMP2=1./(QMAX2*PSI2T1)
            ELSE
                    TMP2=0.
            ENDIF
        ELSE
            Q NE O
            TMP2=PSI(I,IQ)/(RHO(IQ)*Q(IQ)**2)
        ENDIF
        TMP3=-(1. -XMACH2(IQ))
        TMP4=PSIRAT(I,IQ)
        ZDQ =TMP2*EITHTA*CMPLX(TMP3*CNTH(I),TMP4*SNTH(I))
        ZDQ=ZDQ*Q1*RHO(IQ1)/PI
    ENDIF
    RETURN
    END
    SUBROUTINE CHPLGN(NQPNTS,RELERR)
    Compute important Chaplygin function quantities:
            F'/F (FPDF), log F (XLNF), F (F), F' (FP),
            \psi/\psi(\tau_1) (PSI), \psip/\psi(\tau_1) (PSIP)
            2\tau \psip/(n\psi) (PSIRAT)
            \psi_2(\tau_1) (PSI2T1)
    for NQPNTS \tau points and positive integral order up to NUMAX to
        a relative error of RELERR. TAU(1) must be 0 and TAU(NQPNTS)=TAU1.
        PARAMETER(NQMAX=100,NUMAX=200,NTMAX=100)
        PARAMETER (NCMAX=500)
        DIMENSION AS(NCMAX),BS(NCMAX),SUM(NCMAX),Z(11)
        Continued Fraction Sum COMmon passes parameters to CFSUM
        COMMON/CFSCOM/ CFSPRM(4)
        COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,
    1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),
                        ENERGY(NQMAX), PRES(NQMAX),XMACH2(NQMAX),
    3 FPDF(NUMAX,NQMAX),XLNF (NUMAX,NQMAX),
    3 ll
    4 Fl,
    5 ll
    DO 400 NU=1,NUMAX
    APB=NU-1./(GAMMA-1.)
    ATB=-.5*NU*(NU+1)/(GAMMA-1.)
```

```
    B=(APB+SQRT (APB**2-4.*ATB))/2.
    A=ATB/B
    C=NU+1
    CFSPRM(1)=A
    CFSPRM(2)=B
        CFSPRM(3)=C
        CFSPRM(4)=0
        IF(TAU(1).NE.O.) THEN
        WRITE(6,*) 'TAU(1) .NE. O'
        STOP
        ENDIF
        CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)
        NCHPSM(NU,1)=NSUM
        TMP = C*SUM(NSUM)/ATB
        TMP2= 1./TMP
        FPDF (NU,1)=TMP2
        XLNF(NU,1)=0.
        DO 400 I = 2,NQPNTS
        TMP1=TMP2
        XL = TAU(I-1)
        XR = TAU(I)
        H = XR-XL
        CFSPRM(4)=XR
        CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)
        NCHPSM(NU,I)=NSUM
        TMP = C*SUM(NSUM)/A
        ZTAU = TAU(I)
C **** ZTAU is zero for second continued fraction
    IF(ZTAU.LT.O.) ZTAU=0.
    TMP = (TMP-ZTAU)/B
    TMP2= 1./TMP
    FPDF(NU,I)=TMP2
    TMP3 =.5*(TMP1+TMP2)
    Z(1) = TMP3*H
    DO 395 K=1,10
        KNUM=2**K
        DO 390 L=1,KNUM/2
            XTMP = H*FLOAT (2*L-1)/KNUM + XL
            CFSPRM(4)=XTMP
            CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)
            TMP = C*SUM(NSUM)/A
            ZTAU = XTMP
C **** ZTAU is zero for second continued fraction
                IF(ZTAU.LT.O.) ZTAU=0.
            TMP = (TMP-ZTAU)/B
            TMP = 1./TMP
            TMP3 = TMP3+TMP
        CONTINUE
        Z(K+1)=TMP3*H/KNUM
        TMP=KNUM**2
        DO 391 L=K,1,-1
        Z(L)= (TMP*Z(L+1)-Z(L))/(TMP-1.)
        IF(ABS( (Z(1)-Z(2))/Z(1)).LT.RELERR) GOT0399
    CONTINUE
    WRITE(6,*) 'NO ROMBERG CONVERGENCE'
    STOP
```

```
1133 399 XLNF(NU,I) = XLNF(NU,I-1) + Z(1)
1134400 CONTINUE
1135
1136 C Evaluate remaining quantities
1137 C \tau = 0
1138 C Order 1
1139 NU=1
1140 F(NU,1)=1.
1141 FP(NU,1)=FPDF(NU,1)
1142 PSI (NU,1)=0.
1143 C d\psi_1/d\tau is infinite at \tau = 0.
1144 PSIP(NU,1)=1.E+30
1145 PSIRAT (NU,1)=1.
1146 C Order 2
1147 NU=2
1148 F(NU,1)=1.
1149 FP(NU,1)=FPDF(NU,1)
1150 PSI (NU,1)=0.
1151 PSI2T1=TAU(NQPNTS)*EXP(XLNF (NU,NQPNTS))
1152 PSIP(NU,1)=1./PSI2T1
1153 PSIRAT(NU,1)=1.
1154 C Order 3 or move
1155 DO 500 NU=3,NUMAX
1156 F(NU,1)=1.
1157 FP(NU,1)=FPDF(NU,1)
1158 PSI(NU,1)=0.
1159 PSIP (NU,1)=0.
1160 PSIRAT (NU,1)=1.
1161500 CONTINUE
1162 C \tau greater than zero
1163 DO 600 I=2,NQPNTS
1164 DO 600 NU=1,NUMAX
1165 F(NU,I)=EXP(XLNF(NU,I))
1166 FP(NU,I)=FPDF(NU,I)*F(NU,I)
1167 C PSI's must be normalized to avoid underflow at large nu
1168 C Thus PSI = \psi(\tau)/\psi(\tau_1) and PSIP = \psi'(\tau)/\psi(\tau_1)
1169 PSI(NU,I)=EXP(.5*NU*LOG(TAU(I)/TAU(NQPNTS))
1170 1 +XLNF(NU,I)-XLNF(NU,NQPNTS))
1171 TMP=2.*TAU(I)/NU
1172 PSIP(NU,I)=PSI(NU,I)*(1./TMP+FPDF(NU,I))
1173 PSIRAT (NU,I)=1.+TMP*FPDF(NU,I)
1174600 CONTINUE
1175
1176 RETURN
1177 END
1178
1179 C Routine to evaluate a continued fraction of the form
1180 C b_0 + a_1/b_1 + a_2/b_2 + ...
1181 C with numerator A_n and denominator B_n of the n_th approximate
1182 C where
1183 C A_n = b_n*A_{n-1} + a_n * A_{n-2}
1184C C B_n = b_n*B_{n-1} + a_n * B_{n-2}
1185 C
1185 C
1186 C for n = 1,2,\ldots.
1187 C
1188 C A_-1=1 , A_0 = b_0 , B_- 1=0, B_0=1
1189 C
```

1190 C	Input:
1191 C	NMAX = Maximum value of $\mathrm{N} . \mathrm{N}$ must be at least 3
1192 C	RELERR = Desired relative error between successive approximations
1193 C	before stopping. When 3 successive estimates vary by less
1194 C	than RELERR from their mean, then the evaluation process stops.
1195 C	Output:
1196 C	NSUM = value of n at which evaluation stops
1197 C	($\mathrm{A}(\mathrm{I}), \mathrm{I}=1, \mathrm{NSUM})=$ values of the coefficients $\mathrm{A}_{\text {_ }} \mathrm{n}$
1198 C	($\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{NSUM})=$ values of the coefficients B_n
1199 C	(SUM(I), $\mathrm{I}=1, \mathrm{NSUM}$) = successive estimates for value of continued
1200 C	fraction.
1201 C	
1202 C	W is a convergence acceleration factor for limit periodic continued
1203 C	fractions. W is set equal to the subdominant root of
1204 C	$\mathrm{S} * * 2-\mathrm{b} * \mathrm{~S}-\mathrm{a}=0$ in ABFUNC to subtract out leading subdominant term.
1205 C	Otherwise $\mathrm{W}=0$.
1206 C	
1207 C	Warning: This routine does not test for divide by zero.
1208 C	
1209	SUBROUTINE CFSUM (A,B,SUM,NSUM,NMAX,RELERR)
1210	DIMENSION A (NMAX), B (NMAX), SUM (NMAX)
1211	PARAMETER (RESCALE=1.E+25)
1212	CALL ABFUNC ($0, A D U M, B 0, W$)
1213	CALL $\operatorname{ABFUNC}(1, A 1, B 1, \mathrm{~W})$
1214	$\mathrm{A}(1)=\mathrm{B} 1 * \mathrm{BO}+\mathrm{A} 1$
1215	$\mathrm{B}(1)=\mathrm{B} 1$
1216	$\operatorname{SUM}(1)=A(1) / B(1)$
1217	CALL ABFUNC ($2, \mathrm{~A} 2, \mathrm{~B} 2, \mathrm{~W}$)
1218	$\mathrm{A}(2)=\mathrm{B} 2 * \mathrm{~A}(1)+\mathrm{A} 2 * \mathrm{BO}$
1219	$\mathrm{B}(2)=\mathrm{B} 2 * \mathrm{~B}(1)+\mathrm{A} 2$
1220	$\operatorname{SUM}(2)=(\mathrm{A}(2)-\mathrm{W} * \mathrm{~A}(1)) /(\mathrm{B}(2)-\mathrm{W} * \mathrm{~B}(2))$
1221	DO $100 \mathrm{I}=3$, NMAX
1222	CALL ABFUNC (I, AI, BI, W)
1223	IF (ABS (A (I-1)).GT.RESCALE . OR.
1224	1 ABS (B(I-1)).GT.RESCALE) THEN
1225	$\mathrm{A}(\mathrm{I}-1)=\mathrm{A}(\mathrm{I}-1) / \mathrm{RESCALE}$
1226	A (I-2) $=$ A ($\mathrm{I}-2) /$ RESCALE
1227	$B(I-1)=B(I-1) / R E S C A L E ~$
1228	$B(I-2)=B(I-2) /$ RESCALE
1229	ENDIF
1230	$\mathrm{A}(\mathrm{I})=\mathrm{BI} * \mathrm{~A}(\mathrm{I}-1)+\mathrm{AI} * \mathrm{~A}(\mathrm{I}-2)$
1231	$\mathrm{B}(\mathrm{I})=\mathrm{BI} * \mathrm{~B}(\mathrm{I}-1)+\mathrm{AI} * \mathrm{~B}(\mathrm{I}-2)$
1232	$\operatorname{SUM}(\mathrm{I})=(\mathrm{A}(\mathrm{I})-\mathrm{A}(\mathrm{I}-1) * \mathrm{~W}) /(\mathrm{B}(\mathrm{I})-\mathrm{B}(\mathrm{I}-1) * \mathrm{~W})$
1233	$\operatorname{SEST}=(\operatorname{SUM}(\mathrm{I})+\operatorname{SUM}(\mathrm{I}-1)+\operatorname{SUM}(\mathrm{I}-2)) / 3$.
1234	TMP $=$ ABS (SUM (I)/SEST-1.)
1235	IF (TMP .LE.RELERR .AND.
1236	1 ABS (SUM (I-1)/SEST-1.).LE.RELERR .AND.
1237	2 ABS (SUM (I-2)/SEST-1.).LE.RELERR) THEN
1238	NSUM=I
1239	RETURN
1240	ENDIF
1241100	CONTINUE
1242	WRITE (6,*) 'CONVERGENCE NOT ACHIEVED IN CFSUM'
1243	NSUM=NMAX
1244	RETURN
1245	END
1246	


```
1304 C
1305
1306
1307
1308
1309
1310 C Check for X equal one of interpolation points with given derivative.
1311 DO 5 I=1,NDF
1312 IF(X.EQ.XI(I)) THEN
1313 F=FI(I)
1314 DF=DFI(I)
1315 GOT0150
1316 ENDIF
1 3 1 7 ~ 5 ~ C O N T I N U E ~
1318 C Check for X equal to a simple interpolation point.
1319 DO 10 II=NDF+1,NF
1320 IF(X.EQ.XI(II)) THEN
1321 F=FI(II)
1322 DF=0
1323 DO 15 J=1,NF
1324 PJNP=1.
1325 PJNPJ=0.
1326 DO 16 I=1,NF
1327
1328
1329
1330
133
1332
1333
1334
1335
16
1337
1338
1 3 3 9
1340
17
                    PJNP=PJNPJ
                    DO 17 K=1,NDF
                    TMP4=TMP4+PJR/(X-XI (K))
                ELSE
                    PJNP=PJNP/(XI(J)-XI(II))
                ENDIF
                IF(J.LE.NDF) THEN
                    TMP=X-XI(J)
                    TMP3=PJNP*PJR
                    DF=DF+(1.-TMP*(PJNPJ+PJRPJ))*TMP3*FI(J)
                    DF=DF+TMP*TMP3*DFI(J)
                ELSE
                    DF=DF+(PJNP*PJR+TMP4)*FI(J)
                ENDIF
                CONTINUE
                GOT0150
1355 106 ENDIF
1357 C Evaluate polynomial and derivative and X
1358 F=0
1359 DF=0
1360 DO 50 J=1,NDF
```

1361	PJN=1.
1362	PJNPJ=0.
1363	DO $25 \mathrm{I}=1, \mathrm{NF}$
1364	IF (I.NE.J) THEN
1365	TMP $=1 . /(\mathrm{XI}(\mathrm{J})-\mathrm{XI}(\mathrm{I})$)
1366	WORK (I) $=\mathrm{X}-\mathrm{XI}$ (I)
1367	PJN=PJN*WORK (I) *TMP
1368	PJNPJ=PJNPJ+TMP
1369	ENDIF
1370	IF (I.EQ.NDF) THEN
1371	PJR=PJN
1372	PJRPJ=PJNPJ
1373	ENDIF
137425	CONTINUE
1375	PJNP $=0$.
1376	PJRP $=0$.
1377	DO $30 \mathrm{I}=1, \mathrm{NF}$
1378	IF (I.NE.J) PJNP=PJNP+PJN/WORK (I)
1379	IF (I.NE.J.AND.I.LE.NDF) PJRP=PJRP+PJR/WORK (I)
138030	CONTINUE
1381	TMP $=\mathrm{X}-\mathrm{XI}$ (J)
1382	TMP1 $=$ PJN $*$ PJR
1383	TMP2=PJNPJ+PJRPJ
1384	TMP3=1. -TMP *TMP2
1385	$\mathrm{F}=\mathrm{F}+\mathrm{TMP} 3 * T \mathrm{MP} 1 * \mathrm{FI}(\mathrm{J})$
1386	$\mathrm{F}=\mathrm{F}+\mathrm{TMP} *$ TMP $1 *$ DFI (J)
1387	TMP4=PJNP*PJR+PJN*PJRP
1388	$\mathrm{DF}=\mathrm{DF}+\mathrm{FI}(\mathrm{J}) *(-1 . * \mathrm{TMP} 2 *$ TMP1 + TMP3 $*$ TMP4 $)$
1389	$\mathrm{DF}=\mathrm{DF}+\mathrm{DFI}(\mathrm{J}) *(\mathrm{TMP} 1+\mathrm{TMP} * \mathrm{TMP} 4)$
139050	CONTINUE
1391	DO $100 \mathrm{~J}=\mathrm{NDF}+1$, NF
1392	PJN=1.
1393	DO $75 \mathrm{I}=1, \mathrm{NF}$
1394	IF (I.NE.J) THEN
1395	TMP $=1 . /(\mathrm{XI}(\mathrm{J})-\mathrm{XI}(\mathrm{I})$)
1396	WORK (I) $=\mathrm{X}-\mathrm{XI}$ (I)
1397	PJN $=$ PJN *WORK (I$) *$ TMP
1398	ENDIF
1399	IF (I.EQ.NDF) PJR=PJN
140075	CONTINUE
1401	PJNP $=0$.
1402	PJRP $=0$.
1403	DO $80 \mathrm{I}=1, \mathrm{NF}$
1404	IF (I.NE.J) PJNP=PJNP+PJN/WORK (I)
1405	IF (I.LE.NDF) PJRP=PJRP+PJR/WORK (I)
140680	CONTINUE
1407	TMP1 $=$ PJN $*$ PJR
1408	$\mathrm{F}=\mathrm{F}+\mathrm{PJN} * \mathrm{PJR} * \mathrm{FI}$ (J)
1409	$\mathrm{DF}=\mathrm{DF}+\mathrm{FI}(\mathrm{J}) *(\mathrm{PJNP} * \mathrm{PJR}+\mathrm{PJN} * \mathrm{PJRP})$
1410100	CONTINUE
1411150	RETURN
1412	END

Distribution

External Distribution:

Army Research Laboratory Attn:
K. Kimsey
S. B. Segletes
W. P. Walters

Aberdeen Proving Ground
Aberdeen, MD 21005
L. Pamela Cook

Department of Mathematical Sciences
Univ. of Delaware
Newark, DE 19716

George S. Dulikravich
Department of Mechanical and Aerospace Engineering
The Univ. of Texas at Arlington
Arlington, TX 76019
A. Friedman

Institute for Mathematics and its Applications
University of Minnesota
Minneapolis, MN 55455-0436
S. I. Hariharan

Dept. of Math. Sciences
Univ. of Akron
Akron, OH 44325-4002

James Glimm
OP-138A Math Tower
SUNY at Stony Brook
Stony Brook, NY 11794-3600

Lawrence Livermore National Laboratory Attn:
T. F. Adams, L-095

Francois Heuze, L-200

Michael J. Murphy, L-099
Ray Pierce, MS L-160
Peter W. Rambo, MS L-015
University of California
Lawrence Livermore National Laboratory
7000 East Ave.
P.O. Box 808

Livermore, CA 94550

Los Alamos National Laboratory
Attn:
W. Rider, D413
J. Chapyak, F664
J. Hopson, F664
R. Karpp, P940
L. Schwalbe, F613
M. Shashkov, B284
P. O. Box 1663

Los Alamos, NM 87545

Srdjan Stojanovic
University of Cincinnati
Dept. Mathematical Science
Old Chemistry Bldg. (ML25)
Cincinnati, OH 45221-0025

Andrea Malagoli
The University of Chicago
Enrico Fermi Institute
933 E. 56th St.
LASR 132b
Chicago, Il 60637

Daniel I. Meiron, 08-31
Philip G. Saffman, 217-50
California Inst. of Technology
Pasadena, CA 91125

Bryan Oliver
Mission Research Corporation
1720 Randolph Rd.
Albuquerque, NM 87106

Internal Distribution:

MS 1186 T. Mehlhorn, 1674
MS 1186 T. Haill, 1674
MS 0836 M. R. Baer, 9100
MS 0826 D. K. Gartling, 9100
MS 0834 A. Ratzel, 9110
MS 0835 S. N. Kempka, 9113
MS 0825 W. L. Oberkampf, 9115
MS 0847 H. Morgan, 9120
MS 0835 J. S. Peery, 9121
MS 0865 J. Moya, 9130
MS 0828 M. Pilch, 9133
MS 0835 J. M. McGlaun, 9140
MS 0321 W. J. Camp, 9200
MS 0819 T. G. Trucano, 9211
MS 1110 P. Bochev, 9213
MS 1110 D. Womble, 9214
MS 1110 L. A. Romero, 9214
MS 1110 R. Lehoucq, 9222
MS 0820 P. Yarrington, 9230
MS 0819 E. Boucheron, 9231
MS 0819 K. H. Brown, 9231
MS 0819 K. G. Budge, 9231
MS 0819 D. Carroll, 9231
MS 0819 M. Christon, 9231
MS 0819 R. Drake, 9231
MS 0819 C. J. Garasi, 9231
MS 0819 S. V. Petney, 9231
MS 0819 J. Robbins, 9231
MS 0819 A. C. Robinson, 9231 (25)
MS 0819 R. Summers, 9231
MS 0819 M. Wong, 9231
MS 0820 P. F. Chavez, 9232
MS 0820 R. Weatherby, 9231
MS 0820 D. Crawford, 9232
MS 0820 A. Farnsworth, 9232
MS 0820 M. E. Kipp, 9232
MS 0820 S. A. Silling, 9232

MS 0820 P. A. Taylor, 9232
MS 0316 S. S. Dosanjh, 9233
MS 1111 A. Salinger, 9233
MS 1111 J. N. Shadid, 9233
MS 1111 R. Schmidt, 9233
MS 1111 T. M. Smith, 9233
MS 0316 J. B. Aidun, 9235
MS 9018 Central Technical Files, 8945-1 (1)
MS 0899 Technical Library, 9616 (2)
MS 0612 Review and Approval Desk, 9612
(1)

For DOE/OSTI

