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Abstract

Computational techniques for the evaluation of steady plane subsonic
ows represented by Chaplygin series in the hodograph plane are presented.
These techniques are utilized to examine the properties of the free surface
wall jet solution. This solution is a prototype for the shaped charge jet,
a problem which is particularly diÆcult to compute properly using general
purpose �nite element or �nite di�erence continuum mechanics codes. The
shaped charge jet is a classic validation problem for models involving high
explosives and material strength. Therefore, the problem studied in this
report represents a useful veri�cation problem associated with shaped charge
jet modeling.
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Nomenclature

� density
p pressure
� speci�c volume
c sound speed
e speci�c internal energy
 power coeÆcient in isentropic equation of state relation
� Gr�uneison coeÆcient
q velocity magnitude or ow speed
q1; �1 subscript 1 denotes a free streamline value in dimensional units
c0; �0 subscript 0 denotes stagnation point value in dimensional units
q1; �1 subscript 1 denotes a free streamline value in non-dimensional units
qmax maximum speed
qcr critical speed
� (q=qmax)

2

� angular ow direction
M Mach number
u q cos �
v q sin �
� velocity potential
 stream function
 n(�) fundamental Chaplygin function
Fn(�) Chaplygin function given by Gauss hypergeometric series
� incoming jet angle
an; bn useful parameters related Fn

W complex potential

 complex hodograph variable = (q=q1)e

�i�

� generic phase o�set in series representations
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1 Introduction

Transient dynamic continuum mechanics codes can be used to analyze the
e�ects of explosive-metal interaction and ballistic penetration events. These
general purpose codes allow the use of many materials and complex con�gu-
rations. The complexity of such codes is such that it is extremely important
to test the results, methodologies and applicability regions of the codes rela-
tive to exact solutions (veri�cation) and experimental data (validation) [27].
A methodology which has been found to be very successful in some physical
regime or for certain problems may fail when applied to a new class of prob-
lems. This report is concerned with the detailed description of a steady plane
isentropic subsonic jet impinging on a at wall. The problem is a prototype
for the formation of a shaped charge jet and is a high strain and strain rate
ow. This work was briey summarized in Chapter 16 of Volume 2 of Avner
Friedman's series Mathematics in Industrial Problems after the present au-
thor's presentation to the Institute for Mathematics and Its Applications on
May 19, 1989 [12]. Friedman proposed several mathematical problems in
cylindrical coordinates in the same chapter. Due to current interest in the
computational science and engineering community in issues of veri�cation
and validation of computational simulations, it seems useful to make a full
accounting of this work.

A conical shaped charge consists of a cylinder of high explosive containing
a hollowed out cone surfaced with a metal liner. The detonation products
collapse the liner and a high velocity metallic jet is formed. During this
process the jet heats due to shock loading and plastic work [36, 26, 32]. It is
widely believed that typical copper lined shaped charges form jets of material
in the solid state. Historically, this was substantiated mainly by observation
of the solid fracture characteristics observed in jet breakup. Con�rmation of
the existence of a solid state for aluminum jets and on the surface of copper
jets has been made from x-ray di�raction patterns [16, 17]. For copper jets
temperature measurements in the 400 � 600ÆC range, which are well below
the melt temperature of 1080ÆC, have been made based on two-color IR
radiometry [15]. Jet particles in the solid state have also been recovered
using soft catch techniques [35].

The shaped charge jet problem during the quasi-steady collapse phase
may be idealized with a steady compressible uid model. Key features in this
model include large velocity gradients in small spatial regions as well as very
large strains in a steady subsonic isentropic free-surface ow. The features
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combine to generate computational diÆculties with the shaped charge jet
problem. The shaped charge jet is very diÆcult to model correctly by either
a Lagrangian �nite element code or an Eulerian code. Lagrangian codes
tend to experience severe deformation in the jet leading to a breakdown of
the numerical method due to element distortion. The Eulerian codes may
have diÆculty with interfaces and excessive heating of jet material. This
problem also represents a reasonably severe test of arbitrary Lagrangian-
Eulerian (ALE) and h and h-p adaptive modeling capabilities.

The above mentioned heating problem for Eulerian codes may include
unrealistic temperature di�usion into the liner from the explosive products,
unphysical numerical exchange of kinetic energy to internal energy [19, 28]
and heating due to arti�cial viscosity terms in high compression rate shock-
less processes [24]. Variations in numerical algorithms can produce dramatic
di�erences in estimates of internal energy and temperature. The question
is really one of entropy. In any numerical calculation one wishes any excess
numerical production of entropy to be much smaller than the correct entropy
increase. The numerical diÆculties may be particularly acute when the ow
to be computed is isentropic. If con�dence is to be placed in calculations
which purport to include advanced material modeling, it is necessary to de-
velop reliable numerical methods and practical calculational rules of thumb
to deal with the shaped charge jetting problem in the case of simple hydro-
dynamic material modeling. For example, temperature dependent yield and
fracture models require that heating in ows with or without shocks as well
as heating due to plastic work be calculated accurately. Mechanical response
is a�ected by solid-solid, solid-liquid and liquid-vapor phase transitions and
these transitions will appear in the numerical simulation correctly only if the
thermodynamic state space is traversed correctly. The proper application of
advanced material modeling in shaped charge simulations thus depends upon
proper energy partitioning in the numerical method. In particular it may be
diÆcult for a numerical method to distinquish a rapid shockless transition
from a true shock which is to be captured by the numerical method. Of
course, it does not follow that an algorithm which can e�ectively compute
a shockless ow properly will necessarily capture shocks well. The complete
shaped charge jet problem requires consistent and e�ective modeling for both
shocks and subsonic quasi-steady state ow. This report is concerned with
a speci�c test problem which may be used, for example, to test the capabil-
ity of a shock capturing code to model shockless high-strain-rate isentropic
subsonic ow.
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The conical shaped charge jet has been reasonably modeled in a gross
engineering sense for years by the assumption that the jet collapse process
is approximately a steady state in the frame of reference of the collapse
point and that free-surface jet theory can be applied [3]. Operational shaped
charges collapse the liner at a subsonic velocity in order to form coherent
jets. Supersonic collapse speeds result either in no jet formation or inco-
herent jets [8]. Steady compressible subsonic plane and axis-symmetric free
surface jet ows may be e�ectively calculated with specialized �nite di�erence
codes employing boundary �tting coordinate systems or by computing in the
hodograph plane [25, 9]. The hodograph plane uses velocity and ow angle,
(q; �), as independent variables. However, as discussed above these same
ows can still represent a signi�cant challenge for general purpose transient
dynamics codes. Exact solutions can be used as test cases. Karpp developed
a test problem, the symmetrical impact of two plane jets, for the purpose
of comparison with hydrodynamic code solutions and in order to better un-
derstand compressible jet ow [18]. He used the Chaplygin pressure-density
relation given by

p = (�1c1)
2(1=�1 � 1=�) = (�1c1)

2(�1 � �) (1)

where p is pressure, �1 is the reference or free surface density, � = 1=� is
the speci�c volume, and c1 is the reference sound speed. A material with
the above response is often termed a Chaplygin gas. The Chaplygin gas
has the well-known property that the hodograph plane equations of motion
can be manipulated to give the incompressible equations of motion for which
standard incompressible methods apply. Thus any free-surface ow which
can be solved by the usual methods of incompressible plane ow analysis can
be solved for the Chaplygin gas. Karpp's work was used to assist in verifying
a version of the HELP code which conserved internal energy instead of total
energy in the remap step of the calculation [19].

The two parameters of the Chaplygin gas can be chosen to match any
reference sound speed and pressure to give a linear curve in p�� space. It is
desirable to have an additional test problem for which the pressure-volume
relation is concave upward. This is not simply an academic extension since
curvature in the p�� relation is necessary for heat addition in a shock process.
Extremely high strain rate isentropic processes may have every appearance
of a shock process to a �nite resolution numerical grid. It order to fully test
numerical methods, it appears that one is required to test with a pressure-
volume relation which sti�ens under compression. To this end one may chose
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the isentropic relation

p = �p(�) = �1((�=�1)
 � 1) (2)

where �1 � �1c
2
1
= and p(�1) = 0. This relation is known as the Tait or

Murnaghan equation of state and is clearly of the same form as that for an
ideal gas with the pressure at reference density set to zero by subtracting a
constant. The Chaplygin gas is a particular case of the above relation and is
chosen by setting  = �1.

One can choose �1 and  in Equation 2 to match the �rst and second
derivatives with respect to � at �1 for any given isentrope. Of course the
Hugoniot may also be used, if this is more convenient, since the Hugoniot
and isentrope are the same to third order in the strain. Appendix A gives
a derivation for a Hugoniot which is linear in the shock velocity - particle
velocity plane. It is convenient to develop a simple general equation of state
relationship which matches the Murnaghan gas isentropic relations. The
most obvious candidate for such an equation of state for test purposes would
be a Mie-Gr�uneison relation for the pressure p(e; �). In this case,

p(e; �) = �p(�) + ��(e� �e(�)) (3)

where �e satis�es the isentropic di�erential equation for the internal energy,

de = �pd�; (4)

so that

�e� e1 =
�1
 � 1

 
1

�
(�=�1)

 � 1

�1

!
+ �1(1=�� 1=�1) : (5)

The Gr�uneison coeÆcient � = �(@p=@e)� is an arbitrary function of volume.
For convenience, �� = � is taken to be constant. The heat capacity at
constant volume, c� = (@e=@T )� , is also assumed constant. One can then
derive equations for the energy, temperature, entropy and other fundamental
quantities as outlined in Appendix A.

Figure 1 shows the pressure volume isentrope for a Chaplygin gas isen-
trope and for a Murnaghan isentrope which is matched to a standard Hugo-
niot relation for copper. The Mie-Gr�uneisen formulation using the Mur-
naghan isentropic relation as a reference curve represents a reasonable copper
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Figure 1: Comparison of Chaplygin and Murnaghan gas isentropes for Cu.
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equation of state for conditions of interest and can be easily implemented as
a simple equation of state model in any compressible uid modeling code.

In this report computational procedures for evaluation of steady isentropic
subsonic jet ows for the pressure-density relation of Equation 2 will be
outlined. It will be seen that the steady plane irrotational compressible uid
equations of motion in the hodograph plane variables, (q; �), are separable
and particular solutions can be obtained in terms of products of trigonometric
functions and Gauss hypergeometric functions. These can be used to solve
certain problems of a particular form that arise frequently in free surface
ow theory. The original ideas and procedures are due to Chaplygin who
solved the problem of a plane jet emerging from a slot in a wall [6]. A great
many problems can be solved by Chaplygin's technique or variants of it [31].
These techniques will be applied to the solution of a plane free surface jet
of subsonic velocity impinging at an angle � onto a rigid wall. Solutions are
described in great detail. The basic methods outlined here will carry over in
a fairly straightforward way to the evaluation of solutions of other ows of
interest.
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2 Steady Plane Gas Dynamics in Hodograph

Variables

The theory of steady plane irrotational adiabatic compressible inviscid ow
theory in the hodograph variables, (q; �), is well documented [2, 4, 13, 14, 22,
29]. A short summary of pertinent equations for our purposes follows below
in the the notation of Bers [2]. In steady irrotational isentropic ow, with an
assumed p = p(�) relation, Bernoulli's theorem says that

q2

2
+
Z dp

�
=
q2

2
+
Z c2d�

�
(6)

is constant and thus gives a relation between density and ow speed. The
density, sound speed, c; (c2 = dp=d� = ��q=�0(q)), and Mach number,
M; (M2 = �q�0(q)=�), are then computable as a function of speed alone.
For the case of Equation 2 these relationships may be given explicitly. The
Bernoulli equation becomes

q2

2
+

c2

 � 1
=

c20
 � 1

(7)

where the subscript zero denotes stagnation point conditions (q = 0). The
stagnation point density and sound speed are given by

c20 = c2
1
(1�  � 1

2
M2

1
) (8)

�0 = �1(1�  � 1

2
M2

1
)1=(�1) (9)

For convenience, units are now chosen such that, at the stagnation point
(q = 0), the density �0 = 1, and sound speed c0 = 1. Thus

c2 = 1�  � 1

2
q2 (10)

� = (1�  � 1

2
q2)1=(�1) (11)

M2 =
q2

1� �1
2
q2

(12)

q2 =
M2

1 + �1
2
M2

: (13)
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The maximum speed for which � and c2 are positive is

qmax =

 
2

 � 1

!1=2

(14)

for  > 1 and unbounded otherwise. The critical speed for the transition to
supersonic ow is

qcr =

 
2

 + 1

!1=2

: (15)

for  > �1, unbounded for  = �1 and non-existent otherwise. The max-
imum Mach number is unbounded for  � 1 and is given by (2=(1 � ))1=2

for  < 1.
The irrotationality assumption

@u

@y
� @v

@x
= 0 (16)

implies the existence of a velocity potential � such that d� = udx+vdy where
u and v are the x and y velocity components, respectively. Conservation of
mass,

@(�u)

@x
+
@(�v)

@y
= 0; (17)

implies the existence of a stream function,  , such that d = ��vdx+ �udy
represents the mass ux across a di�erential line element from left to right.
The relations

u =
@�

@x
; v =

@�

@y
(18)

�u =
@ 

@y
; �v = �@ 

@x
(19)

follow.
Assuming a one-to-one mapping between the physical plane (x; y) and

the hodograph or velocity-angle space, (q; �) with (u; v) = (q cos �; q sin �),
one obtains equations for the variation of the stream function and velocity
potential in terms of q and �. Thus

d� = udx+ vdy = q(cos �dx+ sin �dy) (20)

d = ��vdx + �udy = �q(� sin �dx+ cos �dy) (21)
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or

dz = dx+ idy =
ei�

q

 
d�+

i

�
d 

!
: (22)

Since dz is a perfect di�erential, so that the line integral in the physical plane
is path independent, one obtains, considering that � and  are functions of
q and �, the equations

@�

@�
=
q

�

@ 

@q
;

@�

@q
= �(1�M2)

q�

@ 

@�
: (23)

Elimination of � leads to an equation for the stream function

q2
@2 

@q2
+ q(1 +M2)

@ 

@q
+ (1�M2)

@2 

@�2
= 0 : (24)

This is termed the Chaplygin equation for the stream function. It is a separa-
ble linear second order equation whose coeÆcients depend only on the speed
q. This equation possesses separable solutions of the form  =  n(q)e

in�.
In the case of the isentropic ideal gas relation, Chaplygin noted that if one
writes

 = �n=2Fn(�)e
in� =  n(�)e

in� (25)

where
� = (q=qmax)

2 = ( � 1)q2=2 (26)

so that
�cr = ( � 1)=( + 1) (27)

then substitution in Equation 24 yields

�(1� �)F 00

n + [n+ 1� (an + bn + 1)� ]F 0

n � anbnFn = 0 (28)

where

an + bn = n� 1

 � 1
(29)

anbn = �n(n + 1)

2( � 1)
: (30)

Clearly, an and bn are roots of a quadratic. In addition, we adopt the conven-
tion , an < bn. For the convenience of avoiding complex values of an and bn,

14



 will be restricted to satisfy either  > 1 or  � �1. This is easily shown.
an and bn are roots of the equation

x2 � (n� 1

 � 1
)x� n(n+ 1)

2( � 1)
= 0: (31)

Let y = 1=( � 1). All roots of Equation 31 will be real for every real n, if
the discriminant

(n� y)2 + 2n(n+ 1)y � 0 (32)

or
y2 + n2(2y + 1) � 0: (33)

This inequality will be satis�ed for all n provided y � �1=2. Thus either
 > 1 or  � �1 is required in order that an and bn be real for every n.

One recognizes the solutions of Equation 28 as Gauss hypergeometric
functions. The solution regular at � = 0 is of particular interest to us and is
given by

Fn(�) = 2F1(an; bn;n+ 1; �) =
1X

m=0

(an)m(bn)m
(n+ 1)m

�m

m!
(34)

in the notation of Abramowitz and Stegun with (a)m � (a)(a+1) � � � (a+m�
1) [1]. For the Chaplygin gas,  = �1, so that an = n=2 and bn = (n+ 1)=2.
Then by a quadratic transformation formula,

2F1(n=2; (n+ 1)=2;n+ 1; �) =

 
2

1 +
p
1� �

!n

: (35)

(See 15.3.19 of [1].) Since Equation 24 is linear, boundary value problems
may be solved by appropriate linear combinations of solutions.
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Figure 2: Plane Jet Flow

3 Chaplygin Solution to Free Surface Wall

Jet Problem

Imagine a plane free surface jet of unit width impinging on a wall at an angle
� and subsonic velocity q1 < qcr with an incoming ux � = �1q1 where
�1 is the free streamline density and q1 is the free streamline velocity. The
jet splits into two outgoing streams of asymptotic widths (1 + cos �)=2 on
the left and (1 � sin�)=2 on the right as is required from mass and linear
momentum conservation. See Figure 2.

The Chaplygin procedure takes a solution of the incompressible problem
and provides a similar subsonic compressible solution. The incompressible
wall jet solution for this problem can be determined by standard complex
variable techniques [4, 18]. The incompressible complex potential, W =
�+ i , is given by

W (
) = (q1=�)
n
log(1 + 
ei�) + log(1 + 
e�i�)
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�(1� cos �) log(1� 
)� (1 + cos �) log(1 + 
)g (36)

where 
 = (q=q1)e
�i� is the incompressible velocity in complex form. Another

representation for this solution may be given by expanding each of the log
functions in a Taylor series about 
 = 0. Thus

W = �(q1=�)
(

1X
n=2

1

n
(q=q1)

ne�in(���+�)

+
1X
n=2

1

n
(q=q1)

ne�in(�+���)

�(1� cos �)
1X
n=2

1

n
(q=q1)

ne�in�

�(1 + cos �)
1X
n=2

1

n
(q=q1)

ne�in(���)
)
: (37)

The n = 1 terms in each series sum exactly to zero as a consequence of the
required mass and momentum balance and thus do not appear. The Chap-
lygin procedure for writing a corresponding subsonic compressible solution
from an incompressible solution is to make the correspondence

 
q

q1

!n

)  n(�)

 n(�1)
(38)

in the formula for the stream function  where �1 is the value of � on the
free streamlines. Thus the stream function for compressible ow is

 = ((�1q1)=�)

(
1X
n=2

1

n

 n(�)

 n(�1)
sinn(� � � + �)

+
1X
n=2

1

n

 n(�)

 n(�1)
sinn(� + � � �)

�(1� cos �)
1X
n=2

1

n

 n(�)

 n(�1)
sinn�

+(1 + cos �)
1X
n=2

1

n

 n(�)

 n(�1)
sinn(� � �)

)
: (39)

An extra factor of �1 is applied in the above formula since the stream function
in the compressible case represents a mass ux.
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The convergence theory for this series, called a Chaplygin series, has been
described by Sedov [29]. A summary of the theory is given in Appendix C.
The critical results give upper and lower bound solutions for (2�=n) 0n= n.
With natural assumptions about the shape of the isentrope (d�=d� � 0), it
is shown that

(2�=n) 0n= n �
p
1�M2 (40)

and
(2�=n) 0n= n �

q
(1�M2) + C�2�=n3=2 (41)

where C is a positive constant which depends on the particular equation
of state chosen. In Appendix C we derive another upper bound function
to (2�=n) 0n= n. This upper bound solution then provides an additional
check on the numerical computation technique for large n. The series of
Equation 39 are convergent for 0 � � < �1 < �cr, since by integrating
Equation 40

 n(�)

 n(�1)
� exp(�n

2

Z �1

�

p
1�M2d�=�) : (42)

For � = �1 one obtains the appropriate Fourier series for the stepwise constant
boundary values of the stream function. Since each term in the series is
also a solution of Equation 24, Equation 39 is a valid representation for the
compressible subsonic wall jet problem. Clearly, since Fn(�)! 1, as q1 ! 0
the solution reduces to the incompressible solution in the limiting case. From
this representation of the stream function, all quantities of interest may be
obtained.

Integration to obtain the physical plane may be accomplished in several
ways since the physical plane is independent of integration path in the (q; �)
plane. As a check, two di�erent approaches were implemented. In the �rst
approach @z=@q was evaluated for each point (q; �) and then z(q; �) was
obtained by numerical integration with respect to q subject to z(0; �) = 0.
The general term in each of the four series in Equation 39 is given by

	n =
1

n

 n(�)

 n(�1)
sinn(� � �) : (43)

where � is a constant depending on the particular series.
Thus utilizing Equations 23,

znq =
@zn
@q

=
ei�

�q

 
�1�M2

q

@	n

@�
+ i

@	n

@q

!
(44)
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znq =
ei�

�q2
 n(�)

 n(�1)

 
�(1�M2) cosn(� � �) + i

2�

n

 0n(�)

 n(�)
sinn(� � �)

!
:

(45)
Given these quantities @z=@q is determined by replacing the 	n in Equa-
tion 39 by znq. The values @z=@q are obtained by summation and then z is
determined by numerical integration with respect to q. The trapezoidal rule
was exclusively used for this integration. For � = �1 < �cr, the zq series is
divergent. For � = �1 = �cr, the zq series may be shown to be conditionally
convergent by the Dirichlet test using the upper bound solution estimate of
Equation 41. These facts imply that summation for points near the free sur-
face will require the use of some type of non-linear convergence accelerator
for summing the slowly convergent and divergent series.

The second technique is to integrate @z=@� with respect to � analytically
and sum the resultant series of integrated terms. Again utilizing Equation 23

zn� =
@zn
@�

=
ei�

�q

 
q
@	n

@q
+ i

@	n

@�

!
(46)

zn� =
ei�

�q

 n(�)

 n(�1)

 
2�

n

 0n(�)

 n(�)
sinn(� ��) + i cosn(� ��)

!
: (47)

Integration with respect to � leads to the particular inde�nite integrals

zn =
ei�

�q

n

n2 � 1

 n(�)

 n(�1)
�

 
�( 1
n
+
2�

n

 0n(�)

 n(�)
) cosn(� ��) + i(1 +

2�

n2
 0n(�)

 n(�)
) sinn(� ��)

!
: (48)

By use of Equations 21 and 22, it is seen that the derivative of Equation
48 with respect to q is exactly znq of Equation 45. Chose z = 0 at q = 0.
Since zn = 0 at q = 0 for n � 2, z is obtained by substituting zn for the
	n in Equation 39 and summing the series. For � = �1 < �cr, the zn series
are conditionally convergent except at the singular points � = � where they
are divergent. For � = �1 = �cr, the zn series are convergent which implies
that the incoming and outgoing jets become subsonic at �nite points in the
physical plane.
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4 Evaluation of the Solution

The exact solution discussed in the previous section can be written down with
relative ease. The diÆculty now with this solution (as with many non-trivial
exact solutions) is that the properties of the solution are not immediately
obvious and an eÆcient and accurate numerical evaluation of the solution is
needed. For purposes of veri�cation of other more general numerical tech-
niques to compute this solution, one would like to evaluate the exact solution
with a maximum of accuracy and a minimum of e�ort and computer time for
any chosen value of the Mach number, M , and the collapse angle, �. This
turns out to require a signi�cant e�ort. There are two major computational
tasks: �rst, the Chaplygin functions, Fn(�), must be computed, and second,
the in�nite series related to the solution must be e�ectively summed. This
summation is a particular problem near the free surface since the convergence
of the series is very slow. Each of these questions will be dealt with in turn.

A number of options for computing the hypergeometric functions Fn(�)
are available. The most obvious approach is to sum the hypergeometric
series directly. This has the disadvantage of requiring very high precision
arithmetic in order to obtain reasonable relative accuracy at large order n.
This is the approach of Nieuwland who estimated for example that to obtain
a relative accuracy of 10�10 in the computation of  100(:16) for  = 1:4 at
least 27 signi�cant �gures would be required [23]. High precision is required
due to the fact that the series is alternating and the �rst few coeÆcients
can be very large which results in extreme loss of signi�cant digits. Another
proposed approach is to transform the series in a way which overcomes the
cancellation problem [7]. An implementation of the Miller algorithm [34] or
a direct numerical solution of the di�erential equation might also be feasi-
ble. A general comparison of evaluation techniques was not attempted. The
continued fraction algorithms described below were implemented as several
desirable features were apparent at the outset.

In [6], Chaplygin used a continued fraction approximation to compute

(2�=n) 0n= n = 1 + (2�=n)F 0

n=Fn:

This was suÆcient to allow the computation of the contraction ratio for a
planar jet emanating from a slit in a semi-in�nite reservoir. Frank has given
a number of continued fraction representations for ratios of Gauss hyperge-
ometric functions [11]. The representations were derived by manipulation of
the three term contiguous relations for the hypergeometric function. Two of
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these representations were implemented in this work and will be discussed
below. Consider continued fractions of the form

�0 +
�1 j
j �1 +

�2 j
j �2 +

�3 j
j �3 + � � � : (49)

where, for example, three terms of the continued fraction give

�0 +
�1

�1 +
�2
�2

: (50)

The �rst continued fraction representation ( Equation (2.5') vii of [11]) is
given by the coeÆcients

�k = �(b + k)(c� a+ k � 1)

(c+ k � 1)(c+ k)
�; k = 1; 2; 3; � � � (51)

�k =
b� a+ k

c+ k
� + 1; k = 1; 2; 3; � � � (52)

with �0 = 1. This continued fraction converges to the generating function

F (a; b; c; �)

F (a+ 1; b+ 1; c+ 1; �)
+
a�

c
=
abF (a; b; c; �)

cF 0(a; b; c; �)
+
a�

c
(53)

provided j � j< 1. The prime represents di�erentiation with respect to � . The
limit characteristic equation associated with the forward di�erence equation
for the continued fraction is

�2 � (1 + �)� + � = 0 (54)

and has roots 1 and � . See Appendix B. Thus for  > 1 and subsonic values
of � (0 < � < (�1)=(+1) < 1), this continued fraction leads to an e�ective
computation of the ratio F 0=F .

The second continued fraction ( Equation (2.6') ii of [11]) is given by the
coeÆcients

�k =
(a+ k)(b + k)

(c+ k � 1)(c+ k)
�(1� �); k = 1; 2; 3; � � � (55)

�k = 1� a+ b + 2k + 1

c+ k
�; k = 0; 1; 2; 3; � � � (56)
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where an equivalence transformation has been applied to the coeÆcients given
by Frank so that �p and �p have �nite limits as p tends to in�nity [5]. This
continued fraction converges to the generating function

F (a; b; c; �)

F (a+ 1; b+ 1; c+ 1; �)
=
abF (a; b; c; �)

cF 0(a; b; c; �)
(57)

provided Re(�) < 1=2. The limit characteristic equation

�2 � (1� 2�)� � �(1� �) = 0 (58)

has roots 1�� and �� . The requirement that the root 1�� be the dominant
root of the forward di�erence equation for the continued fraction leads to the
condition Re(�) < 1=2. For  � �1, subsonic values of � will lie in the
range �1 < � � 0, so that this second expansion provides an eÆcient
means of evaluating F 0=F for negative values of � . This second continued
fraction representation may be derived directly from the di�erential equation
by successive di�erentiation.

The ratios F 0=F are needed to compute shapes of free streamlines and
related fundamental quantities (e.g. the compression ratio for a jet from a
slit). For some applications this may be suÆcient and no further informa-
tion about F would be necessary. However, since the whole ow �eld is of
interest for code veri�cation studies, the F 0=F information obtained above
can be used to compute F in a useful form. Numerical integration leads
immediately to values of logF (�) with log(F (0)) = 0. The trapezoidal rule
with Romberg extrapolation was used for the numerical integration scheme.
The ratio  n(�)= n(�1) is given by

 n(�)= n(�1) = expf(n=2) log(�=�1) + logFn(�)� logFn(�1)g: (59)

Forming sums and di�erences of logs prior to exponentiation has the advan-
tage of avoiding underow errors for large values of n. The above algorithm
was found to be accurate, reliable and e�ective with no apparent numerical
diÆculties. Results were compared with tables of the Chaplygin functions,
Fn(�), given by Ferguson and Lighthill [10] and with the exact solution for
 = �1.

Figures 3 through 5 show the form of Fn(�),  n(�)= n(�1) and (2�=n) 
0

n= n,
respectively, for increasing order n for the standard copper equation of state
described in Appendix A and with �1 = �cr = 0:664. This � = �1 location is
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shown in the graphs as a vertical line. Figure 5 shows the lower bound curvep
1�M2 =

q
(1� (�=�cr))=(1� �) which is approached for large n (Sedov,

1965) and the upper bound estimate derived in Appendix C for n = 200.
Figure 6 shows the number of continued fraction terms utilized as a function
of � and n.

Once the Chaplygin functions are available, it is necessary to sum the
series containing znq and zn. Evaluation of Equation 45 and 48 is straight-
forward for all values of q if it is observed that

lim
q!0

 n(�)

qm
=
Æn;2Æm;2

q2max

; n � 2; m = 1; 2 : (60)

The series solutions given by the Chaplygin technique are very slowly
convergent for points near to the free surface. For q = q1 but away from the
singular points the zn series are conditionally convergent and the zq series are
divergent. It therefore seems necessary to sum the series using a convergence
accelerator which will successfully accelerate the convergent series as well as
sum the divergent zq series on the boundary. Both summations are necessary
because the value of zq is needed to compute velocity gradients.

What is meant by the "sum" of a divergent series? A series can be
thought of as a limited representation of an underlying function. This repre-
sentation makes mathematical sense only where it is convergent. However, it
can be meaningfully related to an extension of this function outside the origi-
nal domain of validity of the representation. For example, the complex series
1+z+z2+ � is convergent only for jzj < 1 while the equivalent representation
1=(1� z) is valid everywhere except at the pole z = 1. Successful series ac-
celeration and summation techniques essentially extract a more fundamental
representation from a sequence of �nite sums.

The algorithms tried were the �-algorithm, the �-algorithm and the Levin-
t and Levin-u algorithms. Theorems on the regularity and accelerative prop-
erties of these various algorithms for various sequences are given by Wimp
[33]. The accelerators were applied in turn to each of the four sums in the se-
ries representation for @z=@q and z. The sums were computed separately and
as complex sequences. This preserves the simple structure of the sums and
precluded the failure of the acceleration algorithm due to the presence of zero
or very small terms in the real or imaginary parts. Only the �-algorithm was
found to be successful in diagonal modes (algorithm order increasing with
number of terms). The other three algorithms appeared to have a great deal
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Figure 3: The function Fn(�) forM = 1 for the standard Cu isentrope. Solid
- n = 1 to 10 by 1; dashed - n = 20 to 100 by 20; dash-dot - n = 200:
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Figure 4: The function  n(�)= n(�1) for M = 1 for the standard Cu isen-
trope. Solid - n = 1 to 10 by 1; dashed - n = 20 to 100 by 20; dash-dot -
n = 200:
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Figure 5: The function (2�=n) 0n= n for M = 1 for the standard Cu isen-
trope. Solid - n = 1 to 10 by 1; dashed - n = 20 to 100 by 20; dash-dot -
n=200. Also shown is the lower bound solution (

p
1�M2) and the upper

bound solution for n = 200 in dotted lines.
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Figure 6: Numbers of terms in continued fraction as a function of n forM = 1
and the standard Cu isentrope. Solid - n = 1 to 10 by 1; dashed - n = 20 to
100 by 20; dash-dot - n = 200:
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of diÆculty for parameter values near and on the free surface. An extensive
study of the details of this apparent failure has not been attempted. However,
it appears reasonable that the � algorithm succeed for the series discussed
here since the algorithm will successfully compute the analytic continuation
of meromorphic functions in the complex plane with a �nite number of poles.
See page 131 of [33].

The �-algorithm has been implemented previously by Nieuwland (1967) to
accelerate the the convergence of Chaplygin series [23]. The �-algorithm is an
economical procedure for evaluating the Schmidt transformation or iterated
Shank's transformation for accelerating the convergence of certain sequences.
Given a sequence sm; m � 0 with m integral the �-algorithm is de�ned by

�
(m)
k+1 = �

(m+1)
k�1 + (�

(m+1)
k � �

(m)
k )�1; m; k � 0 (61)

�
(m)
�1 = 0; �

(m)
0 = sm; m � 0: (62)

The values �
(m)
2k are used as estimates for the limit of the sequence sm given by

the partial sum of the series. An outline of the other unsuccessful algorithms
is given in Appendix D.
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5 Properties of the Jet Solutions

The solution outlined in the previous section varies with the incoming Mach
number, the angle � and the equation of state parameter . This is a large
parameter space. However, an attempt will be made to illustrate the various
changes in solution characteristics. The basic equation of state values used
here correspond to copper and are given in cgs-ev units in Appendix A. The
length scale for the problem is set by the incoming jet width and is assumed
to be 1 centimeter.

The variation of the pressure, density and energy are all computable from
the velocity, q. Additional kinematic quantities are also of great interest and
are easily accessible during the course of the solution. In particular, the
velocities u = q cos � and v = q sin � along with the gradients ux = @u=@x,
uy = @u=@y = @v=@x = vx, and vy = @v=@y are important variables. Three
additional measures of the velocity may also be instructive. These are the rate
of expansion or dilatation, ux+vy, the norm of the rate-of-strain tensor, j D j,
and the norm of the deviatoric rate-of-strain tensor, j D� 1

3
(trD)I j. This

last quantity is of particular interest since, in the case of plastic deformation,
it can be considered a measure of the rate of plastic work. The solution
described here does not include, of course, plastic work, but it is thought
that the metric may be useful when comparing with heating rates for jets in
which the uid motion is not highly perturbed by plasticity.

The gradients of velocity, (u; v) with respect to (x; y) must be computed
from the derivatives of (x; y) with respect to (q; �) which are known from the
hodograph solution technique. The inversion formulas are given below.

Di�erentiating the equation x = x(q; �) and y = y(q; �) with respect to x
and y yields

I =

 
xq x�
yq y�

! 
qx qy
�x �y

!
(63)

where subscripts represent di�erentiation. Inversion then gives

 
qx qy
�x �y

!
=

 
y� �x�
�yq xq

!
=(xqy� � yqx�) : (64)

Now since u = q cos � and v = q sin �, one obtains after di�erentiation,
substitution and some manipulation

ux = (�1 + �2 cos 2� � �3 sin 2�)=� (65)
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uy = vx = (�3 cos 2� + �2 sin 2�)=� (66)

vy = (�1 � �2 cos 2� + �3 sin 2�)=� (67)

where �1 = M2Fq=2, �2 = (2 � M2)Fq=2, �3 = (1 � M2)Gq, and � =
F 2
q +(1�M2)G2

q. The real quantities Fq and Gq are de�ned by the complex
valued equation

Fq + iGq � e�i�(xq + iyq) (68)

Equations 23 have been used to write the x� and y� terms as functions of Fq

and Gq. Note that at each evaluation point, zq can be easily computed in
the course of the integration to obtain the physical plane. Three important
additional measures of strain rate are the rate of expansion or dilatation

_�=� = � _�=� = ux + vy = 2�1=�; (69)

the norm of the rate-of-strain tensor, D, which due to irrotationality is the
same as the velocity gradient tensor,

j D j=j r(u; v) j=
q
u2x + v2y + 2u2y =

q
2(�2

1 + �2
2 + �2

3)=�; (70)

and �nally the norm of the deviatoric rate-of-strain tensor

j D� 1

3
(tr D)I j=

 
j D j2 �1

3
(
_�

�
)2
!1=2

: (71)

A stretched evaluation mesh is utilized in both the � direction and the q
direction. The � mapping is two cubic polynomials connecting the � values
corresponding to the singularities. The � values match at the singularities,
but the slopes with respect to the linear � are set zero at the singular values of
�. This has the e�ect of concentrating more points near singularities so that
better coverage is obtained in physical space. The q mesh is a linear q mesh
near the origin which switches to a linear � mesh at a speci�ed mesh number.
This has the e�ect of generating smooth line plots in physical space. The
code given in Appendix E allows for speci�cation of the � and � stretching
options.

Figure 8 through 16 show on the top and bottom plots on each page a
comparison of on axis quantities for � = 90 and 45 degrees, respectively.
Shown are the results for the  values:-1.0, 1.4 and 4.956 corresponding
to s values 0., .6 and 1.489, respectively. The plots appear to terminate
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Figure 7: On axis velocity, q, for M1 = 0:9 for  values: -1.0 (dashed) , 1.4
(dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 8: On axis density, �, for M1 = 0:9 for  values: -1.0 (dashed) , 1.4
(dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 9: On axis energy, e, for M1 = 0:9 for  values: -1.0 (dashed) , 1.4
(dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 10: On axis pressure, p, for M1 = 0:9 for  values: -1.0 (dashed) ,
1.4 (dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 11: On axis Mach number, M , for M1 = 0:9 for  values: -1.0
(dashed) , 1.4 (dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 12: On axis gradient, ux, for M1 = 0:9 for  values: -1.0 (dashed) ,
1.4 (dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 13: On axis gradient vy forM1 = 0:9 for  values: -1.0 (dashed) , 1.4
(dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 14: On axis divergence ux + vy for M1 = 0:9 for  values: -1.0
(dashed) , 1.4 (dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 15: On axis jD� (trD)I=3j for M1 = 0:9 for  values: -1.0 (dashed)
, 1.4 (dotted) and 4.956 (solid) for � = 90 and 45 degrees.
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Figure 16: On axis jDj forM1 = 0:9 for  values: -1.0 (dashed) , 1.4 (dotted)
and 4.956 (solid) for � = 90 and 45 degrees.
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prematurely in some cases. The location of the termination is a function of
the �nite number of velocity evaluation points.

The sti�er equations of states evidence smaller variation in the resulting
ow parameters as well as a broader spatial extent for the jetting region.
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Figures 17 shows the q; � mesh in physical space. Figures 18 through 30
show contour plots of various parameters in the case of � = 90 and � = 45
degrees. Node that the largest values of the velocity gradients are at the free
surface at the corner but that they are larger for the � = 45 case.
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Figure 17: Evaluation mesh in the physical plane for the � = 90 and 45
degree cases for M1 = 0:9
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Figure 18: Velocity, q, for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 19: Density, �, for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 20: Internal energy, e, for the � = 90 and 45 degree cases forM1 = 0:9
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Figure 21: Pressure, p, for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 22: Mach number,M , for the � = 90 and 45 degree cases forM1 = 0:9
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Figure 23: u for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 24: v for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 25: ux for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 26: uy = vx for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 27: vy for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 28: ux + vy for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 29: j D� 1
3
(tr D)I j for the � = 90 and 45 degree cases for M1 = 0:9
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Figure 30: j D j for the � = 90 and 45 degree cases for M1 = 0:9
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6 Summary

An e�ective numerical technique for the evaluation of the Chaplygin func-
tions  n(�)= n(�1) and (2�=n) 0n(�)= n(�) without recourse to high preci-
sion oating point arithmetic has been outlined. These functions were used
to compute the solution to the subsonic free-surface wall jet problem for a
Murnaghan isentropic relation. In addition, formulas for various measures
of strain rate have been given in terms of the hodograph variables. For par-
ticular cases detailed maps in the physical plane showing velocities, velocity
gradients and several velocity gradient measures were given. These results
may be used for veri�cation comparisons with other more general purpose
numerical methods.
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A Equation of State Relations

The Murnaghan isentrope given by Equation 2 has two free parameters, �1
and . A common form for the description of a metal Hugoniot is

pH = �1c
2
1
�=(1� s�)2 (72)

where � = 1 � �1=�. The Hugoniot and the isentrope are equal to third
order in the strain. Thus one may match either of these two curves locally
near � = �1 to the same order by the Murnaghan relation. Setting the �rst
and second derivatives with respect to 1=� of Equations 72 and 2 equal at
reference conditions leads to the equations

�1 = �1c
2
1

(73)

( + 1)�1 = 4�1c
2
1
s : (74)

Solving for �1 and  yields the equations

 = 4s� 1 (75)

�1 = �1c
2
1
= : (76)

The Chaplygin gas may be obtained by setting s = 0.
Assume a Mie-Gr�uneisen equation of state

p(e; �) = �p(�) + ��(e� �e(�)) (77)

where �e satis�es the isentropic di�erential equation for the internal energy,

de = �pd� = �pd(1=�); (78)

so that

�e = e1 +
�1
 � 1

 
1

�
(�=�1)

 � 1

�1

!
+ �1(1=�� 1=�1) : (79)

The Gr�uneison coeÆcient � = �(@p=@e)� is an arbitrary function of volume.
It is common to chose �� = � constant.

In order to derive simple relations for the temperature and entropy, as-
sume that the heat capacity at constant volume, c� = (@e=@T )� , is constant.
Thus

e� �e(�) = c�(T � �T (�)) (80)
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and
p(�; T ) = �p(�) + �c�(T � �T (�)) : (81)

Application of the second law of thermodynamics allows the determination
of the variation of �T with �.

dS =
de

T
+ p

d�

T
(82)

=
c�
T
dT + ((@e=@�)T + p)

d�

T
(83)

=
c�
T
dT + (@p=@T )�d� : (84)

The identity T (@p=@T )� = (@e=@�)T + p has been used in the �nal formula
above. This identity follows from the consistency condition for dS to be an
exact di�erential. Since (@p=@T )� = �c� , Equation 84 is solvable on an
isentrope. The solution of the di�erential equation for �T is

�T = T1e
��(���1) : (85)

Integrating at constant volume to obtain the entropy, S, yields

S = �S +
Z T

�T

c�
T
dT (86)

= S1 + c� log(T=T1) + �c�(� � �1) : (87)

A general relation for the sound speed is

c2 = (@p=@�)S = (@p=@�)T + (@p=@T )�(@T=@�)S (88)

= (@p=@�)T +
T

�2c�
(@p=@T )2� : (89)

Since (@p=@T )� = �c� and (@p=@�)T = d�p=d�� �2�2c� �T ,

c2 = d�p=d�+ �2�2c�(T � �T ) : (90)

The above equations should be suÆcient to provide enough information
to implement this equation of state in any code framework. Note that for
the reference isentrope, p(�1; T1) = 0. Copper parameters used in this
report are listed in Table 1 in cgs units. These were obtained from the
copper table on page 532 of Appendix E of Kinslow [20]. Only the �rst
three parameters are relevant to the isentropic ows presented in this report.
The remaining parameters may be useful for comparison with codes utilizing
the full equation of state listed above in this Appendix. Note that a linear
isentrope may be obtained with s = 0 ( = �1).
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�1 8.94 gm/cc
c1 3.94 105 cm/s
s 1.489 ( = 4.956)

� 1.99
c� 3.718 106 erg/(cm-deg K)
T1 293 deg K
e1 arbitrary
S1 arbitrary

Table 1: Reference parameter values for a copper equation of state.

B Evaluation of Continued Fractions

Continued fractions may be evaluated by the forward recursion algorithm for
the numerator and denominator of the k-th approximate. That is, given the
continued fraction

�0 +
�1 j
j �1 +

�2 j
j �2 +

�3 j
j �3 + � � � = �0 +

�1

�1 +
�2

�2+���

: (91)

the numerator, Ak, and the denominator, Bk, of the k-th approximate, Ck,
are given by

Ak = �kAk�1 + �kAk�2; Bk = �kBk�1 + �kBk�2; k = 1; 2; 3; � � �
A�1 = 1; A0 = �0; B�1 = 0; B0 = 1 (92)

with
Ck = Ak=Bk : (93)

If the continued fraction is convergent, limk!1Ck exists and is de�ned as
the value of the continued fraction. For �xed values of �k = ~� and �k = ~� is

�2 � ~�� � ~� = 0; (94)

is the characteristic equation for the di�erence equation given in 92. The
roots of this equation give the fundamental solutions �k1 and �k2 of the con-
stant coeÆcient di�erence equation for Ak and Bk. A continued fraction is
termed limit periodic if �k and �k approach constants ~� and ~�, respectively,
as k!1. The limit characteristic equation is given by Equation 94.
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An acceleration technique for limit periodic continued fractions can be
given by de�ning

Ck(w) =
Ak � wAk�1

Bk � wBk�1

: (95)

If w = �2 and �2 is the subdominant root of the limit auxiliary equation
( j �2 j<j �1 j), then Ck(w) may converge faster that Ck. A thorough
analysis of this approach is given by Thron and Waadeland [30]. In the
present application the acceleration is not particularly fast due to the slow
asymptotic approach to the limiting coeÆcients in the di�erence equation,
i.e. �k = ~� + O(1=k); �k = ~� + O(1=k). As a result this technique was not
utilized, but is included in this report for the sake of completeness as the
FORTRAN code of Appendix E includes this option.

65



C Upper and Lower Bounds

The convergence theory for Chaplygin series is described by Sedov [29] and
is based on analysis of the �rst order non-linear Ricatti equation derived from
the linear second order di�erential equation for  n. LetQ = (2�=n) 0n(�)= n(�)
then the Ricatti equation for Q is

H(Q) =
dQ

d�
+
M2

2�
Q+

n

2�
fQ2 � (1�M2)g = 0 (96)

with Q(0) = 1. To �nd upper and lower bounds for Q, concepts from the
theory of di�erential inequalities may be applied. Suppose a comparison
function �Q(�) with �Q(0) = 1 can be found such thatH( �Q) � 0 for � 2 [0; �cr],
then it is claimed that Q � �Q for � 2 [0; �cr]. The proof follows by writing
the di�erential equation for Q� �Q:

d

d�
(Q� �Q) = �d

�Q

d�
� M2

2�
Q� n

2�
fQ2 � (1�M2)g (97)

or, by expanding about �Q,

d

d�
(Q� �Q) = �H( �Q)� (

M2

2�
+
n

�
)(Q� �Q)� n

4�
(Q� �Q)2 (98)

Thus, at any point � 2 [0; �cr] such that Q = �Q, d(Q� �Q)=d� = �H( �Q) � 0.
It is thus impossible for Q� �Q to be greater than zero. Similarly, for H( �Q) �
0, then Q� �Q � 0. In practice one �nds a reasonable approximation, �Q, to
the solution and evaluates H( �Q). If H( �Q) � 0, then �Q is an upper bound.
If H( �Q) � 0, then �Q is a lower bound.

For n� 1, the equation for Q suggests the approximation

�Q =
p
1�M2: (99)

One �nds that

H( �Q) = (�
d(log �)

d�
� M4

2�
)=
p
1�M2 � 0 (100)

provided d�=d� � 0. This assumption is physically correct since the density
should decrease with increasing ow speed and lower pressure. Thus �Q =p
1�M2 is a lower bound and leads directly by integration to Equation 42,

the result giving the convergence proof for Chaplygin series.
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We also found it useful to compute an upper bound solution of the form

�Q = �
q
K + �Æ�(�) (101)

where K = (1�M2)=�2 and � = 1=n. Substitution yields

H( �Q) =
�

2

dK=d� + �Æd�=d�q
K + �Æ�(�)

+
�Æ�1�2�

2�
: (102)

Sedov (1965) chose �(�) to be C� where C is a positive constant. The value
of Æ = 2=3 was chosen in order to provide estimates on the sign of H( �Q)
which were independent of n.

Assuming for the moment that d�=d� is bounded as � goes to zero yields
the dominant balance equation for �

�

2

dK=d�q
K + �Æ�(�)

+
�Æ�1�2�

2�
= 0 (103)

or

�3 +
K

�Æ
�2 � �2�3Æ(��

�

dK

d�
)2 = 0: (104)

The single non-negative real root of the above cubic is of interest. In order
that � be independent of � for � = �cr, one speci�es Æ = 2=3. Values of �(�)
are easily found by Newton iteration, but may also be given explicitly:

� =
A1=3

2(a=3)1=2 cos(cos�1(z)=3)
for z � 1 (105)

or

� =
A1=3

2(a=3)1=2cosh(log(z +
p
z2 � 1)=3)

for z � 1 (106)

where z = (3=a)3=2=2, a = K��2=3A�1=3 and A = (�(�=�)dK=d�)2. Figure
31 shows values of �(�) for several values of n. The value of the functional
H is then

H( �Q) =
�

2

�2=3d�=d�q
K + �2=3�(�)

� 0 (107)

since we show below that d�=d� � 0. Thus �Q is an upper bound estimate.
The behavior of d�=d� may be investigated by di�erentiating the cubic equa-
tion for �.

d�

d�
=
�2=3dA=d� � dK=d��2

3�2=3�2 + 2K�
� 0 (108)
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Figure 31: The function �(�) forM = 1 for the standard Cu isentrope. Solid
- n = 1 to 10 by 1; dashed - n = 20 to 100 by 20; dash-dot - n = 200:
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since it is assumed that dK=d� � 0. This is easy to show for the Murnaghan
relations assumed in this report. For �xed � < �cr (K 6= 0), then it is
seen that H( �Q) = O(�2=3) as � ! 0. For �xed � = �cr (K = 0), then
H( �Q) = O(��1=3) as � ! 0. This result indicates a basic non-uniformity
inherent in the approximation to the di�erential equation. However, it is
still interesting to inquire as to the magnitude of the error between Q and
�Q. A careful comparison of the di�erence between the exact value of Q
computed according to the methods outlined in the text and the upper bound
approximation, �Q, has yielded convincing numerical evidence that �Q(�cr)�
Q(�cr) = O(�1=2) as � ! 0. This suggests that the function �Q is a leading
order asymptotic approximation to Q as well as an upper bound since it
would follow that ( �Q�Q)= �Q = O(�1=6).
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D Several Sequence Transformations

Although the �, Levin-u and Levin-t algorithms were not successful in accel-
erating the complex sequences given by the partial sums of zq and zn for all
needed parameter values, a short summary of these algorithms is given here
as the coding is included in the program listing.

The �-algorithm is given by

�
(m)
�1 = 0; �

(m)
0 = sm; m � 0 (109)

�
(m)
2k+1 = �

(m+1)
2k�1 + (�

(m+1)
2k � �

(m)
2k )�1; k � 0; (110)

�
(m)
2k+2 =

�
(m+2)
2k ��

(m+1)
2k+1 � �

(m+1)
2k ��

(m)
2k+1

�2�
(m)
2k+1

; k � 0: (111)

Only the �m2k terms are used as estimates for the sum.
The Levin transforms are given by

tk(sm) = t
(m)
k =

Pk
j=0(sm+j=am+j+1)(m+ j + 1)k�1(�1)j

 
k
j

!

Pk
j=0(1=am+j+1)(m + j + 1)k�1(�1)j

 
k
j

! (112)

and

uk(sm) = u
(m)
k =

Pk
j=0(sm+j=am+j+1)(m + j + 1)k�2(�1)j

 
k
j

!

Pk
j=0(1=am+j+1)(m+ j + 1)k�2(�1)j

 
k
j

! (113)

where aj are terms of the series leading to the partial sums sm =
Pm

j=0 aj
for m � 0. The u-transform and the t-transform may be evaluated using a
similar Lozenge type diagram just as in the case of the � and �-algorithms.
De�ne for all m � 0

Q
(m)
0 =

sm
(m+ 1)pam+1

(114)

Q
(m)
k = Q

(m+1)
k�1 �

�
m+ 1

m + k + 1

� 
m+ k

m + k + 1

!k�1

Q
(m)
k�1; k � 1 (115)
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and
~Q
(m)
0 =

1

(m+ 1)pam+1
(116)

~Q
(m)
k = ~Q

(m+1)
k�1 �

�
m+ 1

m + k + 1

� 
m+ k

m + k + 1

!k�1

~Q
(m)
k�1; k � 1 (117)

then
t
(m)
k = Q

(m)
k = ~Q

(m)
k with p = 1 (118)

u
(m)
k = Q

(m)
k = ~Q

(m)
k with p = 2: (119)

The above evaluation algorithm is derived by Fessler, Ford and Smith (1983)
for the u-algorithm and easily generalizes for the t-transform.

E Veri�cation testing using CJETB

When using a general purpose numerical code to compute the wall jet solu-
tions, it is possible to verify some aspects of the solutions by checking simple
consistency conditions. For example, in the case of a normal incidence free
surface wall jet of subsonic inow velocity (� = 90Æ), one can easily check a
necessary condition for the computed steady state ow to be correct. Since
the steady ow is isentropic and thus reversible, there must be a symmetry
of all state variables about a 45Æ line in the �rst quadrant. Thus, for this
case, any reasonable equation of state can be used for testing. One must
be careful to check all variables as it has been found, in one instance, that
the pressure pro�le computed was highly symmetric, while the internal en-
ergy and temperature pro�les were quite asymmetric indicating non-physical
dissipation in a subsonic isentropic ow.

Setting up a useful veri�cation problem using a transient ow shock cap-
turing code may require some ingenuity since the solution presented here is
steady state. Since the ow has a stagnation point, it will take some time
for any initial transient response to be advected out of the problem. An-
other possibility is to implement an approximate initial condition based on
the incompressible solution. The steady state de�ned by this exact solution
could also be used as a test of a mesh to mesh interpolation capability and
thus would also be useful for setting up a precise initial steady state ow
distribution to avoid the initial transient problem.

A copy of the relevant code, CJETB, and related subroutines used to
evaluate the wall jet solution described in the text is given below. The code
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writes out some data in the EXODUS I �nite element database format as
well as x-y pair data for plotting [21]. It is expected that any user interested
in running the CJETB code will have access to reasonable postprocessing
procedures for this type of data and may modify the code with little e�ort
to be compatible with any particular �nite element database format.

1 C ******************************************************************

2 C

3 C CJETB (Compressible JET (Blot compatible output) )

4 C

5 C Two Dimensional Output in EXODUS I Finite Element Format

6 C BLOT may be used to display this file

7 C

8 C 1D output in ASCII tables

9 C

10 C ******************************************************************

11 C

12 C Author:

13 C Allen C. Robinson

14 C Sandia National Laboratories

15 C MS O819

16 C Albuquerque, NM 87122-0819

17 C

18 C acrobin@sandia.gov

19 C

20 C Background: This program evaluates the solution to the

21 C problem of a plane compressible free surface jet

22 C impinging at any angle to a fixed wall. The incompressible

23 C complex potential for this problem is known in closed form

24 C and leads immediately to the solution for a subsonic

25 C compressible jet by Chaplygin's method.

26 C The series representation for this solution

27 C converges very slowly for points on and near the free

28 C surface. This difficulty is overcome using non-linear

29 C convergence accelerators. We assume a Murnaghan equation

30 C of state leading to hypergeometric functions as solutions

31 C to the reduced Chaplygin equation. The functions F are

32 C evaluated using continued fraction representations

33 C for F'/F. Log F is then obtained

34 C by numerical integration. The physical plane z mau be computed

35 C by two schemes. The first computes dz/dq by summing series

36 C and then integrating numerically with respect to q.

37 C Alternatively z may be computed

38 C in terms of an analytical integration of dz/d(theta).

39 C Velocity, pressure, internal energy, density, Mach number,

40 C and several strain rate measures are computed as a function

41 C of the physical plane position z.

42 C

43 C Disclaimer:

44 C

45 C *************************

46 C * ISSUED BY SANDIA *

47 C * NATIONAL LABORATORIES *

48 C * A PRIME CONTRACTOR *

49 C ******** TO THE *
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50 C * UNITED STATES *

51 C * DEPARTMENT *

52 C * OF *

53 C * ENERGY *

54 C *********************** ---NOTICE--- ***********************

55 C * THE UNITED STATES GOVERNMENT RETAINS, IN THIS SOFTWARE, *

56 C * A PAID-UP, NONEXCLUSIVE, IRREVOCABLE WORLDWIDE LICENSE *

57 C * TO REPRODUCE, PREPARE DERIVATIVE WORKS, PERFORM PUBLICLY *

58 C * AND DISPLAY PUBLICLY BY OR FOR THE GOVERNMENT, INCLUDING *

59 C * THE RIGHT TO DISTRIBUTE TO OTHER GOVERNMENT CONTRACTORS. *

60 C * NEITHER THE UNITED STATES, THE UNITED STATES DEPARTMENT *

61 C * OF ENERGY, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, *

62 C * EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR *

63 C * ********** RESPONSIBILITY ********** *

64 C * * * FOR THE * * *

65 C * * * ACCURACY, * * *

66 C * * * COMPLETENESS * * *

67 C * * * OR USEFULNESS * * *

68 C * * * OF ANY * * *

69 C * * * INFORMATION, * * *

70 C * ***** * APPARATUS, * ***** *

71 C * * * PRODUCT * * *

72 C * * * OR PROCESS * * *

73 C * * * DISCLOSED, * * *

74 C * * * OR REPRESENTS * * *

75 C * * ** THAT ITS ** * *

76 C * * ** USE WOULD NOT ** * *

77 C ********** ** INFRINGE ** **********

78 C ** PRIVATELY **

79 C ** OWNED **

80 C ** RIGHTS. **

81 C ** **

82 C ** **

83 C ********************

84 C

85 C

86 C

87 PROGRAM CJETB

88 PARAMETER(NQMAX=100,NUMAX=200,NTMAX=100,NGMAX=2,NVMAX=24,KMAX=201)

89 PARAMETER(NQNTMX=NQMAX*NTMAX)

90 COMPLEX EITHTA,ZDQ,ZN,ZSEST,ZTMP,ZS(NUMAX,KMAX)

91 EXTERNAL ZDQ,ZN

92 CHARACTER*8 NAMEGV(NGMAX),NAMENV(NVMAX),NAMECO(2),NAMELB(1)

93 CHARACTER*8 CNAME1,CNAME2

94

95 character*25 runid

96 character*8 cdate

97 character*10 ctime

98 character*5 czone

99 integer dtval(8)

100

101 CHARACTER*10 SUMFLG

102 CHARACTER*80 CHAR

103 COMMON /FLOCOM/ IQ,NQPNTS,EITHTA,PI,SNTH(NUMAX),CNTH(NUMAX)

104 COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,

105 1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),

106 2 ENERGY(NQMAX),PRES(NQMAX),XMACH2(NQMAX),
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107 3 FPDF(NUMAX,NQMAX),XLNF(NUMAX,NQMAX),

108 4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),

109 5 PSI(NUMAX,NQMAX),PSIP(NUMAX,NQMAX),

110 6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)

111 DIMENSION XDQ(NTMAX,NQMAX),YDQ(NTMAX,NQMAX)

112 DIMENSION XT(NTMAX,NQMAX),YT(NTMAX,NQMAX)

113 DIMENSION X(NTMAX,NQMAX),Y(NTMAX,NQMAX)

114 DIMENSION X0(NTMAX,NQMAX),Y0(NTMAX,NQMAX),DIS(NTMAX,NQMAX)

115 DIMENSION U(NTMAX,NQMAX),V(NTMAX,NQMAX)

116 DIMENSION DIVU(NTMAX,NQMAX)

117 DIMENSION UX(NTMAX,NQMAX),UYORVX(NTMAX,NQMAX),VY(NTMAX,NQMAX)

118 DIMENSION XMAGDU(NTMAX,NQMAX),DEVU(NTMAX,NQMAX)

119 DIMENSION TMPA(4),TMPB(4)

120 DIMENSION THETA(NTMAX),TX(3),TF(3),TDF(3)

121 DIMENSION NEST(NTMAX,NQMAX,2,4),KEST(NTMAX,NQMAX,2,4)

122 DIMENSION OUT(NQNTMX,2),ICONK(4,NQNTMX)

123 NAMELIST /EOS/ RHOINF,CINF,SINF,EINF

124 DATA RHOINF/8.94/,CINF/3.94E+5/,SINF/1.489/,EINF/0./

125 NAMELIST /JET/ XLINF,XMCHMN,XMCHMX,NMACH,BETDMN,BETDMX,NBETA

126 DATA XLINF/1./,XMCHMN/.9/,XMCHMX/.9/,NMACH/1/

127 DATA BETDMN/90./,BETDMX/90./,NBETA/1/

128 NAMELIST /TEKNIK/ NTPNTS,NQPNTS,NQSW,RELERR,SSLP,

129 1 RELER1,NUBIG,KBIG,ISUM,INTFLG,IUNIT

130 DATA NTPNTS/51/,NQPNTS/51/,NQSW/0/,RELERR/1.E-6/,SSLP/0./

131 DATA RELER1/1.E-4/,NUBIG/200/,KBIG/201/

132 DATA ISUM/2/,INTFLG/1/,IUNIT/1/

133 DATA CNAME1/'CJETB'/,CNAME2/'V1.0'/

134

135 PI = 4.*ATAN(1.)

136

137 C get first argument in list

138 call getarg ( 1, runid)

139 do 10 idlen=1,len(RUNID)-4

140 if(runid(idlen:idlen).eq.' ') then

141 goto 11

142 endif

143 10 continue

144 11 continue

145

146 C Unit numbers: input = 5

147 C output log =6

148 C On axis data output in GRAPH format = 8

149 C Chapylgin function output in GRAPH format =10

150 C Full data output =11 in EXODUS format for use with BLOT

151 C postprocessing graphics.

152 C Respective file suffixes are runid.inp,runid.out,runid.axs,runid.chp,runid.exo

153

154 NAB = 8

155 NCB = 10

156 NDB = 11

157

158 C To compute the tables of Ferguson and Lighthill for subsonic tau

159 C then input NQPNTS = 9, NQSW=1, SINF=.6 (GAMMA=1.4) and XMCHMN=SQRT(20./21.)'

160 C The value SINF = 0. is the Chaplygin gas.

161

162 runid(idlen:idlen+3)='.inp'

163 OPEN(UNIT=5,FILE=runid,STATUS='old',FORM='formatted')
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164 READ(5,EOS)

165 C RHOINF=freestreamline density

166 C CINF=freestreamline soundspeed

167 C SINF=value of s in Us-Up relation

168 C EINF=freestreamline internal energy

169 C

170 READ(5,JET)

171 C NAMELIST /JET/ XLINF,XMCHMN,XMCHMX,NMACH,BETDMN,BETDMX,NBETA

172 C XLINF=width of incoming jet at infinity

173 C XMCHMN=minimum value of Mach number (0<XMCHMN<1)

174 C XMCHMX=maximum value of Mach number (0<XMCHMX<1)

175 C NMACH=number of Mach numbers to compute

176 C BETDMN=minimum value of BETA in degrees (0<BETDMN<180)

177 C BETDMX=maximum value of BETA in degress (0<BETDMX<180)

178 C NBETA=number of BETA values to compute

179 READ(5,TEKNIK)

180 C NTPNTS=number of evaluation points in theta direction

181 C NQPNTS=number of evaluation and trapezoidal rule integration

182 C points in Q direction

183 C NQSW=switch to change from constant dQ to constant dtau

184 C RELERR=relative error check value for Chaplygin function evaluation

185 C RELER1=relative error check value for series summation

186 C SSLP=slope of stretch mapping near singular points (0.LE.SSLP.LE.1.)

187 C NUBIG=maximum number of terms in column summation

188 C KBIG=maximum row value in Lozenge scheme for acceleration schemes.

189 C ISUM=acceleration sum type = 1 2 3 4 5

190 C for valid SUMFLG values =NONE, EPSILON, THETA, LEVINU, LEVINT

191 C INTFLG=type of integration for basic physical plane

192 C =1 Q integration

193 C =2 theta integration

194 C IUNIT =output scaling

195 C =1 for dimensional units

196 C =2 for stagnation point scaling

197 C =3 for freestreamline scaling

198 C See code interior for definitions

199 IF(NQSW.EQ.0) NQSW=NQPNTS/5

200 NQSW=MAX(1,MIN(NQSW,NQPNTS))

201 IF(NUBIG.GT.NUMAX) THEN

202 WRITE(6,*) 'NUBIG .GT. NUMAX'

203 STOP

204 ENDIF

205 IF(KBIG.GT.KMAX) THEN

206 WRITE(6,*) 'KBIG .GT. KMAX'

207 STOP

208 ENDIF

209 IF(ISUM.EQ.1) SUMFLG='NONE'

210 IF(ISUM.EQ.2) SUMFLG='EPSILON'

211 IF(ISUM.EQ.3) SUMFLG='THETA'

212 IF(ISUM.EQ.4) SUMFLG='LEVINU'

213 IF(ISUM.EQ.5) SUMFLG='LEVINT'

214 IF(ISUM.LT.1.OR.ISUM.GT.5) THEN

215 WRITE(6,*) 'BAD VALUE OF ISUM'

216 STOP

217 ENDIF

218 IF(INTFLG.NE.1.AND.INTFLG.NE.2) THEN

219 WRITE(6,*) 'BAD VALUE OF INTFLG'

220 STOP
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221 ENDIF

222 IF(IUNIT.LT.1.AND.IUNIT.GT.3) THEN

223 WRITE(6,*) 'BAD VALUE OF IUNIT'

224 STOP

225 ENDIF

226 CLOSE(UNIT=5)

227

228 runid(idlen:idlen+3)='.out'

229

230 call date_and_time(cdate,ctime,czone,dtval)

231

232 WRITE(6,*) 'Begin code ',CNAME1,' ',CNAME2,' at ',

233 1 CTIME,' on ',CDATE,'.'

234

235 WRITE(6,EOS)

236 WRITE(6,JET)

237 WRITE(6,TEKNIK)

238

239 GAMMA=4.*SINF-1.

240 XKPINF=RHOINF*CINF**2/GAMMA

241

242 WRITE(6,*) 'XKPINF and GAMMA chosen to fit slope and curvature'

243 WRITE(6,*) 'XKPINF = ',XKPINF,' GAMMA = ',GAMMA

244 IF(GAMMA.GT.-1.AND.GAMMA.LE.1.) THEN

245 WRITE(6,*) 'THIS VALUE OF GAMMA NOT ALLOWED'

246 STOP

247 ENDIF

248

249 C compute various functions of GAMMA

250 GM1D2=(GAMMA-1.)/2.

251 QMAX2=1./GM1D2

252 IF(GAMMA.LE.-1.) THEN

253 QCR2 = 1.E+30

254 ELSE

255 QCR2 =2./(GAMMA+1.)

256 ENDIF

257 TAUCR=QCR2/QMAX2

258

259 C ******************* Begin Mach Number Loop ****************************

260

261 DO 5000 IMVARY=1,NMACH

262

263 XMACHI = XMCHMN

264 IF(IMVARY.GT.1)

265 1 XMACHI=(XMCHMX-XMCHMN)*FLOAT(IMVARY-1)/FLOAT(NMACH-1)+XMCHMN

266 WRITE(6,*) 'XMACHI = ',XMACHI

267

268 XMCHI2=XMACHI**2

269 Q1=SQRT(XMCHI2/(1.+GM1D2*XMCHI2))

270 TAU1=Q1**2/QMAX2

271

272 C Compute stagnation point parameters in dimensional units

273 TMP = 1.+GM1D2*XMCHI2

274 RHO0= RHOINF*TMP**(1./(GAMMA-1.))

275 C0 = CINF*SQRT(TMP)

276 XKP0 = RHO0*C0**2/GAMMA

277 P0 = XKP0-XKPINF
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278 E0 = (XKP0/RHO0-XKPINF/RHOINF)/(GAMMA-1.)

279 1 + XKPINF*(1./RHO0 - 1./RHOINF) + EINF

280

281 C Output stagnation points values

282

283 WRITE(6,*) 'Stagnation point density =',RHO0

284 WRITE(6,*) 'Stagnation point sound speed =',C0

285 WRITE(6,*) 'Stagnation point pressure =',P0

286 WRITE(6,*) 'Stagnation point internal energy =',E0

287

288 C Basic variables are in stagnation point units.

289 C Pressure and energy are in input units.

290

291 DO 500 J = 1,NQPNTS

292

293 Q(J) = (J-1)*Q1/FLOAT(NQPNTS-1)

294 TAU(J)=Q(J)**2/QMAX2

295 IF(J.GT.NQSW) THEN

296 TAU(J) =

297 1 (J-NQSW)*(TAU1-TAU(NQSW))/FLOAT(NQPNTS-NQSW)+TAU(NQSW)

298 Q(J)=SQRT(QMAX2*TAU(J))

299 ENDIF

300

301 TMP=1.-TAU(J)

302 RHO(J)=TMP**(1./(GAMMA-1.))

303 PRES(J)=(XKP0*RHO(J)**GAMMA-XKPINF)

304 ENERGY(J)=(XKP0*TMP/RHO0-XKPINF/RHOINF)/(GAMMA-1.)

305 1 +XKPINF*(1./(RHO0*RHO(J))-1./RHOINF) +EINF

306 XMACH2(J)=Q(J)**2/TMP

307 500 CONTINUE

308 C Set roundoff to zero

309 PRES(NQPNTS)=0.

310 ENERGY(NQPNTS)=EINF

311

312 C Compute Chaplygin functions for this value of Mach number

313

314 CALL CHPLGN(NQPNTS,RELERR)

315 WRITE(6,*) 'CHAPLYGIN FUNCTIONS COMPUTED TO ORDER ',NUMAX

316

317 runid(idlen:idlen+3)='.chp'

318 OPEN(UNIT=NCB,FILE=runid,STATUS='unknown',FORM='formatted')

319 WRITE(NCB,557) GAMMA,TAU1,TAUCR

320 557 FORMAT(' !CHAPLYGIN FUNCTIONS FOR GAMMA,TAU1,TAUCR=',3E15.6)

321 DO 555 NU=1,NUMAX

322 WRITE(NCB,558) NU

323 558 FORMAT(' !CHAPLYGIN FUNCTIONS OF ORDER =',I5,/,

324 1 ' ! TAU $ FPDF $ XLNF $',

325 2 ' F $ FP $ PSI/PSI1 $',

326 3 ' PSIP/PSI1 $(2T/N)PSIP/PSI$ NCHPSM$')

327 DO 550 J=1,NQPNTS

328 WRITE(NCB,560)TAU(J),FPDF(NU,J),XLNF(NU,J),F(NU,J),FP(NU,J),

329 1 PSI(NU,J),PSIP(NU,J),PSIRAT(NU,J),NCHPSM(NU,J)

330 560 FORMAT(1X,8E15.6,I10)

331 550 CONTINUE

332 WRITE(NCB,'('' $ $ $ $ $ $ $ $ $'')')

333 555 CONTINUE

334 CLOSE(UNIT=NCB)

77



335 WRITE(6,*) 'CHAPLYGIN FUNCTIONS WRITTEN TO CHPFNC'

336

337

338 C ********************* BETA variation ************************************

339

340 DO 5000 IBVARY=1,NBETA

341

342 BETAD=BETDMN

343 IF(IBVARY.GT.1)

344 1 BETAD=(BETDMX-BETDMN)*FLOAT(IBVARY-1)/FLOAT(NBETA-1)+BETDMN

345 WRITE(6,*) 'BETAD = ',BETAD

346

347 BETA=BETAD*PI/180.

348

349 TMPB(1)=1.

350 TMPB(2)=1.

351 TMPB(3)=-(1.-COS(BETA))

352 TMPB(4)=-(1.+COS(BETA))

353

354 DO 900 J=1,NQPNTS

355 DO 900 I=1,NTPNTS

356 XDQ(I,J)=0.

357 YDQ(I,J)=0.

358 XT(I,J)=0.

359 YT(I,J)=0.

360 900 CONTINUE

361

362 TMPA(1)=-BETA+PI

363 TMPA(2)=BETA-PI

364 TMPA(3)=0.

365 TMPA(4)=-PI

366

367 C use equal number of theta points on each side of singularity

368 IBETA=(NTPNTS+1)/2

369

370 C Stretch coordinates to get better coverage.

371 C Stretch slope 0.LE.SSLP.LE.1.

372

373 TX(1) = 0.

374 TX(2) = PI-BETA

375 TX(3) = PI

376 TF(1) = 0.

377 TF(2) = PI-BETA

378 TF(3) = PI

379 TDF(1)= SSLP

380 TDF(2)= SSLP

381 TDF(3)= SSLP

382

383 DO 950 I = 1,NTPNTS

384 IF(I.LE.IBETA) THEN

385 TMP=(TF(2)-TF(1))*(I-1)/FLOAT(IBETA-1)+TF(1)

386 CALL HERMIT(TX,TF,TDF,2,2,TMP,TMP1,TMP2)

387 ELSE

388 TMP=(TF(3)-TF(2))*(I-IBETA)/FLOAT(NTPNTS-IBETA)+TF(2)

389 CALL HERMIT(TX(2),TF(2),TDF(2),2,2,TMP,TMP1,TMP2)

390 ENDIF

391 THETA(I)=-TMP1
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392 950 CONTINUE

393

394 C Summation loops

395 C L is the loop for the four different infinite sums

396 C I loops through the various values of theta

397 C IQ is the flow speed loop

398

399 DO 1000 L=1,4

400 DO 1000 I = 1,NTPNTS

401 EITHTA=CMPLX(COS(THETA(I)),SIN(THETA(I)))

402 TMP1=THETA(I)+TMPA(L)

403 DO 1100 K=2,NUBIG

404 CNTH(K)=COS(K*TMP1)

405 SNTH(K)=SIN(K*TMP1)

406 1100 CONTINUE

407 DO 1000 IQ=1,NQPNTS

408 IF(IQ.EQ.NQPNTS.AND.(I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))THEN

409 NEST(I,IQ,1,L)=0

410 KEST(I,IQ,1,L)=0

411 NEST(I,IQ,2,L)=0

412 KEST(I,IQ,2,L)=0

413 GOTO1000

414 ENDIF

415 CALL CSUM(ZDQ,ZS,NUMAX,ZSEST,RELER1,

416 1 NEST(I,IQ,1,L),KEST(I,IQ,1,L),NUBIG,KBIG,SUMFLG,IERR)

417 IF(IERR.EQ.1) WRITE(6,*) 'ZDQ SUM FAILURE AT I,IQ,L=',I,IQ,L

418 ZSEST=TMPB(L)*ZSEST

419 XDQ(I,IQ)=REAL(ZSEST)+XDQ(I,IQ)

420 YDQ(I,IQ)=AIMAG(ZSEST)+YDQ(I,IQ)

421 C sum integration wrt theta

422 CALL CSUM(ZN,ZS,NUMAX,ZSEST,RELER1,

423 1 NEST(I,IQ,2,L),KEST(I,IQ,2,L),NUBIG,KBIG,SUMFLG,IERR)

424 IF(IERR.EQ.1) WRITE(6,*) 'ZN SUM FAILURE AT I,IQ,L=',I,IQ,L

425 ZSEST=TMPB(L)*ZSEST

426 XT(I,IQ)=REAL(ZSEST)+XT(I,IQ)

427 YT(I,IQ)=AIMAG(ZSEST)+YT(I,IQ)

428 1000 CONTINUE

429

430 C sum using trapezoidal rule

431 DO 2000 I=1,NTPNTS

432 X(I,1)=0.

433 Y(I,1)=0.

434 DIS(I,1)=0.

435 DO 2000 J=2,NQPNTS

436 X(I,J)=X(I,J-1)+.5*(Q(J)-Q(J-1))*(XDQ(I,J)+XDQ(I,J-1))

437 Y(I,J)=Y(I,J-1)+.5*(Q(J)-Q(J-1))*(YDQ(I,J)+YDQ(I,J-1))

438 DIS(I,J)=(X(I,J)-XT(I,J))**2+(Y(I,J)-YT(I,J))**2

439 IF(DIS(I,J).NE.0.) DIS(I,J)=SQRT(DIS(I,J))

440 2000 CONTINUE

441

442 IF(INTFLG.EQ.2) THEN

443 C Use theta integration grid for plots

444 DO 2100 J=1,NQPNTS

445 DO 2100 I=1,NTPNTS

446 X(I,J)=XT(I,J)

447 Y(I,J)=YT(I,J)

448 2100 CONTINUE
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449 ENDIF

450

451 C Save first physical plane as the "undistorted mesh". Different values

452 C of the mach number and beta come out at different "times" in the EXODUS

453 C format.

454

455 IF(IMVARY.EQ.1.AND.IBVARY.EQ.1) THEN

456 DO 2200 J=1,NQPNTS

457 DO 2200 I=1,NTPNTS

458 X0(I,J)=X(I,J)

459 Y0(I,J)=Y(I,J)

460 2200 CONTINUE

461 ENDIF

462

463 C evaluate velocity field and gradients

464

465 DO 3100 J=1,NQPNTS

466 DO 3100 I=1,NTPNTS

467 IF(J.EQ.NQPNTS.AND.(I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))

468 1 GOTO 3100

469 TMP1=COS(THETA(I))

470 TMP2=SIN(THETA(I))

471 U(I,J)=Q(J)*TMP1

472 V(I,J)=Q(J)*TMP2

473 EITHTA=CMPLX(TMP1,TMP2)

474 ZTMP = CMPLX(XDQ(I,J),YDQ(I,J))/EITHTA

475 AQ=REAL(ZTMP)

476 BQ=AIMAG(ZTMP)

477 ZTMP=EITHTA**2

478 C2T=REAL(ZTMP)

479 S2T=AIMAG(ZTMP)

480 DIVIDE=AQ**2+(1.-XMACH2(J))*BQ**2

481 A1=.5*XMACH2(J)*AQ

482 A2=.5*(2.-XMACH2(J))*AQ

483 A3=(1.-XMACH2(J))*BQ

484 UX(I,J)=(A1+C2T*A2-S2T*A3)/DIVIDE

485 UYORVX(I,J)=(C2T*A3+S2T*A2)/DIVIDE

486 VY(I,J)=(A1-C2T*A2+S2T*A3)/DIVIDE

487 DIVU(I,J)=UX(I,J)+VY(I,J)

488 C to make plots come out nice set divu = 0 on free surface

489 C actual values are zero to within numerical and roundoff errors

490 IF(J.EQ.NQPNTS) DIVU(I,J)=0.

491 XMAGDU(I,J)=SQRT(UX(I,J)**2+VY(I,J)**2+2.*UYORVX(I,J)**2)

492 DEVU(I,J)=SQRT(XMAGDU(I,J)**2-DIVU(I,J)**2/3.)

493 3100 CONTINUE

494

495 3200 CONTINUE

496

497 C Output units flag

498 C dimensional units = 1

499 C stagnation point scaling = 2

500 C and free-streamline scaling = 3

501

502 C dimensional units

503 IF(IUNIT.EQ.1) THEN

504 DUNITS=RHO0

505 XUNITS=XLINF
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506 VUNITS=C0

507 GUNITS=C0/XLINF

508 PUNITS=1.

509 EUNITS=1.

510 ENDIF

511 C stagnation points scaling: scale density by RHO0

512 C scale velocities by C0

513 C scale lengths by XLINF

514 C scale pressure by P0

515 C scale energy by E0

516 IF(IUNIT.EQ.2) THEN

517 DUNITS=1.

518 XUNITS=1.

519 VUNITS=1.

520 GUNITS=1.

521 PUNITS=1./P0

522 EUNITS=1./E0

523 ENDIF

524 C freestreamline scaling: scale density by RHOINF

525 C scale velocities by freestreamline velocity, vinf

526 C scale lengths by XLINF

527 C scale pressure by .5*RHOINF*vinf**2

528 C scale energy by .5*vinf**2

529 IF(IUNIT.EQ.3) THEN

530 DUNITS=RHO0/RHOINF

531 XUNITS=1.

532 VUNITS=C0/(C0*Q1)

533 GUNITS=VUNITS/XUNITS

534 PUNITS=1./(.5*RHOINF*(C0*Q1)**2)

535 EUNITS=1./(.5*(C0*Q1)**2)

536 ENDIF

537

538 IF(IBVARY.EQ.1.AND.IMVARY.EQ.1) THEN

539 CHAR=SUMFLG

540 CHAR(8:10)=' ZQ'

541 IF(INTFLG.EQ.2) CHAR(8:10)=' ZN'

542 CHAR(11:17)=' DMNSNL'

543 IF(IUNIT.EQ.2) CHAR(11:17)=' STGNTN'

544 IF(IUNIT.EQ.3) CHAR(11:17)=' FRSTRM'

545 WRITE(CHAR(18:24),'('' NQ='',I3)') NQPNTS

546 WRITE(CHAR(25:31),'('' NT='',I3)') NTPNTS

547 WRITE(CHAR(32:38),'('' NS='',I3)') NUBIG

548 WRITE(CHAR(39:45),'('' KS='',I3)') KBIG

549

550 C Use EXODUS finite element output format

551 C Meaningless values are written in a number of locations

552 C since these are unnecessary

553

554 runid(idlen:idlen+3)='.exo'

555 OPEN (UNIT=NDB,FILE=runid,STATUS='unknown',

556 1 FORM='unformatted')

557 WRITE (NDB) CHAR

558 NUMNOD=NTPNTS*NQPNTS-3

559 NDIM=2

560 NUMEL=(NTPNTS-1)*(NQPNTS-1)-4

561 NELBLK=1

562 NUMNPS=1
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563 LNPSNL=1

564 NUMESS=1

565 LESSEL=1

566 LESSNL=1

567 WRITE (NDB) NUMNOD, NDIM, NUMEL, NELBLK,

568 1 NUMNPS,LNPSNL,NUMESS,LESSEL,LESSNL,1

569 DO 4100 K=1,2

570 ITMP=0

571 DO 4100 J=1,NQPNTS

572 DO 4100 I=1,NTPNTS

573 IF(J.EQ.NQPNTS.AND.(I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))

574 1 GOTO 4100

575 ITMP=ITMP+1

576 OUT(ITMP,K)=(2-K)*X(I,J)+(K-1)*Y(I,J)

577 4100 CONTINUE

578 WRITE(NDB) ((OUT(I,J),I=1,NUMNOD),J=1,NDIM)

579 DO 4200 I=1,NUMEL

580 4200 ICONK(1,I)=I

581 WRITE(NDB)((ICONK(J,I),J=1,1),I=1,NUMEL)

582 NATRIB=1

583 WRITE (NDB) 1,NUMEL,4,NATRIB

584 ITMP=0

585 DO 4300 J=1,NQPNTS-1

586 DO 4300 I=1,NTPNTS-1

587 ITMP2=I+J*NTPNTS

588 IF(J.EQ.NQPNTS-1) THEN

589 IF(I.EQ.1) GOTO 4300

590 IF(I.EQ.IBETA-1.OR.I.EQ.IBETA) GOTO 4300

591 IF(I.EQ.NTPNTS-1) GOTO 4300

592 ITMP2=ITMP2-1

593 IF(I.GT.IBETA) ITMP2=ITMP2-1

594 ENDIF

595 ITMP1=I+(J-1)*NTPNTS

596 ITMP4=ITMP1+1

597 ITMP3=ITMP2+1

598 ITMP=ITMP+1

599 ICONK(1,ITMP)=ITMP1

600 ICONK(2,ITMP)=ITMP2

601 ICONK(3,ITMP)=ITMP3

602 ICONK(4,ITMP)=ITMP4

603 4300 CONTINUE

604 WRITE(NDB) ((ICONK(J,I),J=1,4),I=1,NUMEL)

605 WRITE(NDB) ((OUT(I,J),J=1,NATRIB),I=1,NUMEL)

606 WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)

607 WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)

608 WRITE(NDB) (ICONK(J,1),J=1,NUMNPS)

609 WRITE(NDB) (ICONK(J,1),J=1,LNPSNL)

610 WRITE(NDB) (OUT(J,1),J=1,LNPSNL)

611 WRITE(NDB) (ICONK(J,1),J=1,NUMESS)

612 WRITE(NDB) (ICONK(J,1),J=1,NUMESS)

613 WRITE(NDB) (ICONK(J,1),J=1,NUMESS)

614 WRITE(NDB) (ICONK(J,1),J=1,NUMESS)

615 WRITE(NDB) (ICONK(J,1),J=1,NUMESS)

616 WRITE(NDB) (ICONK(J,1),J=1,LESSEL)

617 WRITE(NDB) (ICONK(J,1),J=1,LESSNL)

618 WRITE(NDB) (OUT(J,1),J=1,LESSNL)

619 WRITE (NDB) 1
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620 WRITE (NDB) CNAME1,CNAME2,CDATE,CTIME

621 WRITE (NDB) 0

622 NAMECO(1)='X'

623 NAMECO(2)='Y'

624 WRITE (NDB) (NAMECO(I), I=1,NDIM)

625 NAMELB(1)='QUAD'

626 WRITE (NDB) NAMELB(1)

627 C

628 NAMEGV(1)='MACHINF'

629 NAMEGV(2)='BETA'

630 NVARGL=2

631

632 NAMENV(1)='DISPX'

633 NAMENV(2)='DISPY'

634 NAMENV(3)='ERRQT'

635 NAMENV(4)='U'

636 NAMENV(5)='V'

637 NAMENV(6)='Q'

638 NAMENV(7)='DENSITY'

639 NAMENV(8)='PRESSURE'

640 NAMENV(9)='ENERGY'

641 NAMENV(10)='MACH'

642 NAMENV(11)='DIVUV'

643 NAMENV(12)='DUDX'

644 NAMENV(13)='DVDY'

645 NAMENV(14)='DUDYDVDX'

646 NAMENV(15)='MGGDUV'

647 NAMENV(16)='MGDVGDUV'

648 NAMENV(17)='NSUM1'

649 NAMENV(18)='NSUM2'

650 NAMENV(19)='NSUM3'

651 NAMENV(20)='NSUM4'

652 NAMENV(21)='KSUM1'

653 NAMENV(22)='KSUM2'

654 NAMENV(23)='KSUM3'

655 NAMENV(24)='KSUM4'

656 NVARNP=24

657 WRITE (NDB) 1,NVARGL,NVARNP,1

658 WRITE (NDB)'EMPTYSET',(NAMEGV(I),I=1,NVARGL),

659 1 (NAMENV(I), I=1,NVARNP),'EMPTYSET'

660 WRITE (NDB) 0

661

662 C Output axis variable for use with GRAPH

663 runid(idlen:idlen+4)='.axs'

664 OPEN (UNIT=NAB,FILE=runid,STATUS='unknown',FORM='FORMATTED')

665 WRITE (NAB,'('' !'',A80)') CHAR

666 ENDIF

667

668 TIMEN=IBVARY+(IMVARY-1)*NBETA

669 WRITE (NDB) TIMEN, 0.

670 WRITE (NDB) (OUT(J,1),J=1,1)

671 OUT(1,1)=XMACHI

672 OUT(2,1)=BETAD

673 WRITE (NDB) (OUT(J,1),J=1,NVARGL)

674 C must have NVARNP calls to WRTNV

675 CALL WRTNV(X,X0,2,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

676 CALL WRTNV(Y,Y0,2,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)
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677 CALL WRTNV(DIS,TMP,1,XUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

678 CALL WRTNV(U,TMP,1,VUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

679 CALL WRTNV(V,TMP,1,VUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

680 CALL WRTNV(Q,TMP,3,VUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)

681 CALL WRTNV(RHO,TMP,3,DUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)

682 CALL WRTNV(PRES,TMP,3,PUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)

683 CALL WRTNV(ENERGY,TMP,3,EUNITS,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)

684 CALL WRTNV(XMACH2,TMP,4,1.,NQPNTS,1,NTPNTS,IBETA,NDB,OUT)

685 CALL WRTNV(DIVU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

686 CALL WRTNV(UX,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

687 CALL WRTNV(VY,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

688 CALL WRTNV(UYORVX,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

689 CALL WRTNV(XMAGDU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

690 CALL WRTNV(DEVU,TMP,1,GUNITS,NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

691 DO 4950 NK=1,2

692 DO 4950 L=1,4

693 ITMP=0

694 DO 4900 J=1,NQPNTS

695 DO 4900 I=1,NTPNTS

696 IF(J.EQ.NQPNTS.AND.

697 1 (I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))GOTO4900

698 IF(NK.EQ.1) TMP=NEST(I,J,INTFLG,L)

699 IF(NK.EQ.2) TMP=KEST(I,J,INTFLG,L)

700 ITMP=ITMP+1

701 OUT(ITMP,1)=TMP

702 4900 CONTINUE

703 WRITE(NDB) (OUT(I,1),I=1,ITMP)

704 4950 CONTINUE

705

706 C On axis output for line graph

707

708 WRITE(NAB,4975) TIMEN,XMACHI,BETAD

709 4975 FORMAT(' !OUTPUT NUMBER = ',F5.0,

710 1 ', MACH = ',F10.4,', BETA = ',F10.2,/,

711 1 ' ! X $ U $ RHO $',

712 2 ' PRES $ ENERGY $ MACHNO $',

713 3 ' DIVU $ UX $ VY $',

714 4 ' XMAGDU $ DEVU $')

715 DO 4980 I=NTPNTS,1,-NTPNTS+1

716 IF(I.EQ.NTPNTS) THEN

717 JMIN=NQPNTS-1

718 JMAX=1

719 JIT=-1

720 ELSE

721 JMIN=1

722 JMAX=NQPNTS-1

723 JIT=1

724 ENDIF

725 DO 4980 J=JMIN,JMAX,JIT

726 OUT(1,1)=X(I,J)*XUNITS

727 OUT(2,1)=U(I,J)*VUNITS

728 OUT(3,1)=RHO(J)*DUNITS

729 OUT(4,1)=PRES(J)*PUNITS

730 OUT(5,1)=ENERGY(J)*PUNITS

731 OUT(6,1)=0.

732 IF(J.NE.1) OUT(6,1)=SQRT(XMACH2(J))

733 OUT(7,1)=DIVU(I,J)*GUNITS
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734 OUT(8,1)=UX(I,J)*GUNITS

735 OUT(9,1)=VY(I,J)*GUNITS

736 OUT(10,1)=XMAGDU(I,J)*GUNITS

737 OUT(11,1)=DEVU(I,J)*GUNITS

738 WRITE(NAB,'(1X,11(1PE11.3))') (OUT(K,1),K=1,11)

739 4980 CONTINUE

740 WRITE(NAB,'(1X,'' $ $ $ $ $ $ $ $ $ $ $'')')

741

742 WRITE(6,*) 'OUTPUT FOR COMPUTATION NUMBER ',TIMEN,' COMPLETED.'

743 5000 CONTINUE

744

745 WRITE(6,*) 'CJETB COMPLETED'

746 CLOSE(UNIT=NAB)

747 CLOSE(UNIT=NDB)

748

749 STOP

750 END

751

752 C auxilary subroutine to write out scaled and adjusted values.

753 SUBROUTINE WRTNV(A1,B1,IFLAG,FACTOR,

754 1 NQPNTS,NTMAX,NTPNTS,IBETA,NDB,OUT)

755 DIMENSION A1(NTMAX,1),B1(NTMAX,1),OUT(1)

756 ITMP=0

757 DO 10 J=1,NQPNTS

758 DO 10 I=1,NTPNTS

759 IF(J.EQ.NQPNTS.AND.(I.EQ.1.OR.I.EQ.NTPNTS.OR.I.EQ.IBETA))GOTO10

760 IF(IFLAG.EQ.1) TMP1= A1(I,J)*FACTOR

761 IF(IFLAG.EQ.2) TMP1=FACTOR*(A1(I,J)-B1(I,J))

762 IF(IFLAG.EQ.3) TMP1=FACTOR*A1(1,J)

763 IF(IFLAG.EQ.4) THEN

764 IF(J.EQ.1) TMP1=0.

765 IF(J.NE.1) TMP1=FACTOR*SQRT(A1(1,J))

766 ENDIF

767 ITMP=ITMP+1

768 OUT(ITMP)=TMP1

769 10 CONTINUE

770 WRITE(NDB) (OUT(I),I=1,ITMP)

771 RETURN

772 END

773

774 C General routine to a sum a series with option to use convergence

775 C accelerators for sequences which can be written in terms of

776 C a Lozenge diagram. Most theory for nonlinear algorithms

777 C gives only regularity and acceleration results for vertical

778 C sequences rather than diagonal sequences. The code checks

779 C on relative error convergence using a comparision between three

780 C elements of the Lozenge diagram: 3 vertical elements if KMAX = 1

781 C or the latest KMAX column term and two latest terms in the preceeding

782 C column as the N increases. If N is less than KMAX then of course

783 C only the largest available columns are checked.

784 C Input:

785 C A(I), I=1,...,N ; external function which evaluates the terms

786 C of the series as a function of I.

787 C WARNING!!! All A(I) must be non-zero. A zero value of A(I)

788 C will be taken as indicative of convergence in the acceleration

789 C algorithms.

790 C RELERR ; Relative error desired between successive approximations.
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791 C NMAX ; maximum number of terms from series

792 C ATYPE ; Character variable giving the requested

793 C acceleration scheme.

794 C Options : NONE

795 C EPSILON (KMAX must be odd. Also known as SHANKS

796 C transformation for KMAX = 3 and iterated

797 C SHANKS for KMAX greater than 3. Roughly

798 C half of the significant figures will be

799 C lost using this algorithm.)

800 C THETA (KMAX must be odd.)

801 C LEVINU KMAX must be GE 2

802 C LEVINT KMAX must be GE 2

803 C

804 C Output:

805 C SEST ; best estimate for sum

806 C NEST ; row number of Lozenge giving best estimate

807 C KEST ; column number of Lozenge giving estimate (usually KMAX)

808 C S(NMAX,KMAX) ; Complete Lozenge diagram. S must be dimensioned

809 C as S(NDIM,K) where K .GE. KMAX.

810 C IERR ; 0 for successful completion; 1 for unsuccessful

811 C

812 C

813 SUBROUTINE CSUM(A,S,NDIM,SEST,RELERR,NEST,KEST,NMAX,KMAX,

814 1 ATYPE,IERR)

815 IMPLICIT COMPLEX (A-H,O-Z)

816 REAL RELERR

817 DIMENSION S(NDIM,KMAX)

818 PARAMETER (MAXQ=1000)

819 DIMENSION QN(MAXQ),QD(MAXQ)

820 CHARACTER*(*) ATYPE

821 EXTERNAL A

822 IERR=0

823 IF(ATYPE.EQ.'NONE') THEN

824 C ignore KMAX

825 KEST = 1

826 S(1,1) = A(1)

827 S(2,1) = S(1,1)+A(2)

828 DO 20 N=3,NMAX

829 S(N,1)= S(N-1,1)+A(N)

830 IF(S(N,1).EQ.0. .AND. S(N-1,1).EQ.0. .AND.

831 1 S(N-2,1).EQ.0. ) GOTO 30

832 IF(ABS( (S(N,1)-S(N-1,1))/S(N,1)) .LE. RELERR. AND.

833 1 ABS( (S(N,1)-S(N-2,1))/S(N,1)) .LE. RELERR) GOTO 30

834 20 CONTINUE

835 WRITE(6,*) 'NO CONVERGENCE IN SUM. BEST ESTIMATE WILL BE USED.'

836 IERR=1

837 N=NMAX

838 30 SEST = S(N,1)

839 NEST = N

840 ELSEIF(ATYPE.EQ.'EPSILON') THEN

841 C KMAX = 1 implies simple summation.

842 IF(MOD(KMAX,2).NE.1.) THEN

843 WRITE(6,*) 'KMAX must be odd for epsilon algorithm.'

844 STOP

845 ENDIF

846 S(1,1)=A(1)

847 DO 200 N=2,NMAX
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848 S(N,1)=A(N)+S(N-1,1)

849 KEST=MIN(N,KMAX)

850 DO 100 K=2,KEST

851 TMP1 = S(N-K+2,K-1)-S(N-K+1,K-1)

852 C Assume no zero terms so that consecutive equality

853 C implies convergence.

854 IF(TMP1.EQ.0.) THEN

855 NEST=N-K+2

856 KEST=K-1

857 SEST=S(NEST,KEST)

858 GOTO220

859 ENDIF

860 TMP2=0.

861 IF(K.GE.3) TMP2=S(N-K+2,K-2)

862 S(N-K+1,K) = TMP2 + 1./TMP1

863 100 CONTINUE

864 IF(MOD(N,2).EQ.1) THEN

865 NEST = N-KEST+1

866 SEST = S(NEST,KEST)

867 SEST1 = S(MIN(NEST+2,N),MAX(KEST-2,1))

868 SEST2 = S(MIN(NEST+1,N-1),MAX(KEST-2,1))

869 IF(ABS((SEST-SEST1)/SEST).LE.RELERR.AND.

870 1 ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 220

871 ENDIF

872 200 CONTINUE

873 WRITE(6,*) 'NO CONVERGENCE IN EPSILON ALGORITHM SUM.'

874 WRITE(6,*) 'BEST ESTIMATE WILL BE USED.'

875 IERR=1

876 220 CONTINUE

877 ELSEIF(ATYPE.EQ.'THETA') THEN

878 C KMAX = 1 implies simple summation.

879 IF(MOD(KMAX,2).NE.1.) THEN

880 WRITE(6,*) 'KMAX must be odd for THETA algorithm.'

881 STOP

882 ENDIF

883 S(1,1)=A(1)

884 S(2,1)=S(1,1)+A(2)

885 DO 1200 N=3,NMAX-1,2

886 KTMP=MIN(N/2+1,KMAX)

887 DO 1200 J=0,1

888 S(N+J,1)=S(N-1+J,1)+A(N+J)

889 NEST=N+J

890 KEST=1

891

892 NUP=N+J

893 K=1

894 DO 1100 K=2,KTMP

895 NUP=N-2*K+2+J

896 IF(MOD(K,2).EQ.0) THEN

897 C update even column: not an estimate

898 TMP1 = S(NUP+1,K-1)-S(NUP,K-1)

899 IF(TMP1.EQ.0.) THEN

900 NEST = NUP+1

901 KEST = K-1

902 SEST = S(NEST,KEST)

903 GOTO 1220

904 ENDIF
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905 TMP2=0.

906 IF(K.GE.4) TMP2=S(NUP+1,K-2)

907 S(NUP,K) = TMP2 + 1./TMP1

908 ELSE

909 C update odd columns giving estimates

910 TMP1=S(NUP+1,K-1)-S(NUP,K-1)

911 TMP2=S(NUP+2,K-1)-S(NUP+1,K-1)

912 TMP3=TMP2-TMP1

913 S(NUP,K)=(S(NUP+2,K-2)*TMP2-S(NUP+1,K-2)*TMP1)/TMP3

914 KEST=K

915 NEST=NUP

916 ENDIF

917 1100 CONTINUE

918 SEST=S(NEST,KEST)

919 IF(KEST.EQ.1) THEN

920 SEST1=S(NEST-1,KEST)

921 SEST2=S(NEST-2,KEST)

922 ELSEIF(NEST.EQ.1)THEN

923 SEST1=S(NEST+3,KEST-2)

924 SEST2=S(NEST+4,KEST-2)

925 ELSE

926 SEST1=S(NEST-1,KEST)

927 SEST2=S(NEST+4,KEST-2)

928 ENDIF

929 IF(ABS((SEST-SEST1)/SEST).LE.RELERR.AND.

930 1 ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 1220

931 1200 CONTINUE

932 WRITE(6,*) 'NO CONVERGENCE IN THETA ALGORITHM SUM.'

933 WRITE(6,*) 'BEST ESTIMATE WILL BE USED.'

934 IERR=1

935 1220 CONTINUE

936 ELSEIF(ATYPE.EQ.'LEVINU'.OR.ATYPE.EQ.'LEVINT') THEN

937 IF(KMAX.GT.MAXQ.OR.KMAX.LT.2) STOP

938 S(1,1) = A(1)

939 AN=A(2)

940 C Zero terms imply convergence

941 IF(AN.EQ.0.) THEN

942 NEST=1

943 KEST=1

944 SEST=S(NEST,KEST)

945 GOTO 3000

946 ENDIF

947 QD(1) = 1./AN

948 QN(1)=S(1,1)*QD(1)

949 DO 2000 N=2,NMAX-1

950 S(N,1)= S(N-1,1)+AN

951 AN=A(N+1)

952 IF(AN.EQ.0.) THEN

953 NEST=N

954 KEST=1

955 SEST=S(NEST,KEST)

956 GOTO 3000

957 ENDIF

958 QD(N) = 1./AN/N

959 IF(ATYPE.EQ.'LEVINU') QD(N)=QD(N)/N

960 QN(N)=S(N,1)*QD(N)

961 DO 2000 K = 2,MIN(N,KMAX)
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962 NMKP1=N-K+1

963 TMP1 = 1.

964 IF(K.GT.2.) TMP1= (FLOAT(N-1)/FLOAT(N))**(K-2)

965 TMP1 = FLOAT(NMKP1)/N*TMP1

966 QN(NMKP1) = QN(NMKP1+1) - TMP1*QN(NMKP1)

967 QD(NMKP1) = QD(NMKP1+1) - TMP1*QD(NMKP1)

968 TMP=QD(NMKP1)

969 IF(TMP.EQ.0.) TMP=1.E-15

970 S(NMKP1,K) = QN(NMKP1)/TMP

971 NEST = NMKP1

972 KEST = K

973 SEST=S(NEST,KEST)

974 SEST1=S(NEST+1,KEST-1)

975 SEST2=S(NEST,KEST-1)

976 IF(ABS((SEST-SEST1)/SEST).LE.RELERR.AND.

977 1 ABS((SEST-SEST2)/SEST).LE.RELERR) GOTO 3000

978 2000 CONTINUE

979 WRITE(6,*) 'NO CONVERGENCE IN ',ATYPE,' SUM.'

980 WRITE(6,*) 'BEST ESTIMATE WILL BE USED.'

981 IERR=1

982 3000 CONTINUE

983 ELSE

984 WRITE(6,*) 'BAD VALUE OF ACCELERATION FLAG IN ROUTINE SUM'

985 STOP

986 ENDIF

987 RETURN

988 END

989

990 COMPLEX FUNCTION ZN(I)

991 PARAMETER(NQMAX=100,NUMAX=200,NTMAX=100)

992 COMPLEX EITHTA

993 COMMON /FLOCOM/ IQ,IQ1,EITHTA,PI,SNTH(NUMAX),CNTH(NUMAX)

994 COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,

995 1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),

996 2 ENERGY(NQMAX),PRES(NQMAX),XMACH2(NQMAX),

997 3 FPDF(NUMAX,NQMAX),XLNF(NUMAX,NQMAX),

998 4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),

999 5 PSI(NUMAX,NQMAX),PSIP(NUMAX,NQMAX),

1000 6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)

1001 IF(I.EQ.1) THEN

1002 ZN=0.

1003 ELSE

1004 IF(IQ.EQ.1) THEN

1005 C Q=0 value

1006 ZN =0.

1007 ELSE

1008 C Q ne zero

1009 TMP3=-(1./I + PSIRAT(I,IQ))

1010 TMP4=1.+PSIRAT(I,IQ)/I

1011 TMP5=I/FLOAT(I*I-1)

1012 TMP5=TMP5*PSI(I,IQ)/(RHO(IQ)*Q(IQ))

1013 ZN =EITHTA*CMPLX(TMP3*CNTH(I),TMP4*SNTH(I))*TMP5

1014 ENDIF

1015 ENDIF

1016 ZN=ZN*Q1*RHO(IQ1)/PI

1017 RETURN

1018 END
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1019

1020 COMPLEX FUNCTION ZDQ(I)

1021 PARAMETER(NQMAX=100,NUMAX=200,NTMAX=100)

1022 COMMON /FLOCOM/ IQ,IQ1,EITHTA,PI,SNTH(NUMAX),CNTH(NUMAX)

1023 COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,

1024 1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),

1025 2 ENERGY(NQMAX),PRES(NQMAX),XMACH2(NQMAX),

1026 3 FPDF(NUMAX,NQMAX),XLNF(NUMAX,NQMAX),

1027 4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),

1028 5 PSI(NUMAX,NQMAX),PSIP(NUMAX,NQMAX),

1029 6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)

1030 COMPLEX EITHTA

1031 IF(I.EQ.1) THEN

1032 ZDQ=0.

1033 ELSE

1034 IF(IQ.EQ.1) THEN

1035 C Q=0 LIMITS

1036 IF(I.EQ.2) THEN

1037 TMP2=1./(QMAX2*PSI2T1)

1038 ELSE

1039 TMP2=0.

1040 ENDIF

1041 ELSE

1042 C Q NE 0

1043 TMP2=PSI(I,IQ)/(RHO(IQ)*Q(IQ)**2)

1044 ENDIF

1045 TMP3=-(1.-XMACH2(IQ))

1046 TMP4=PSIRAT(I,IQ)

1047 ZDQ =TMP2*EITHTA*CMPLX(TMP3*CNTH(I),TMP4*SNTH(I))

1048 ZDQ=ZDQ*Q1*RHO(IQ1)/PI

1049 ENDIF

1050 RETURN

1051 END

1052

1053 SUBROUTINE CHPLGN(NQPNTS,RELERR)

1054 C Compute important Chaplygin function quantities:

1055 C F'/F (FPDF), log F (XLNF), F (F), F' (FP),

1056 C \psi/\psi(\tau_1) (PSI), \psip/\psi(\tau_1) (PSIP)

1057 C 2\tau \psip/(n\psi) (PSIRAT)

1058 C \psi_2(\tau_1) (PSI2T1)

1059 C for NQPNTS \tau points and positive integral order up to NUMAX to

1060 C a relative error of RELERR. TAU(1) must be 0 and TAU(NQPNTS)=TAU1.

1061 PARAMETER(NQMAX=100,NUMAX=200,NTMAX=100)

1062 PARAMETER(NCMAX=500)

1063 DIMENSION AS(NCMAX),BS(NCMAX),SUM(NCMAX),Z(11)

1064 C Continued Fraction Sum COMmon passes parameters to CFSUM

1065 COMMON/CFSCOM/ CFSPRM(4)

1066 COMMON /GASCOM/ GAMMA,GM1D2,QMAX2,QCR2,TAUCR,Q1,TAU1,PSI2T1,

1067 1 Q(NQMAX),TAU(NQMAX),RHO(NQMAX),

1068 2 ENERGY(NQMAX),PRES(NQMAX),XMACH2(NQMAX),

1069 3 FPDF(NUMAX,NQMAX),XLNF(NUMAX,NQMAX),

1070 4 F(NUMAX,NQMAX),FP(NUMAX,NQMAX),

1071 5 PSI(NUMAX,NQMAX),PSIP(NUMAX,NQMAX),

1072 6 PSIRAT(NUMAX,NQMAX),NCHPSM(NUMAX,NQMAX)

1073 DO 400 NU=1,NUMAX

1074 APB=NU-1./(GAMMA-1.)

1075 ATB=-.5*NU*(NU+1)/(GAMMA-1.)
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1076 B=(APB+SQRT(APB**2-4.*ATB))/2.

1077 A=ATB/B

1078 C=NU+1

1079 CFSPRM(1)=A

1080 CFSPRM(2)=B

1081 CFSPRM(3)=C

1082 CFSPRM(4)=0

1083 IF(TAU(1).NE.0.) THEN

1084 WRITE(6,*) 'TAU(1) .NE. 0'

1085 STOP

1086 ENDIF

1087 CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)

1088 NCHPSM(NU,1)=NSUM

1089 TMP = C*SUM(NSUM)/ATB

1090 TMP2= 1./TMP

1091 FPDF(NU,1)=TMP2

1092 XLNF(NU,1)=0.

1093 DO 400 I = 2,NQPNTS

1094 TMP1=TMP2

1095 XL = TAU(I-1)

1096 XR = TAU(I)

1097 H = XR-XL

1098 CFSPRM(4)=XR

1099 CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)

1100 NCHPSM(NU,I)=NSUM

1101 TMP = C*SUM(NSUM)/A

1102 ZTAU = TAU(I)

1103 C **** ZTAU is zero for second continued fraction

1104 IF(ZTAU.LT.0.) ZTAU=0.

1105 TMP = (TMP-ZTAU)/B

1106 TMP2= 1./TMP

1107 FPDF(NU,I)=TMP2

1108 TMP3 =.5*(TMP1+TMP2)

1109 Z(1) = TMP3*H

1110

1111 DO 395 K=1,10

1112 KNUM=2**K

1113 DO 390 L=1,KNUM/2

1114 XTMP = H*FLOAT(2*L-1)/KNUM + XL

1115 CFSPRM(4)=XTMP

1116 CALL CFSUM(AS,BS,SUM,NSUM,NCMAX,RELERR)

1117 TMP = C*SUM(NSUM)/A

1118 ZTAU = XTMP

1119 C **** ZTAU is zero for second continued fraction

1120 IF(ZTAU.LT.0.) ZTAU=0.

1121 TMP = (TMP-ZTAU)/B

1122 TMP = 1./TMP

1123 TMP3 = TMP3+TMP

1124 390 CONTINUE

1125 Z(K+1)=TMP3*H/KNUM

1126 TMP=KNUM**2

1127 DO 391 L=K,1,-1

1128 391 Z(L)= (TMP*Z(L+1)-Z(L))/(TMP-1.)

1129 IF(ABS( (Z(1)-Z(2))/Z(1)).LT.RELERR) GOTO399

1130 395 CONTINUE

1131 WRITE(6,*) 'NO ROMBERG CONVERGENCE'

1132 STOP
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1133 399 XLNF(NU,I) = XLNF(NU,I-1) + Z(1)

1134 400 CONTINUE

1135

1136 C Evaluate remaining quantities

1137 C \tau = 0

1138 C Order 1

1139 NU=1

1140 F(NU,1)=1.

1141 FP(NU,1)=FPDF(NU,1)

1142 PSI(NU,1)=0.

1143 C d\psi_1/d\tau is infinite at \tau = 0.

1144 PSIP(NU,1)=1.E+30

1145 PSIRAT(NU,1)=1.

1146 C Order 2

1147 NU=2

1148 F(NU,1)=1.

1149 FP(NU,1)=FPDF(NU,1)

1150 PSI(NU,1)=0.

1151 PSI2T1=TAU(NQPNTS)*EXP(XLNF(NU,NQPNTS))

1152 PSIP(NU,1)=1./PSI2T1

1153 PSIRAT(NU,1)=1.

1154 C Order 3 or move

1155 DO 500 NU=3,NUMAX

1156 F(NU,1)=1.

1157 FP(NU,1)=FPDF(NU,1)

1158 PSI(NU,1)=0.

1159 PSIP(NU,1)=0.

1160 PSIRAT(NU,1)=1.

1161 500 CONTINUE

1162 C \tau greater than zero

1163 DO 600 I=2,NQPNTS

1164 DO 600 NU=1,NUMAX

1165 F(NU,I)=EXP(XLNF(NU,I))

1166 FP(NU,I)=FPDF(NU,I)*F(NU,I)

1167 C PSI's must be normalized to avoid underflow at large nu

1168 C Thus PSI = \psi(\tau)/\psi(\tau_1) and PSIP = \psi'(\tau)/\psi(\tau_1)

1169 PSI(NU,I)=EXP(.5*NU*LOG(TAU(I)/TAU(NQPNTS))

1170 1 +XLNF(NU,I)-XLNF(NU,NQPNTS))

1171 TMP=2.*TAU(I)/NU

1172 PSIP(NU,I)=PSI(NU,I)*(1./TMP+FPDF(NU,I))

1173 PSIRAT(NU,I)=1.+TMP*FPDF(NU,I)

1174 600 CONTINUE

1175

1176 RETURN

1177 END

1178

1179 C Routine to evaluate a continued fraction of the form

1180 C b_0 + a_1/b_1 + a_2/b_2 + ...

1181 C with numerator A_n and denominator B_n of the n_th approximate

1182 C where

1183 C A_n = b_n*A_{n-1} + a_n * A_{n-2}

1184 C B_n = b_n*B_{n-1} + a_n * B_{n-2}

1185 C

1186 C for n = 1,2,....

1187 C

1188 C A_-1=1 , A_0 = b_0 , B_-1=0, B_0=1

1189 C
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1190 C Input:

1191 C NMAX = Maximum value of N. N must be at least 3

1192 C RELERR = Desired relative error between successive approximations

1193 C before stopping. When 3 successive estimates vary by less

1194 C than RELERR from their mean, then the evaluation process stops.

1195 C Output:

1196 C NSUM = value of n at which evaluation stops

1197 C (A(I),I=1,NSUM) = values of the coefficients A_n

1198 C (B(I),I=1,NSUM) = values of the coefficients B_n

1199 C (SUM(I),I=1,NSUM) = successive estimates for value of continued

1200 C fraction.

1201 C

1202 C W is a convergence acceleration factor for limit periodic continued

1203 C fractions. W is set equal to the subdominant root of

1204 C S**2-b*S-a=0 in ABFUNC to subtract out leading subdominant term.

1205 C Otherwise W=0.

1206 C

1207 C Warning: This routine does not test for divide by zero.

1208 C

1209 SUBROUTINE CFSUM(A,B,SUM,NSUM,NMAX,RELERR)

1210 DIMENSION A(NMAX),B(NMAX),SUM(NMAX)

1211 PARAMETER(RESCALE=1.E+25)

1212 CALL ABFUNC(0,ADUM,B0,W)

1213 CALL ABFUNC(1,A1,B1,W)

1214 A(1)=B1*B0 + A1

1215 B(1)=B1

1216 SUM(1)=A(1)/B(1)

1217 CALL ABFUNC(2,A2,B2,W)

1218 A(2)=B2*A(1)+A2*B0

1219 B(2)=B2*B(1)+A2

1220 SUM(2)=(A(2)-W*A(1))/(B(2)-W*B(2))

1221 DO 100 I=3,NMAX

1222 CALL ABFUNC(I,AI,BI,W)

1223 IF(ABS(A(I-1)).GT.RESCALE .OR.

1224 1 ABS(B(I-1)).GT.RESCALE ) THEN

1225 A(I-1)=A(I-1)/RESCALE

1226 A(I-2)=A(I-2)/RESCALE

1227 B(I-1)=B(I-1)/RESCALE

1228 B(I-2)=B(I-2)/RESCALE

1229 ENDIF

1230 A(I)=BI*A(I-1)+AI*A(I-2)

1231 B(I)=BI*B(I-1)+AI*B(I-2)

1232 SUM(I)=(A(I)-A(I-1)*W)/(B(I)-B(I-1)*W)

1233 SEST=(SUM(I)+SUM(I-1)+SUM(I-2))/3.

1234 TMP=ABS(SUM(I)/SEST-1.)

1235 IF( TMP .LE.RELERR .AND.

1236 1 ABS(SUM(I-1)/SEST-1.).LE.RELERR .AND.

1237 2 ABS(SUM(I-2)/SEST-1.).LE.RELERR) THEN

1238 NSUM=I

1239 RETURN

1240 ENDIF

1241 100 CONTINUE

1242 WRITE(6,*) 'CONVERGENCE NOT ACHIEVED IN CFSUM'

1243 NSUM=NMAX

1244 RETURN

1245 END

1246
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1247 C Evaluate A_n and B_N for hypergeometric function continued fractions.

1248 C ABFUNC is called by CFSUM.

1249 C W is the subdominant root of the limit characteristic equation and

1250 C can significantly accelerate the convergence for some continued fractions.

1251 C In this application the acceleration option is not implemented, i.e. W=0.

1252 SUBROUTINE ABFUNC(N,AN,BN,W)

1253 COMMON/CFSCOM/ CFSPRM(4)

1254 A=CFSPRM(1)

1255 B=CFSPRM(2)

1256 C=CFSPRM(3)

1257 X=CFSPRM(4)

1258 IF(X.GE.0.) THEN

1259 AN=-(B+N)*(C-A+N-1)/((C+N-1)*(C+N))

1260 AN=AN*X

1261 BN=(B-A+N)/(C+N)

1262 BN=BN*X+1

1263 IF(N.EQ.0) BN=1.

1264 W=0.

1265 C W=X ! Subdominant root of limit char. equation for acceleration.

1266 C In this case the asymptotic behavior of AN and BN only goes like

1267 C 1/N so the convergence acceleration is not very spectacular

1268 C especially for large N. Convergence acceleration is not implemented.

1269 ELSE

1270 AN=(B+N)*(A+N)/((C+N-1)*(C+N))

1271 AN=AN*X*(1.-X)

1272 BN=(A+B+2*N+1)/(C+N)

1273 BN=1.-BN*X

1274 W=0.

1275 C W=-X ! Subdominant root of limit char. equation for acceleration.

1276 C In this case the asymptotic behavior of AN and BN only goes like

1277 C 1/N so the convergence acceleration is not very spectacular

1278 C especially for large N. Convergence acceleration is not implemented.

1279 ENDIF

1280 RETURN

1281 END

1282

1283 C Modified Hermite interpolation fits an NF+NDF-1 degree polynomial to

1284 C NF points of a function and the derivative of the function at NDF

1285 C of these points. Hermite interpolation implies NF=NDF.

1286 C This routine evalutes the modified Hermite interpolation polynomial

1287 C at the point X.

1288 C Reference: A. Ralston and P. Rabinowitz, A First Course in Numerical

1289 C Analysis, McGraw-Hill, 1978, pp.70-73.

1290 C Author: Allen C. Robinson

1291 C Last modification date: October 14, 1988

1292 SUBROUTINE HERMIT(XI,FI,DFI,NF,NDF,X,F,DF)

1293 C INPUT

1294 C NF = NUMBER OF INTERPOLATION POINTS (NF .LE. 20)

1295 C NDF = NUMBER OF DERIVATIVES TO INTERPOLATE

1296 C XI(I) = ARRAY OF DISTINCT ABSCISSA POINTS I=1,NF

1297 C FI(I) = FUNCTION VALUES AT XI(I),I=1,NF

1298 C DFI(I) = DERIVATIVE VALUES AT XI(I),I=1,NDF WHERE NDF<=NF

1299 C X = ABSCISSA FOR INTERPOLATION

1300 C OUTPUT

1301 C F = VALUE OF INTERPOLANT AT X

1302 C DF = VALUE OF DERIVATIVE OF INTERPOLANT AT X

1303 C ERROR MESSAGES TO UNIT 6
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1304 C

1305 REAL WORK(20),XI(NF),FI(NF),DFI(NDF)

1306 IF(NF.GT.20) THEN

1307 WRITE(6,*) 'TOO MANY INTERPOLATION POINTS'

1308 STOP

1309 ENDIF

1310 C Check for X equal one of interpolation points with given derivative.

1311 DO 5 I=1,NDF

1312 IF(X.EQ.XI(I)) THEN

1313 F=FI(I)

1314 DF=DFI(I)

1315 GOTO150

1316 ENDIF

1317 5 CONTINUE

1318 C Check for X equal to a simple interpolation point.

1319 DO 10 II=NDF+1,NF

1320 IF(X.EQ.XI(II)) THEN

1321 F=FI(II)

1322 DF=0

1323 DO 15 J=1,NF

1324 PJNP=1.

1325 PJNPJ=0.

1326 DO 16 I=1,NF

1327 IF(I.NE.J) THEN

1328 TMP=1./(XI(J)-XI(I))

1329 IF(I.NE.II) PJNP=PJNP*(X-XI(I))*TMP

1330 PJNPJ=PJNPJ+TMP

1331 ENDIF

1332 IF(I.EQ.NDF) THEN

1333 PJR=PJNP

1334 PJRPJ=PJNPJ

1335 ENDIF

1336 16 CONTINUE

1337 TMP4=0.

1338 IF(J.EQ.II) THEN

1339 PJNP=PJNPJ

1340 DO 17 K=1,NDF

1341 17 TMP4=TMP4+PJR/(X-XI(K))

1342 ELSE

1343 PJNP=PJNP/(XI(J)-XI(II))

1344 ENDIF

1345 IF(J.LE.NDF) THEN

1346 TMP=X-XI(J)

1347 TMP3=PJNP*PJR

1348 DF=DF+(1.-TMP*(PJNPJ+PJRPJ))*TMP3*FI(J)

1349 DF=DF+TMP*TMP3*DFI(J)

1350 ELSE

1351 DF=DF+(PJNP*PJR+TMP4)*FI(J)

1352 ENDIF

1353 15 CONTINUE

1354 GOTO150

1355 ENDIF

1356 10 CONTINUE

1357 C Evaluate polynomial and derivative and X

1358 F=0

1359 DF=0

1360 DO 50 J=1,NDF
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1361 PJN=1.

1362 PJNPJ=0.

1363 DO 25 I=1,NF

1364 IF(I.NE.J) THEN

1365 TMP=1./(XI(J)-XI(I))

1366 WORK(I)=X-XI(I)

1367 PJN=PJN*WORK(I)*TMP

1368 PJNPJ=PJNPJ+TMP

1369 ENDIF

1370 IF(I.EQ.NDF) THEN

1371 PJR=PJN

1372 PJRPJ=PJNPJ

1373 ENDIF

1374 25 CONTINUE

1375 PJNP=0.

1376 PJRP=0.

1377 DO 30 I=1,NF

1378 IF(I.NE.J) PJNP=PJNP+PJN/WORK(I)

1379 IF(I.NE.J.AND.I.LE.NDF) PJRP=PJRP+PJR/WORK(I)

1380 30 CONTINUE

1381 TMP=X-XI(J)

1382 TMP1=PJN*PJR

1383 TMP2=PJNPJ+PJRPJ

1384 TMP3=1.-TMP*TMP2

1385 F=F+TMP3*TMP1*FI(J)

1386 F=F+TMP*TMP1*DFI(J)

1387 TMP4=PJNP*PJR+PJN*PJRP

1388 DF=DF+FI(J)*(-1.*TMP2*TMP1+TMP3*TMP4)

1389 DF=DF+DFI(J)*(TMP1+TMP*TMP4)

1390 50 CONTINUE

1391 DO 100 J=NDF+1,NF

1392 PJN=1.

1393 DO 75 I=1,NF

1394 IF(I.NE.J) THEN

1395 TMP=1./(XI(J)-XI(I))

1396 WORK(I)=X-XI(I)

1397 PJN=PJN*WORK(I)*TMP

1398 ENDIF

1399 IF(I.EQ.NDF) PJR=PJN

1400 75 CONTINUE

1401 PJNP=0.

1402 PJRP=0.

1403 DO 80 I=1,NF

1404 IF(I.NE.J) PJNP=PJNP+PJN/WORK(I)

1405 IF(I.LE.NDF) PJRP=PJRP+PJR/WORK(I)

1406 80 CONTINUE

1407 TMP1=PJN*PJR

1408 F=F+PJN*PJR*FI(J)

1409 DF=DF+FI(J)*(PJNP*PJR+PJN*PJRP)

1410 100 CONTINUE

1411 150 RETURN

1412 END
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