
SAND REPORT
SAND 2002-3783
Unlimited Release
Printed November 2002

On the Development of a Java-Based
Tool for Multifidelity Modeling of
Coupled Systems: LDRD Final Report

David R. Gardner, Joseph P. Castro, Mark A. Gonzales, Gary L. Hennigan, and
Michael F. Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

SAND 2002-3783
Unlimited Release

Printed November 2002

On the Development of a Java-Based Tool
for Multifidelity Modeling of Coupled

Systems: LDRD Final Report

David R. Gardner, Joseph P. Castro, and Gary L. Hennigan,
Computational Sciences Department

Mark A. Gonzales
Distributed Information Systems Department

Michael F. Young
Modeling and Analysis Department

Sandia National Laboratories
P. O. Box 5800, MS 0316

Albuquerque, New Mexico 87185-0316

November 14, 2002

Abstract

This report describes research and development of methods to couple vastly
different subsystems and physical models and to encapsulate these methods in
a JavaTM-based framework. The work described here focused on developing a
capability to enable design engineers and safety analysts to perform multifi-
delity, multiphysics analyses more simply. In particular this report describes
a multifidelity algorithm for thermal radiative heat transfer and illustrates its
performance. Additionally, it describes a module-based computer software ar-
chitecture that facilitates multifidelity, multiphysics simulations. The architec-
ture is currently being used to develop an environment for modeling the effects
of radiation on electronic circuits in support of the FY 2003 Hostile Environ-
ments Milestone for the Accelerated Strategic Computing Initiative.

3

Acknowledgments

This work was supported by the Laboratory Directed Research and Development
(LDRD) program at Sandia National Laboratories.

The authors thank Russell Hooper, Ph.D. and J. Randall Weatherby, Ph.D. for
comments and suggestions that improved this report.

4

Contents

1 Introduction . 9

2 Multifidelity Modeling Concepts . 10
Combat Modeling . 10
Numerical Zooming . 12

3 Issues in Multifidelity Modeling . 12

4 A Multifidelity Algorithm for Thermal Radiation. 14
Description of the Multifidelity Algorithm . 14
Implementation of the Multifidelity Algorithm . 16
Linking Electronics Modeling to Modules in the System 16
Tests of the Multifidelity Algorithm . 17
Timing Results . 28
Extension of the Multifidelity Algorithm to Thermal Conduction 31

5 The Entero System Engineering Environment . 32
Entero Design Goals . 33
A Prototype Entero Environment for Coupled Thermal-Electrical Modeling . 34
Limitations of the Prototype Architecture . 41
An Improved Entero Software Architecture . 41
An Improved Entero Environment for Coupled Thermal-Electrical Modeling . 51

6 Summary . 54

References . 56

5

Figures

1 Illustration of Mixed-Fidelity System Models . 15
2 The Test System . 17
3 The Zero-Dimensional Test System . 18
4 The Mixed-Fidelity Test System . 19
5 The Three-Dimensional Test System. 20
6 AF&F Surface-Average Temperatures for the Heating Problem 21
7 AF&F Volume-Average Temperatures for the Heating Problem 22
8 AF&F Internal Temperatures for the Heating Problem 22
9 AF&F Maximum Temperature for the Heating Problem 23
10 AF&F Minimum Temperature for the Heating Problem 24
11 Locations of Thermal Pins in the AF&F . 25
12 Temperature Histories for Thermal Pin 1 for the Heating Problem 25
13 Temperature Histories for Thermal Pin 2 for the Heating Problem 26
14 Temperature Histories for Thermal Pin 3 for the Heating Problem 27
15 Surface-Average Temperatures for the Cooling Problem 28
16 AF&F Volume-Average Temperatures for the Cooling Problem 29
17 AF&F Internal Temperatures for the Cooling Problem 29
18 Maximum Temperature for the Cooling Problem 30
19 Minimum Temperature for the Cooling Problem 31
20 Temperature History for Thermal Pin 1 for the Cooling Problem 32
21 Temperature History for Thermal Pin 2 for the Cooling Problem 33
22 Temperature History for Thermal Pin 3 for the Cooling Problem 34
23 Surface-Average Temperatures for the Time-Dependent Problem 35
24 Volume-Average Temperatures for the Time-Dependent Problem 36
25 AF&F Internal Temperatures for Time-Dependent Boundary Condi-

tion Problem . 37
26 Output Voltages for the LM-185 Circuit . 38
27 Entero Prototype Functional Architecture Levels 39
28 The Class Hierarchy for an Entero Module in the Prototype 39
29 The Entero Prototype Graphical User Interface and Post-Processor 40
30 UML Diagram for Modules . 45
31 CompositeModules . 46
32 PhysicsPMType and Its Handler Class . 47
33 A CompositeModule and Its Handler Manager . 48
34 The ApplicationModule . 49
35 UML Diagram of PortModule . 50
36 The Thermal Link Implemented as a PortModule 52
37 The Improved Entero Graphical User Interface for Coupled Thermal-

Electrical Modeling . 53

6

Tables

1 CPU Times for the Test Cases . 30
2 Comparison of Framework and Library Environments 43

7

Intentionally Blank Page

8

On the Development of a
Java-Based Tool for

Multifidelity Modeling of
Coupled Systems: LDRD Final

Report

1 Introduction

Engineers at Sandia National Laboratories simulate or test a wide variety of complex
systems. These systems range from national infrastructure to nuclear power plants
to weapons to micro-electrical-mechanical systems (MEMS) to living cells.

Historically, engineers at Sandia have relied on tests to characterize such complex
systems. Political, economic, and environmental factors increasingly constrain the
ability of engineers to conduct tests as they have in the past. Sandia engineers must
now rely increasingly on modeling and simulation of these disparate complex systems.

These disparate, complex systems must often be modeled at different levels of
fidelity. For example, risk assessment studies for nuclear reactors are conducted with
fault tree models in which the component models are of very low fidelity (e.g., binary
decisions) [1]. In contrast, studies of systems such as neutron generators use the
highest fidelity physics models available and tax the capabilities of the most powerful
computers in the world [2].

As engineers rely more and more on modeling and simulation, they will also use
more mixed-fidelity system simulations, i.e., simulations that contain models of dif-
fering fidelities. For example, a drift-diffusion model of a transistor might be used in
a lumped-parameter circuit model to more accurately model the transistor behavior
in a radiation environment.

Significant effort has been invested in developing high-fidelity models for parts
of nuclear weapons (e.g., the neutron generator). However, comparatively little ef-
fort has been invested in developing computer modeling tools to examine interactions
among weapon subsystems. Computer tools for modeling complex subsystem inter-
actions in a nuclear weapon in varied environments and over a wide range of time
scales (from nanoseconds to years) at multiple levels of fidelity can enable designers
and safety analysts to perform their jobs “faster, better, and cheaper” [3].

The goal of the work described here was to develop methods to couple vastly
different subsystems and physical models and to encapsulate these methods within a
framework accessed by a JavaTM-based interface. This framework is called the Entero
system engineering environment.

9

In the next section we discuss concepts in multifidelity modeling. Then we discuss
our work to develop mixed-fidelity system models for thermal radiation heat transfer.
Next we describe the architecture for the Entero system engineering environment and
the prototype environment for multifidelity thermal/electrical modeling. We conclude
with a summary and a description of our current work.

2 Multifidelity Modeling Concepts

As engineers rely more and more on modeling and simulation, they will also use more
multifidelity simulations. In this report we use the term multifidelity model to mean a
system model in which the fidelity of one or more of its components can be changed.
Thus at least one component in the model can be represented by at least two models,
each with a different fidelity. For example, a transistor in an electrical circuit might
be represented by either a behavioral model or by a drift-diffusion model. Sometimes
an analyst analyzes the system using one model or the other for the transistor.

To emphasize cases where the fidelities of the component models used in a system
model are different—for example, a drift-diffusion model of a transistor embedded in
a model in which all the other components are represented by behavioral models—we
will sometimes use the term mixed-fidelity model or simulation.

Such mixed-fidelity models have several advantages. They enable a component
design to be evaluated in the context of a full system, and allow more realistic bound-
ary conditions for the model of the component. They enable more rapid system-level
analysis and optimization, because changes to the higher fidelity model can be in-
corporated directly into the system model without constructing an equivalent lower
fidelity model. They enable the uncertainty in knowledge of a component to be
reflected in the fidelity of the model used for the component, independent of the
fidelities of models used for other components. And the resolution and fidelity of
the simulation can be tailored to the requirements of the analysis, using lower fi-
delity models for exploratory studies and hence making better use of computing and
personnel resources [4, 5].

Combat Modeling

Much of the exploration of mixed-fidelity modeling has occurred in the context of
combat modeling [6]. In this context, variable-resolution models are models or fam-
ilies of models in which users can change the resolution at which phenomena are
treated [7, 8, 9, 10, 11], and cross-resolution modeling is linking models with different
resolutions [7, 8, 10, 12, 13].

In combat modeling, a model with higher resolution has more components or more
details than one with lower resolution. For example, a lower resolution model of a

10

battalion of tanks might describe the battalion as a whole by the number of tanks
and some average location of the battalion, while a higher resolution model might
describe the motions of the individual tanks.

Davis and Bigelow note that resolution is often defined simply as “the level of
detail at which system components and their behaviors are depicted” [6]. In the
context of combat modeling, this definition for resolution is ambiguous because it can
be applied to many different features of the model, including the spatial scale, the
temporal scale, the physical processes included, the number of objects, the number
of attributes of each object, and the degree of interaction between objects.

One objective for combat modeling is to develop the ability to use multiresolution
models. Multiresolution modeling is building a single model or a family of mod-
els with alternative user modes involving different levels of resolution for the same
phenomena [6, 14, 15].

In combat modeling involving models with different resolutions, lower resolution
entities must interact with entities with higher resolution. When a higher resolution
entity must interact with a lower level entity, one model or the other must be changed
so that they can interact at the same level of resolution. For example, consider a single
tank (a higher resolution entity) interacting with a battalion of tanks treated as a
single entity (a lower resolution entity). The process of dynamically changing model
resolution is called disaggregation if the resolution of the model for the lower resolution
entity is increased in resolution to correspond to the resolution of the model for the
higher resolution entity. The process of dynamically changing model resolution is
called aggregation if the resolution of the model for the higher resolution entity is
decreased in resolution to correspond to the resolution of the model for the lower
resolution entity. The problem of linking simulations at different resolutions is called
the aggregation-disaggregation problem [13, 12, 13, 15, 16, 17, 18, 19].

The process of creating a lower resolution model from a higher resolution one is
called model abstraction [4, 15, 20, 21, 22, 23, 24, 25, 26]. This is an active area of
research.

An important issue in multiresolution modeling is whether a lower resolution
model and a higher level model are consistent. A lower resolution model and a higher
resolution model are said to be weakly consistent if the projection of the state of the
higher resolution model to the space of the lower resolution model is sufficiently close
to the state of the lower resolution model. For example, a three-dimensional thermal
model might be weakly consistent with a zero-dimensional thermal model if the aver-
age temperature of the three-dimensional model is within a specified tolerance of the
temperature of the zero-dimensional model.

A lower resolution model and a higher resolution model are said to be strongly
consistent if the projection of the state of the lower resolution model to the space of the
higher resolution model is sufficiently close to the state of the higher resolution model.
For example, a zero-dimensional thermal model might be strongly consistent with a

11

three-dimensional thermal model if the single temperature of the zero-dimensional
model when projected to the space of the three-dimensional model is within a specified
tolerance of the temperature field of the three-dimensional model.

Strong consistency is much rarer than weak consistency. Whether the model
states are “sufficiently close” depends on the modeling perspective. For example, it
may be sufficient for a graph generated from the lower resolution model to indicate
the same trends as a graph generated from the projected state of the higher resolution
model [6, 27].

A higher resolution model is often inferred to be more accurate than a lower
resolution model. However, the addition of more detail does not necessarily improve
accuracy [6, 20]. And in practice, lower resolution models are used frequently and
successfully. For example, many engineering systems such as bridges and automobiles
are designed and built using classical mechanics rather than relativistic mechanics,
even though the latter is more accurate.

Numerical Zooming

The term numerical zooming has also been used to describe simulations in which one
component of the system has a higher fidelity than the others, i.e., mixed-fidelity
modeling. For example, Reed and Afjeh used a three-dimensional, Navier-Stokes
model of a fan to compute performance maps for zero-dimensional thermodynamic
component models in a turbofan engine simulation [28, 29, 30]. Follen and auBou-
chon have implemented mixed-fidelity modeling in the National Cycle Program of
the National Propulsion System Simulation by inserting one-dimensional compressor
models in a zero-dimensional model of a turbofan engine [5].

3 Issues in Multifidelity Modeling

A variety of issues arise in multifidelity modeling. These include integrating models
with differing dimensionalities (e.g., integrating a zero-dimensional thermal model
with a three-dimensional, finite-element thermal model), integrating models with dif-
fering spatial resolutions, integrating physics with differing time scales, integrating
models with differing time scales, and verification and validation of multifidelity mod-
els.

Integrating models with differing spatial dimensionalities, which is the focus of
this work, presents significant difficulties in determining the appropriate method of
projection to use from the lower dimensional model to the higher dimensional model
and from the higher dimensional model to the lower dimensional model. Various types
of averages may be used to project the higher dimensional variable field to the lower
dimensional one. For example, a three-dimensional temperature field represented by

12

nodal values on a finite-element mesh can be projected to a zero-dimensional model
using a surface or volume average of the temperature (we explore the use of both
average temperatures in this work). To project a zero-dimensional temperature to a
three-dimensional temperature field on a finite-element mesh requires applying the
single temperature to the boundary of the three-dimensional mesh, or a portion of
the boundary. Such projections produce unknown errors in the resulting solutions.

Integrating models with different spatial resolutions presents significant difficul-
ties, even when the models have the same spatial dimension. For example, abrupt
changes in mesh resolution in shock-wave physics simulations can result in non-
physical reflections when waves traverse a region of changing mesh [31, p. 237].
Variable meshes can also result in increased error in the solution, rather than de-
creased error [31, pp. 288–290]. In addition, for explicit codes, the time step for the
integrated models is controlled by the Courant-Friedrichs-Levy limit for the smallest
mesh cell [31, p. 5]. Thus variable spatial resolution may reduce the required com-
puter memory (because fewer cells are used), but it may not reduce the simulation
execution time. Therefore, care must be exercised in integrating models with different
spatial resolution.

Different physical phenomena are characterized by different time scales. For ex-
ample, chemical reactions in a fluid flow frequently occur very rapidly compared to
the time scale of the flow of the fluid. For the problems the Entero system engineering
environment is designed to address, time scales may range from nanoseconds for nu-
clear reactions to years for aging effects. Numerical models with both a shorter time
scale and a longer time scale are said to be stiff, because the numerical computation
of the solution on the longer time scale is strongly affected by the presence of the
shorter time-scale component. Integrating models with differing time scales must be
performed carefully to ameliorate problems with stiffness.

Models of different fidelity may have differing time steps. For example, a lower
fidelity model may have a different (probably greater) time scale than a corresponding
higher fidelity model. For multifidelity models, the time step sizes must be coordi-
nated, which imposes an additional constraint on the system model.

Verifying and validating mixed-fidelity system models is a difficult problem. There
are few analytic solutions for mixed-fidelity models, so that verifying the models may
rely on verified higher-fidelity simulations. Mixed-fidelity experiments are difficult
to perform, so validating mixed-fidelity models directly against experimental data is
problematic. It may be that the only method for validating mixed-fidelity models is
to validate them against verified and validated higher fidelity simulations.

13

4 A Multifidelity Algorithm for Thermal

Radiation

We now describe a multifidelity algorithm for thermal radiation. In the algorithm,
a zero-dimensional model of the system controls a simulation. This model consists
of a set of software objects that identify and manage the model or models used for
physical phenomena in the actual component, and a set of objects that identify and
manage the information exchange between the objects.

Description of the Multifidelity Algorithm

In the algorithm, a zero-dimensional model of the system controls a simulation. At
the zero-dimensional level, the physical state of a component is represented by a set
of scalar variables that represent an appropriate average for the component (e.g.,
temperature or pressure). Physical connections between components are represented
by information transfer through the interconnection objects, which are called ports.
For example, consider a system consisting of two solid bodies exchanging energy by
thermal radiation. Each body has an average temperature assigned to it. The port
describing the interaction records the temperature of each body and indicates that
the energy transfer is via thermal radiation.

The zero-dimensional model of a component may be augmented by an alternate
model. This is done by connecting the zero-dimensional model to the alternate model
with a special port, called an N-Port, that transforms information (Figure 1). For
information transferred from the zero-dimensional model to the alternate model, the
N-Port transforms the zero-dimensional state variables to those used by the alternate
model. For information transferred from the alternate model, the N-Port transforms
the state variables from those used by the alternate model to the scalar state variables
used by the zero-dimensional model. (The Port connection between zero-dimensional
models is a special case of the N-Port, the 0-Port.)

As an example, consider a system of two components that are interacting via
thermal radiation. The zero-dimensional temperature of each component is an aver-
age temperature. Suppose that the temperature of one of the components is mod-
eled with a three-dimensional finite-element model. This model is connected to the
zero-dimensional model for the component by an N-Port. For transferring informa-
tion from the zero-dimensional model to the three-dimensional model, the N-Port
maps the single temperature of the zero-dimensional model to a portion of the finite-
element mesh surface visible to the zero-dimensional component. For transferring
information from the three-dimensional model to the zero-dimensional model, the
N-Port computes an average temperature (either a surface-averaged temperature or
a volume-averaged temperature) from the three-dimensional model to send to the
zero-dimensional model. (This resembles the approach used in the National Cycle

14

0-Module 1

0-Module 2

0-Module 3

?

-

?

6

6
-

N-Module 3

?

6

0-Port

0-Port

0-Port

N-Port

Figure 1. Illustration of Mixed-Fidelity System
Models. Three zero-dimensional components are
connected via 0-Ports into a system. Module 3 is
represented by a higher fidelity component, that is
connected to the zero-dimensional one via an N-Port.

15

Program [5].)

The algorithm consists of the following steps:

1. Identify the components in the system and their physical interconnections. This
identifies the zero-dimensional model for the system.

2. Identify the alternate models to be used for system components.

3. Initialize state variables of the zero-dimensional models from the state variables
of the alternate models or using specified values.

4. Increment the time variable and advance the state of zero-dimensional system
model to the new time.

5. For the alternate models, transform the zero-dimensional state variable values
to the values needed by the alternate models as boundary conditions.

6. Advance the state of the alternate model to the current time.

7. Transform the variables for the alternate model to the state variables needed
by the zero-dimensional system model.

8. Repeat steps 4 through 7 until the final problem time has been reached.

Implementation of the Multifidelity Algorithm

The zero-dimensional system model is called the integrator in the Entero architec-
ture. The Entero integrator for thermal radiation problems is described in [32]. The
current version of the integrator allows one interior module in a system to be replaced
by a finite-element model. Reference temperatures for the finite-element model are
mapped to the external boundaries of the finite-element mesh.

We developed a special version of the Coyote heat transfer code [33, 34] for the
mixed-fidelity modeling. We modified the user-defined subroutine USRTRR to provide
the reference temperatures via Parallel Virtual Machine (PVM) messages [35] from
the zero-dimensional models. We wrote subroutines to compute the surface-average
temperature and volume-average temperature of a mesh block. We provide further
details of the implementation of the algorithm in [36].

Linking Electronics Modeling to Modules in the System

The integrator also provides the option of embedding an electronic circuit in any of
the modules defining the system. The user specifies the circuit using a standard Spice
netlist file [37], and specifies the location of the circuit in the module through the
input file using a construct called a thermal pin, which is a point in the module.

16

Case
A
AAU

AF&F

Safety Device
A
A
A
A
A
A
AAU Package``````````````````````````````̀

((((
(((((

hhhhhhhhh

``̀


```````````̀

Figure 2. The Test System. The test system consists
of four component modules plus the environment.

A zero-dimensional model can have only one thermal pin and its temperature
value is the temperature of the model. This pin is automatically defined when the
electronics model is linked to the thermal model.

For a higher-dimensional Coyote model, the default number of pins is one, with the
temperature value of the surface node-averaged temperature. The user can specify
thermal pins at specific locations in the finite element mesh by using the Coyote
special points, which are user-defined locations in the mesh. In the case where a
thermal pin is specified using a special point, the temperature of the thermal pin is
the temperature computed for the special point.

Circuit modeling is performed with the XyceTM parallel circuit simulator [38].

Tests of the Multifidelity Algorithm

We tested the algorithm on a system consisting of five modules: The environment,
the case, the package, the arming, fuzing, and firing module (AF&F), and the safety
device. The geometry for the test system is shown schematically in Figure 2. Geo-
metric dimensions for the system and properties for the module materials are given
in [36].

We compared predicted temperatures from three models of the test system: a full
three-dimensional model (denoted the 3D model) as the system baseline, a mixed-
fidelity system model (denoted the MD model), and a zero-dimensional system model
(denoted the 0D model).

In the 0D model, each component was represented by a zero-dimensional model
for temperature, that is, each component had a single temperature (Figure 3).

17



Safety Device

AF&F

Package

Aeroshell

Environment

Figure 3. The Zero-Dimensional Test System (0D
Model). The arrows indicate explicit information ex-
change.

In the MD model, the AF&F was represented by a three-dimensional finite-element
mesh. The mesh was composed of 1083 nodes and 852 hexahedral elements (Figure 4).

In the 3D model, each component was represented by a finite-element mesh (Fig-
ure 5). The package, AF&F, and safety device were represented by hexahedral meshes;
the mesh for the AF&F was the same mesh used in the mixed-fidelity model. Shell
elements were used for the aeroshell. The three-dimensional system model had 8585
nodes and 7629 elements.

We used three test problems for assessing the performance of the algorithm: a
heating problem, a cooling problem, and a problem with a time-dependent thermal
radiation boundary condition.

We assessed the performance of the algorithm based on comparisons of surface-
average temperatures, volume-average temperatures, minimum temperatures, maxi-
mum temperatures, and temperatures at selected special points inside the AF&F.

In order to connect a zero-dimensional model to a three-dimensional finite-element
model, the temperature field from the latter must be transformed to a single tem-
perature. Two obvious candidates for this temperature are the surface-average tem-
perature and the volume-average temperature. Based on energy conservation, one
might expect the volume-average temperature to give reasonable results. However,
radiative heat transfer depends on surface temperatures, so one might also expect
the surface-average temperature to give reasonable results. In this report we present
representative results from using only the surface-average temperature. We present

18



Safety Device

Package

AF&F

Environment

Aeroshell

Figure 4. The Mixed-Fidelity Test System (MD
Model). The arrows indicate explicit information ex-
change.

a discussion of the results of using both the surface-average temperature and the
volume-average temperature in [36].

The Heating Problem

In the heating problem, the environment was a constant temperature of 1033 K
and the system had an initial temperature of 300 K. We consider results from the
case in which the surface-average temperature was used in the mixed-fidelity system
model (MD model) to connect the three-dimensional AF&F to the otherwise zero-
dimensional system.

Figure 6 shows the surface-average temperatures predicted for the AF&F by the
three system models for the heating problem. Initially the surface-average tempera-
tures in the AF&F, in the 3D and MD models, are essentially identical and increase
more rapidly than the surface-average temperature of the AF&F in the 0D model.
This is a consequence of the finite thermal conductivity in the AF&F in the MD and
3D models. The temperature of the entire volume of the AF&F in the 0D model must
increase uniformly, while in the 3D and MD models the thermal energy is initially
confined near the surface of the AF&F by the finite thermal conductivity, resulting
in higher surface-average temperatures early in the simulation. Because the package

19



Aeroshell

Safety Device

AF&F

Package

Figure 5. The Three-Dimensional Test System (3D
Model).

20



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
300

400

500

600

700

800

900

1000

1100

Tsa [0D]
Tsa [MD]
Tsa [3D]
Te

AF&F Surface-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 6. Surface-Average Temperatures for AF&F
for the Heating Problem (Exchanging Surface-
Average Temperatures in the MD Model).

must also heat uniformly in the 0D model, it acts as a large thermal sink, further
retarding the rate of temperature increase in the AF&F.

Although the surface-average temperature of the 0D model increases more slowly
than the surface-average temperature of the 3D model, this results in a greater rate
of heat transfer to the AF&F in the 0D model compared to the 3D model. The
volume-average temperature of the AF&F in the 0D model in fact increases more
rapidly than the volume-average temperature in the 3D model (Figure 7). Again,
these differences result from the finite thermal conductivity in the AF&F in the 3D
model.

As in the 0D model, the rate of increase in the surface-average temperature of the
AF&F in the MD model is decreased by the effect of the package module, which acts
as a large thermal sink. This effect is visible in the temperature contours shown in
Figure 8, which shows contours on a cross section containing the axis of the AF&F at
3000 seconds (a time when the difference between the surface-average temperatures
of the MD and 3D models is large).

The volume-average temperature for the AF&F in the MD model increases more
slowly than the volume-average temperatures for the AF&F in either the 0D or 3D
models owing to the finite thermal conductivity in the AF&F in the MD model (which
slows the transfer of heat to the interior) and the influence of the package as a large

21



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
300

400

500

600

700

800

900

1000

1100

Tva [0D]
Tva [MD]
Tva [3D]
Te

AF&F Volume-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 7. Volume-Average Temperatures for the
AF&F for the Heating Problem (Exchanging Surface-
Average Temperatures in the MD Model).

TEMP
950
900
850
800
750
700
650
600
550
500
450
400
350
300

AF&F from MD Model
[3000 s]

Exchanging Surface-Average
Temperature with the System
Model

AF&F from 3D Model
[3000 s]

Figure 8. Comparison of Internal Temperatures for
the AF&F Predicted by the MD and 3D Models for
the Heating Problem (Exchanging Surface-Average
Temperatures in the MD Model) at 3000 s. Left:
The MD Model. Right: The 3D Model.

22



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tmax [MD]
Tmax [3D]
Te

AF&F Maximum Temperatures
Exchanging Surface-Average Temperatures

Figure 9. Maximum Temperature in the AF&F for
the Heating Problem (Exchanging Surface-Average
Temperatures in the MD Model).

thermal sink (so that there is a net thermal energy transfer from the AF&F to the
package) (Figure 7).

We show the maximum and minimum temperatures in the AF&F for the three
system models in Figures 9 and 10, respectively. Except at very early times and later
times, the maximum AF&F temperatures predicted by the MD and 3D models are
significantly different (Figure 9). The maximum temperature of the AF&F in the MD
model is lower than the maximum temperature in the AF&F in the 3D model because
in the former model the package acts as a large thermal sink and moderates the
maximum temperature. In contrast, the minimum temperatures follow similar trends
and are reasonably close (Figure 10) because they are not significantly influenced by
the thermal sink.

The temperature histories at three thermal pins in the AF&F are shown in Fig-
ures 12–14. The pins were distributed along the vertical axis of the AF&F (Figure 11).
The temperatures predicted by the MD model at Thermal Pin 2 are close to those
predicted by the 3D model at that pin (Figure 13). This is because near the center of
the AF&F, the moderating thermal effect of the package in the MD model is dimin-
ished. However, the temperatures predicted by the MD model at Thermal Pin 1 are
not good approximations to the temperatures predicted by the 3D model at that pin
(Figure 12). And the temperatures predicted by the MD model at Thermal Pin 3 are
not good approximations to the temperatures predicted by the 3D model at that pin.

23



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tmin [MD]
Tmin [3D]
Te

AF&F Minimum Temperatures
Exchanging Surface-Average Temperatures

Figure 10. Minimum Temperature in the AF&F for
the Heating Problem (Exchanging Surface-Average
Temperatures in the MD Model).

Temperatures at pins 1 and 3 are more strongly affected by the surrounding modules.

The Cooling Problem

In the cooling problem, the environment was a constant temperature of 300 K and
the system initially had a temperature of 1033 K. We consider results from the case in
which the surface-average temperature was used in the mixed-fidelity system model
to connect the three-dimensional AF&F to the zero-dimensional system.

Figure 15 shows the surface-average temperatures and Figure 16 shows the volume-
average temperatures predicted for the AF&F by the three system models for the
cooling problem, in which the surface-average temperature from the three-dimensional
AF&F module is sent to the zero-dimensional system model in the MD model. Be-
cause the cooling of the AF&F is controlled by radiation to the surrounding bodies,
which are all represented by zero-dimensional models in the MD system model, the
surface-average temperatures for the AF&F in the MD model are close to those for
the AF&F in the 0D model (Figure 15). However, owing to the finite thermal con-
ductivity of the AF&F material in the MD model, the volume-average temperature
of the AF&F in the MD model is similar to the volume-average temperature of the

24



-0.05

0

0.05

0.1

0.15

0.2

z
[m

]

-0.05

0

0.05
x [m]

-0.05

0

0.05

y [m]

3

2

1

Figure 11. Locations of Thermal Pins in the AF&F.

Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T1 [0D]
T1 [MD]
T1 [3D]
Te

AF&F Temperature History at Point 1
Exchanging Surface-Average Temperatures

Figure 12. Temperature Histories for Thermal Pin 1
in the AF&F for the Heating Problem (Exchanging
Surface-Average Temperatures in the MD Model).

25



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T2 [0D]
T2 [MD]
T2 [3D]
Te

AF&F Temperature History at Point 2
Exchanging Surface-Average Temperatures

Figure 13. Temperature Histories for Thermal Pin 2
in the AF&F for the Heating Problem (Exchanging
Surface-Average Temperatures in the MD Model).

AF&F in the 3D model (Figure 16).

Temperature contours for the AF&F in the cooling problem for the MD and 3D
models at 3000 seconds are shown in Figure 17. The influence of the package as a
relative heat source in the MD model (analogous to its influence as a relative heat
sink in the heating problem) is seen in the contours.

Figures 18 and 19 show the maximum and minimum temperatures, respectively,
for the AF&F. Although the temperature trends are correct, neither the maximum
temperatures nor the minimum temperatures predicted by the MD model are good
approximations to the corresponding temperatures predicted by the 3D model. For
this problem, the maximum temperature of the AF&F occurs in its interior in both
the MD and 3D models, and so the maximum temperatures in both models are similar
(refer to the discussion above). However, the minimum temperature of the AF&F
occurs on its outer surface, and so the minimum temperature of the AF&F in the
MD model is different than the minimum temperature of the AF&F in the 3D model
(again, refer to the discussion above).

Figures 20, 21, and 22 show the temperature histories at the thermal pins in
the AF&F (see Figure 11). The AF&F in the 0D model cools uniformly and its
temperature is uniform. Owing to its finite thermal conductivity, the AF&F in the
MD model initially cools like the AF&F in the 3D model, but later behaves thermally

26



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T3 [0D]
T3 [MD]
T3 [3D]
Te

AF&F Temperature History at Point 3
Exchanging Surface-Average Temperatures

Figure 14. Temperature Histories for Thermal Pin 3
in the AF&F for the Heating Problem (Exchanging
Surface-Average Temperatures in the MD Mode).

more like the AF&F in the 0D model because it is embedded in a system of zero-
dimensional models. Although the trends of the temperatures are correct, none of
the temperature histories at the special points in the MD model are especially good
approximations to the temperature histories predicted by the 3D model at the thermal
pins.

The Time-Dependent Thermal Radiation Boundary Condition Problem

In the time-dependent thermal radiation boundary condition problem, the environ-
ment represents a simulated engulfing fire in which the environment temperature rises
rapidly to 1033 K from 300 K, remains at this temperature for a period of time, and
then decreases to 300 K.

Figure 23 shows the surface-average temperatures and Figure 24 shows the volume-
average temperatures predicted for the AF&F by the three system models for the
simulated-fire environment, for the case in which the surface-average temperature
from the three-dimensional AF&F module is sent to the otherwise zero-dimensional
system model in the MD model.

Prior to 10,000 s (when the fire is “extinguished”), the temperature histories for
the 0D, MD, and 3D models are, not surprisingly, similar to those for the heating

27



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tsa [0D]
Tsa [MD]
Tsa [3D]
Te

AF&F Surface-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 15. AF&F Surface-Average Temperatures
for the AF&F in the Cooling Problem (Exchanging
Surface-Average Temperatures in the MD Model).

problem (compare the surface-average temperatures in Figures 6 and 23, and the
volume-average temperatures in Figures 7 and 24), because the heating problem and
the time-dependent boundary condition problem are essentially the same during this
time when the heating period is relatively brief.

The system begins to cool at 10,000 seconds. The cooling is sufficiently rapid that
the temperature histories for the 0D, MD, and 3D models are similar to those for the
cooling problem (compare the surface-average temperatures in Figures 23 and 15 and
the volume-average temperatures in Figures 24 and 16).

Timing Results

In Table 4 we give timing results for the three cases summarized above. We ran all the
calculations on a single processor of a Dell workstation with a 1.3 GHz Intel Pentium 4
processor, and each simulation produced the output files considered typical for the
simulation. For example, the mixed-fidelity and three-dimensional system models
each produced an output file containing mesh temperatures.

Referring to Table 4, the MD model ran over 25 times faster than the 3D model
on the Dell workstation (in under three minutes compared to over an hour) and

28



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tva [0D]
Tva [MD]
Tva [3D]
Te

AF&F Volume-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 16. AF&F Volume-Average Temperatures
for the AF&F in the Cooling Problem (Exchanging
Surface-Average Temperatures in the MD Model).

TEMP
950
900
850
800
750
700
650
600
550
500
450
400
350
300

AF&F from MD Model
[3000 s]

Exchanging Surface-Average
Temperature with the System
Model

AF&F from 3D Model
[3000 s]

Figure 17. Comparison of Internal Temperatures for
the AF&F for the MD and 3D Models for the Cooling
Problem, Exchanging Surface-Average Temperatures
in the MD Model, at 3000 s. Left: The MD Model.
Right: The 3D Model.

29



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tmax [MD]
Tmax [3D]
Te

AF&F Point Temperatures
Exchanging Surface-Average Temperatures

Figure 18. Maximum Temperature in the AF&F for
the Cooling Problem (Exchanging Surface-Average
Temperatures in the MD Model).

Table 1. CPU Times for the Test Cases.

System Model

0D Only Mixed-Fidelity 3Da Only

3D Model 0D Model Total

Case [s] [s] [s] [s] [s]

Heating 0.22 170.10 0.58 170.68 3931.

Cooling 0.31 171.45 0.85 172.30 3904.

“Fire” 0.24 168.55 0.97 169.52 3904.

a Does not include time to calculate the view factors (35.1 hrs).

30



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

Tmin [MD]
Tmin [3D]
Te

AF&F Point Temperatures
Exchanging Surface-Average Temperatures

Figure 19. Minimum Temperature in the AF&F for
the Cooling Problem (Exchanging Surface-Average
Temperatures in the MD Model).

provides internal temperatures for the higher fidelity module. These results indicate
that optimization studies with mixed-fidelity models is feasible when it may not be
feasible with three-dimensional system models.

Results from a demonstration of the mixed-fidelity thermal radiation algorithm
coupled with electrical modeling are shown in Figure 26. For this demonstration, we
positioned the LM-185 circuit at Thermal Pin 1 (Figure 11) and imposed the “sim-
ulated fire” environment on the system. The LM-185 circuit is designed to provide
a constant reference voltage and contains a temperature-sensitive device. The figure
shows the temperature of the environment, the surface-average temperature of the
AF&F, and the temperature of the thermal pin. The figure also shows the output
voltage of the LM-185 circuit as the temperature of its thermal pin increases.

Extension of the Multifidelity Algorithm to Thermal Conduc-
tion

We designed an extension of the algorithm to conductive heat transfer, but did not
test it. The concept is to connect two modules in a system with a construct called
a “thermal wire” that is one-dimensional: conduction occurs only along its length,
and its cross-sectional area as a function of length is specified. This construct can be

31



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T1 [0D]
T1 [MD]
T1 [3D]
Te

AF&F Temperature History at Point 1
Exchanging Surface-Average Temperatures

Figure 20. Temperature History for Thermal Pin 1
in the AF&F for the Cooling Problem (Exchanging
Surface-Average Temperatures in the MD Model).

connected to a three-dimensional finite-element mesh using either the surface-average
temperature or an average surface temperature for the area of contact. The latter
connection could be implemented using a flux boundary condition on an element side
set, and might provide increased accuracy in the temperature predictions.

5 The Entero System Engineering Environment

We now briefly describe the Entero system engineering environment; further descrip-
tion is provided in [39, 40, 41, 42]. First we present the design goals for the envi-
ronment. Then we describe a prototype environment for coupled thermal-electrical
modeling. Next we discuss some limitations of the software architecture of the pro-
totype, and describe an improved architecture that we developed to ameliorate these
limitations and to support the mixed-fidelity algorithms described in the previous sec-
tion. Then we describe an improved Entero environment for coupled thermal-electrical
modeling that we implemented in the new architecture.

32



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T2 [0D]
T2 [MD]
T2 [3D]
Te

AF&F Temperature History at Point 2
Exchanging Surface-Average Temperatures

Figure 21. Temperature History for Thermal Pin 2
in the AF&F for the Cooling Problem (Exchanging
Surface-Average Temperatures in the MD Model).

Entero Design Goals

The long-term goal for the Entero environment is to research and develop a module-
oriented, multiphysics, mixed-fidelity system simulation environment for engineers
to enable rapid system performance analysis and design optimization. Major design
goals for the Entero environment include providing a systems view of the system
to be analyzed, providing a module-oriented view of the system, enabling models of
different physics types to be coupled together, providing mixed-fidelity models for the
analysis, and enabling design optimization and uncertainty quantification studies.

Thus the Entero environment will represent the physical system to be analyzed as
a whole, from a system level. In addition, the environment will represent the system
as a collection of interacting modules, so that engineers can assemble systems in ways
that reflect the physical assembly of the systems.

The Entero environment will enable models of different physics types to be loosely
coupled together. For example, an engineer will be able to model an electrical circuit
in a thermal or radiation environment, and monitor its performance.

The Entero environment will incorporate mixed-fidelity modeling, so that engi-
neers can select model fidelity for each component and easily change it. For example,
an engineer will be able to easily replace a coarser finite element mesh with a finer

33



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
200

300

400

500

600

700

800

900

1000

1100

T3 [0D]
T3 [MD]
T3 [3D]
Te

AF&F Temperature History at Point 3
Exchanging Surface-Average Temperatures

Figure 22. Temperature History for Thermal Pin 3
in the AF&F for the Cooling Problem, (Exchanging
Surface-Average Temperatures in the MD Model).

one, or a linear model with a nonlinear model. Users will be able to select from
zero-dimensional (lumped-parameter) models to the highest fidelity numerical mod-
els available.

And the Entero environment will enable engineers to optimize designs, and to
quantify uncertainties in system performance due to variability in environmental con-
ditions, material properties, part specifications, and modeling assumptions.

A Prototype Entero Environment for Coupled Thermal-Electrical
Modeling

As described in the previous section, one focus of our development of the Entero
environment has been modeling systems containing electrical circuits that are exposed
to fires. If the electrical circuits fail in a fire, they must fail so that the system
remains safe (although the system itself may be destroyed). This problem motivated
the development of our prototype environment.

The development goal for the Entero prototype environment was to build and
demonstrate an environment for coupled thermal-electrical simulations using zero-
dimensional thermal models.

34



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
300

400

500

600

700

800

900

1000

1100

Tsa [0D]
Tsa [MD]
Tsa [3D]
Te

AF&F Surface-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 23. Surface-Average Temperatures for the
AF&F for the Time-Dependent Thermal Bound-
ary Condition Problem (Exchanging Surface-Average
Temperatures in the MD Model).

In the following paragraphs we describe the software architecture for the pro-
totype, and the preprocessor, the library of modules, and the physics manager. We
then describe an improved architecture that we developed to ameliorate limitations in
the prototype architecture and to support the mixed-fidelity algorithms described in
the previous section. Then we describe an improved Entero environment for coupled
thermal-electrical modeling that we implemented in the new architecture.

A high-level view of the software architecture for the prototype is shown in Fig-
ure 27. This figure emphasizes the three functional levels in the architecture: the
specification level, which provides the graphical user interface; the interpretation
level, which translates the specification into software; and the analysis level, which
executes the physics analysis.

Users interact with the Entero environment in the specification level. Systems are
assembled graphically in the visual editor using icons. Each icon represents a software
module that in turn represents a physical component.

The visual editor is part of the preprocessor, which functions as both the graphical
user interface and the model interpreter in the prototype. The preprocessor enables
a user to display a graphical view of a system consisting of multiple modules. Users
select modules from a library and connect them into a system using special modules
called ports. External boundary conditions are also implemented as modules. Users

35



Time [s]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
300

400

500

600

700

800

900

1000

1100

Tva [0D]
Tva [MD]
Tva [3D]
Te

AF&F Volume-Average Temperatures
Exchanging Surface-Average Temperatures

Figure 24. Volume-Average Temperatures for the
AF&F for the Time-Dependent Boundary Condi-
tion Problem (Exchanging Surface-Average Temper-
atures in the MD Model).

can save the assembled system and reload it later. Users can set module properties
such as heat capacity and initial temperature using the interface.

The software modules are stored in a library in the interpretation level (Figure 27).
The model interpreter portion of the preprocessor links the software modules into a
system that represents the physical system using ports and passes the system speci-
fication to the physics manager.

In the Entero prototype, a module is a software component that represents a
physical component. It has properties that are stored internally and physics that
may be modeled with one or more external applications. For example, in the AF&F
module, material density is a property that is stored internally, while temperature is
a property that is computed using an external application. Modules were developed
by experts in the relevant problem domain. Six different modules were implemented
in the prototype modules library.

Four of the modules represent physical components: a case or aeroshell, a package,
an AF&F, and a safety device. For each component, a user selects the desired physics
type, such as thermal radiation and electrical activity, and the fidelity of each physics
model (only zero-dimensional models were available in the prototype).

The two other modules in the library are the Environment and the Port modules.

36



AF&F from 3D Model
[3000 s]

TEMP
950
900
850
800
750
700
650
600
550
500
450
400
350
300

AF&F from MD Model
[3000 s]

Exchanging Surface-Average
Temperature with the System
Model

Figure 25. Comparison of Internal Temperatures
for the AF&F for the MD and 3D Models for the
Time-Dependent Thermal Radiation Boundary Con-
dition Problem (Exchanging Surface-Average Tem-
peratures in the MD Model) at 3000 s. Left: The
MD Model. Right: The 3D Model.

The Environment module allows a user to specify a time-dependent external tem-
perature. The Port module describes the physical coupling between the component
modules, e.g., radiative heat transfer.

Each module in the library is a JavaBean and extends a generic module, which
then extends a Java JComponent. The Entero module uses a type of BeanInfo

class, which extends the Java SimpleBeanInfo class. A customizer is specified in
the BeanInfo file of each module. The customizer extends a generic customizer,
which, in turn, extends a Java JPanel (Figure 28).

Engineering analysis occurs in the analysis level (Figure 27), by external or custom
application programs. Numerical results are then displayed at the specification level
through a post-processing interface to external or local tools.

In the analysis level, the physics manager advances the state of the model system
from the initial state to the state at the final, user-specified, time. The thermal
behavior of each component is modeled with a zero-dimensional model, i.e., each
module was assumed to have a single, time-dependent temperature. The temperature
for each module is determined by conservation of energy assuming that each module
radiates and absorbs thermal energy as a black body.

View factors for the model system are pre-calculated using the CHAPARRAL

37



Time [s]

V
ol

ta
ge

[V
]

T
em

pe
ra

tu
re

[K
]

0 10000 20000 30000
0

1

2

3

4

5

300

400

500

600

700

800

900

1000

1100
LM185 Voltage
Tsa [MD]
Te

T0

Temperature and Voltage
LM185 Circuit; Mixed-Fidelity Thermal Model

Figure 26. Output Voltages for the LM-185 Cir-
cuit (Time-Dependent Boundary Condition). Te is
the temperature of the environment. T0 is the tem-
perature of the thermal pin at which the circuit was
located. Tsa is the surface-average temperature of the
AF&F in the mixed-fidelity model (MD).

38



Specification
Level

Interpretation
Level

Analysis
Level

Visual
Editor

Module
Database

Module
Interpreter

Post-Processing
Interface

Post-Processing

Physics
Manager

Figure 27. Model-Integrated View of the Prototype
Entero Environment. The architecture is divided into
three functional levels.

JPanel

Generic Customizer

Entero Module

JComponent

SimpleBeanInfo

Entero Module BeanInfo

Entero Module CustomizerGeneric Module

Figure 28. The Class Hierarchy for an Entero Mod-
ule in the Prototype. A rectangular box indicates a
built-in Java class while boxes with rounded corners
represent classes written for the Entero environment.

39



Figure 29. The Entero Prototype Graphical User In-
terface and Post-Processor.

program [43]. Thus the geometric relationships among the modules are implicitly
specified via the view factors, but can be changed by a knowledgeable user.

Electrical circuits can be embedded in each module, but not connected between
modules. Electrical activity is calculated using the Spice 3f5 circuit simulator [37] and
circuits are specified through standard Spice “netlist” files. The coupling between the
zero-dimensional thermal models and the circuit models is loose and one-way. That is,
the temperature of a module is computed using the zero-dimensional thermal models,
and then this temperature is imposed on any circuit embedded in the module. Heat
generated by the circuit is neglected.

A view of the graphical user interface and a post-processing plot from a coupled
thermal-electrical simulation of a generic system is shown in Figure 29.

The preprocessor was written in the Java programming language [44, 45] to re-
duce the complexity of developing and maintaining software on multiple platforms.
In addition, the JavaBeans [46, 47] component architecture closely matched desired
properties for the Entero modules in the prototype. An example of the Entero proto-
type graphical user interface is shown in Figure 29.

40



Limitations of the Prototype Architecture

While the use of Java and JavaBeans enabled us to add new features to the prototype
Entero environment quickly, we discovered that the initial architecture incorporated
insufficient abstractions of the object hierarchies and insufficient encapsulation of
various implementation details.

Many attributes and methods were duplicated in each module instead of being
abstracted into the common module base class. To add a new common property or
method, it was necessary for code in each existing module to be modified. To add
a new module, code for an existing module was typically copied and then modified,
increasing possibilities for errors and duplicating both effort and code.

External applications were tightly integrated into the physics manager, without
a specified interface. To add a new application it was necessary to make significant,
often drastic, changes to the physics manager.

The JavaBeans architecture offered some initial advantages in developing a pro-
totype system, such as rapidly developing software for visually assembling a system
of modules. However, because the visualization properties of a module are tightly
coupled to the physics properties, the JavaBeans architecture limited the Entero
software to user interfaces based on JavaBeans. User interfaces based on a variety
of architectures are required to support different modeling domains (e.g., penetration
mechanics modeling and safety engineering). Thus the flexibility and extensibility of
the software were diminished.

Another limitation with Java arises from the serialization mechanism, when it is
used as a means of storing persistent objects. Entero modules were stored in files
using Java serialization. The Java serialization mechanism assumes that the classes
required to instantiate a serialized object change in only severely circumscribed ways.
Any such objects that were saved prior to even minor class changes in the code
were incompatible with the new code. Thus it was necessary to continually re-enter
system configurations manually after any changes to class attributes, such as changes
to default values for display properties.

Extending and maintaining the software became increasingly complex, error-prone,
and costly. To ameliorate these difficulties the code architecture was redesigned to
be more flexible and extensible. The improved architecture is described in the next
section.

An Improved Entero Software Architecture

The Entero software is intended to provide an environment that continually evolves
as new applications are integrated into it and new functionality is added to it. There-
fore, the Entero code architecture must be flexible, dynamic, and scalable. To achieve

41



these qualities in the improved architecture, we used an object-oriented design, and a
library environment rather than a framework environment. These two environments
are compared in Table 2. The primary advantage of the framework approach lies in
its faster communication between the environment and the application. The primary
disadvantage is that the application must be built within the framework, and hence it
may not be able to run independently from the framework. In contrast, the primary
disadvantage to the library approach is its slower communication, but its primary
advantage is that it has much greater flexibility for integrating applications. In the
library approach, stand-alone applications are integrated into the environment by
simply placing an interface wrapper around the application. For the requirements of
the Entero environment, it is much more important to have the flexibility for integrat-
ing applications than to have communication performance. Hence, we adopted the
library approach for our improved architecture. If, in the future, the communication
performance becomes a higher priority, incorporating more tightly coupled commu-
nication into the library environment will be much easier than incorporating a more
modular structure into a framework environment.

Modular Functionality

One of the main priorities of the improved architecture is to make the functionality
of the environment as modular as possible. In addition, the architecture must have
the ability to dynamically add and remove these modules of functionality as needed
by the user.

We call the entities representing these modules of functionality a Module. Note
that for the prototype architecture the term module was used to describe the compo-
nent, environment, and port modules. In the improved architecture, the term Module

is used to describe a particular functionality. Therefore what was termed component
module will now be a composite of Modules.

Implementing an Object-Oriented Design

To properly define objects and their relationships it is not only important that we
use object-oriented design, but proven object-oriented design principles and proven
software design patterns. In particular, the object-oriented design principles the
improved architecture adheres to are [48]

• Program to an interface not an implementation.
Manipulating objects through an interface shields the type and class of the
object. This hides underlying code and clients can manipulate any type of object
as long as it implements the appropriate interface, thus allowing increased code
reuse.

42



Table 2. Comparison of Framework and Library En-
vironments

Framework Environment Library Environment

Integrating Application must be built Interface wrappers that
Applications within the environment and conform to the environment

conform to its standards are placed around the
application

Communication Tightly coupled; hence Loosely coupled; hence
higher performance lower performance

Functional Typically none; must The functionality of the
Modularity utilize the entire framework environment is modularized

to use any of its so that it may add what is
functionality needed and remove what is

not needed

Stand-Alone Once the application is This environment is
Applications built within the environment intended to integrate

it typically cannot be run stand-alone applications
stand-alone

• Favor object composition over inheritance.
Objects add functionality by being composed of other objects rather than
through inheritance. This allows functionality to be added dynamically at run
time, rather than statically (at compile time).

• Objects should delegate responsibilities.
Objects delegate operations, through interfaces or mediator objects, to objects
that encapsulate the behavior to handle the operation. This allows objects to
encapsulate a specific type of functionality and allows other objects to make
use of it.

It follows immediately from these principles that most behavior and functional-
ity should be defined via interfaces, so that manipulating objects can be done with
only the view of that object’s interface. In particular, Module will be defined as an
interface.

43



Modules

One of the design goals for the Entero environment is to incorporate different types
of physics applications, so there is a Module that encapsulates physics properties.
There are various types of these physics modules to represent different categories of
physics, e.g., thermal radiation and electrical activity, and each of these types con-
tains attributes corresponding to the category of physics it is encapsulating, e.g., a
thermal physics module will contain a temperature attribute. These physics mod-
ules were abstracted as PrimitiveModules, where different types of modules are set
by the PrimitiveModule’s member object ModuleType. Categories of module types
are represented by ModuleType’s subclasses, e.g., PhysicsPMType represents physics
modules (where PM is shorthand for Primitive Module) and module types are enu-
merations within each subclass (e.g., THERMAL PHYSICS MODULE). Different types of
modules may be added simply and without changing the general infrastructure by
creating a new ModuleType subclass or an enumeration within an existing subclass.

Each PrimitiveModule also contains methods that manipulate attributes, such as
get and set methods. Attributes are generic entities that represent PrimitiveModule
properties. Each attribute has a value and units. Figure 30 is a Unified Model-
ing Language (UML) diagram of the relationship among the interface Module, the
PrimitiveModule and its ModuleType.

In the prototype architecture a physical component was modeled using inheritance
and contained an extensive list of properties with their corresponding get/set meth-
ods. This produced a monolithic model that was difficult to modify and manage.
In the improved architecture we apply the second principle of good object-oriented
design and favor object composition over inheritance. A physical component is now
represented as a CompositeModule, which is a composite of Module objects (including
PrimitiveModule objects) that may be dynamically added to or removed from the
model at run time. Since CompositeModule is a type of Module as well, it implements
the Module interface, it may contain other CompositeModule objects (Figure 31).
This structure allows us to model hierarchical physical components, e.g., an electrical
circuit embedded in a component.

The primary function of the CompositeModule is to act as a container: all its
functionality is implemented in the various Module objects it contains. Applying the
third principle of good object-oriented design, that objects should delegate respon-
sibilities, the addition, removal, and management of the Module objects within the
CompositeModule are delegated to manager and handler objects.

A CompositeModule may contain many Module objects of differing types (Module-
Types). The addition or removal of these different types adheres to certain type-
dependent rules. For example, there should only be a single module of a given
of PhysicsPMType in a CompositeModule object, e.g., a THERMAL PHYSICS MODULE.
This is to prevent multiple representations of the same attribute (e.g., tempera-
ture) in a CompositeModule object. The interface ModuleHandler enforces such

44



Figure 30. UML Diagram for Modules. UML dia-
gram of the relationships among the Module Interface,
the PrimitiveModule, and the ModuleType. All types of
PhysicsPMType are represented as enumerations.

45



Figure 31. CompositeModules. A CompositeModule
is an aggregation of Modules. This includes
PrimitiveModule objects and CompositeModule objects,
since the CompositeModule implements the Module in-
terface (i.e., is a type of Module).

rules when adding or removing a module from a composite. Each ModuleType has
a ModuleHandler type associated with it (this is enforced by the interface). As
seen in Figure 32, the PhysicsPMType class and all its types are associated with
the PhysicsModuleHandler class. The PhysicsModuleHandler class implements
the method isModuleAdded() from ModuleHandler. This method contains and en-
forces the rules specific to the addition of PhysicsPMType types. There are many
other ModuleTypes such as GeometryPMType, ApplicationPMType, and PortPMType.
Each of these ModuleTypes has its corresponding ModuleHandler type as well; thus
a CompositeModule has the ability to manage multiple handler objects.

Depending on what Module objects of a given ModuleType are added to the
CompositeModule, various ModuleHandler types must be instantiated and managed.
This is done with the class ModuleHandlerManager, which is a singleton member of
every CompositeModule class. The primary function of the ModuleHandlerManager is
to manage data through the handler classes. For example, if a THERMAL PHYSICS MOD-

ULE object is added to a CompositeModule object, the addition is initially delegated
to the manager object from the composite. The manager object then gets the type of
handler it must instantiate from the added module, in this case PhysicsModuleHan-

dler, and then the manager delegates the addition of the module to that han-
dler. The addition of a module is delegated by the delegator implementing the
ModuleManagerInterface, through which the delegatee object calls the addModule()
method. The ModuleHandlerManager’s object relationships are illustrated in Fig-

46



Figure 32. PhysicsPMType and Its Handler
Class. PhysicsPMType is associated with the
PhysicsModuleHandler class. Thus all module types
will have this handler class.

47



Figure 33. A CompositeModule and Its Handler
Manager. A CompositeModule delegates the addition
and removal of modules to the ModuleHandlerManager
through the ModuleManagerInterface.

ure 33.

Application Integration

An important feature of the Entero architecture is the ability to easily integrate
stand-alone applications into it. This is done with an ApplicationModule, which
extends PrimitiveModule and provides a wrapper for the application in the Entero
environment. This module has attribute information specific to the application, e.g.,
a version number, an input file parser, or a list of different solvers that may be used
in the application. Applications will also require data that is encapsulated in specific
PhysicsPMTypes and GeometryPMTypes, thus the ApplicationModule stores this in-
formation as well. Since the application knows what external modules it requires in
order to be used by a model, it must have the ability to add these modules to the
CompositeModule to which it is being added. This is accomplished by implementing
the ModuleManagerInterface in the ApplicationModule; it can now delegate the
module additions to the appropriate ModuleHandlerManager object (Figure 34). By
encapsulating particular functionalities within interfaces it becomes a simple task to

48



Figure 34. The ApplicationModule. The
ApplicationModule becomes a builder simply by ex-
tending the ModuleBuilderInterface. Coyote [33] is a
finite-element code for nonlinear heat transfer prob-
lems used at Sandia.

make a module a builder, and so we are able to encapsulate all information about the
application within an ApplicationModule object.

Ports are the entities that connect system components and transfer data of dif-
fering fidelities or physics between them. Port functionality is encapsulated in a
PortModule which extends PrimitiveModule and holds the identities of the source
and target it links. Since data is accessed through the PrimitiveModule interface,
connecting two components is a matter of coupling the source attribute and target
attribute and then performing the appropriate data conversion and transfer between
them. The data translation is kept separate from the PortModule so that the inter-
polation of data will be independent of the architecture (Figure 35).

A specific example of coupling two components with a port is coupling a com-
ponent modeled with a three-dimensional finite-element code to a system of zero-
dimensional components. To accomplish this, the three-dimensional model must be
linked to a zero-dimensional view of the model, and the zero-dimensional view is
coupled to the zero-dimensional system model. Specifically, the temperature field of
a three-dimensional component must be linked to a scalar temperature for a zero-
dimensional component. To perform this task a PortModule is created where the
source attribute is the temperature field and the target attribute is the scalar tem-

49



Figure 35. UML Diagram of PortModule. The
DataTranslator objects contain the translation algo-
rithms, therefore the algorithms are not a part of the
port architecture.

perature. Through the Module interface, the PortModule gets the data types of the
two temperatures, and determines that a conversion from a temperature field to a
scalar temperature is needed. A DataTranslator object from a pre-compiled set of
data conversion objects (which hold the type-specific conversion algorithms) is called
by the DataTranslatorManager to perform the translation, in this case a conversion
from a field to a scalar. Again, through the PrimitiveModule interface the port
then sets the appropriate scalar temperature in the target zero-dimensional model.
Since the data translation is separate from the PortModule and is determined at run
time, the types of conversions a port may do can be added dynamically simply by
adding new DataTranslator objects (Figure 36). Coding to interfaces and keep-
ing the translation algorithms independent of the software architecture allows port
objects to become much more flexible and dynamic in the improved code architecture.

Data Persistence

One of the primary limitations in the prototype architecture was that the meta-
data was embedded in the model itself. The improved architecture remedies this by
placing the properties in the modules, allowing them to be dynamically added to
and removed from the model. In the improved architecture, ModuleTypes are stored

50



as meta-data and are loaded dynamically. All of these data structures are stored
using the eXtensible Markup Language (XML) and transformed, by an internal XML
serialization mechanism similar to JSX [49], into Java objects to be used at run time.
The serialization mechanism also converts the Java objects back into XML entities
that can be stored as persistent objects. There are many advantages to saving meta-
data in the XML format, including [50]

• XML allows flexibility of data formatting, with the ability to nest tags
and define the contents of the data in an object-oriented format.

• XML separates content and presentation. The data is not tied to a
particular view, thus different graphical user interfaces may utilize the same
data.

• XML is not tied to a particular client. Though we have chosen Java,
nothing prevents us from reading the same meta-data into C++ objects with
the appropriate interfaces.

• XML is a purely textual representation of data which has many advan-
tages. In particular serialization and versioning become much more viable since
text files are easily parsed.

• Java + XML = Portable Code + Portable Data

Ultimately what XML gives the Entero environment is the ability to access data from
a common data repository in which the data defines its structure independent of its
implementation.

In the current software, the user interface is generated dynamically using XML
and the Entero data model [51]. Thus the user interface is automatically updated if
the data model changes.

An Improved Entero Environment for Coupled Thermal-Electrical
Modeling

We implemented an improved Entero environment for modeling thermal radiation
transport in systems containing electrical circuits and that are exposed to fires using
the improved architecture.

Starting from an initial system (provided with the software or previously saved
by the user), the user can add or delete components (subject to composition rules
enforced by the software), and add or delete ports between components. The user
is guided through this process by a series of software wizards. Components of the
system are represented by zero-dimensional thermal models; the user can replace one

51



Figure 36. A PortModule Links the Tem-
peratures of a Three-Dimensional Finite-Element
Model and a Zero-Dimensional Model. Based
on the source and target attribute types, the
PortModule calls the DataTranslator object (through
the DataTranslatorManager) which contains the algo-
rithm for transforming a temperature field to a scalar
temperature.

52



Figure 37. The Improved Entero Prototype Graph-
ical User Interface for Coupled Thermal-Electrical
Modeling.

of the components with a three-dimensional, finite-element model, which is connected
to the zero-dimensional system model by a mixed-fidelity port.

The dimensions and relative locations of the zero-dimensional models (which are
represented as conical frustums) can be adjusted by the user with a geometry editor.
View factors are automatically calculated for the zero-dimensional models. The user
can modify the mass and thermal properties of individual components (e.g., density
and specific heat capacity).

The user can embed electrical circuits in each of the components, and for the
three-dimensional model can specify the circuit location; the circuit is connected to
a component using a multiphysics port.

Following system set up, the user can analyze the system and monitor the temper-
atures in the components and the electrical activity in the circuit as the simulation
progresses. An example of the user interface is shown in Figure 37.

53



6 Summary

Modeling and simulation of complex systems at various levels of fidelity is increas-
ingly important at Sandia National Laboratories in fulfilling its national security mis-
sion. In this report we have described the development of a multifidelity algorithm
for thermal radiation problems, and the design and initial development of the En-
tero environment, a module-oriented, mixed-fidelity, multiphysics, system simulation
environment for engineers to enable rapid system performance analysis and design
optimization.

Design goals for the Entero environment include representing a complex system
as an interacting collection of components, user-selectable model fidelity for each
component, and integrated support for optimization and uncertainty quantification.

An important feature of the Entero environment is the capability for mixed-fidelity
system modeling, in which models of different spatial dimensionalities are coupled
together. Specifically, we briefly described a method for coupling zero-dimensional
(lumped-parameter) models of system components to a three-dimensional model of a
component for thermal radiation, and presented some comparisons of temperatures
predicted by a mixed-fidelity system model to temperatures predicted by a full three-
dimensional system model.

A mixed-fidelity system model can potentially execute much faster than a full
three-dimensional finite-element model for thermal radiation problems and provides
internal temperatures for the higher fidelity module. However, there is some loss in
accuracy with the mixed-fidelity system model. Such results indicate that optimiza-
tion studies with mixed-fidelity models is feasible when it may not be feasible with
three-dimensional system models, if the concomitant loss in accuracy is acceptable.

We also demonstrated a mixed-fidelity, coupled thermal-electrical simulation of a
temperature-dependent circuit embedded in a system for a “simulated fire” environ-
ment (Figure 26).

An extension of the algorithm to conductive heat transfer was designed but not
tested. The concept is to connect modules in a system with a construct called a
”thermal wire” that is one-dimensional: conduction occurs only along its length and
its cross-sectional area as a function of length is specified.

In a prototype of the Entero environment, a model of a complex engineering sys-
tem was assembled by selecting modules from a library and placing icons that repre-
sent the components in a workspace of a visual editor. Module properties could be
changed through the editor. The components were linked via ports that represented
the physical coupling between them and controlled the transfer and transformation of
information between the components. Physical analysis of the system was controlled
by a physics manager that used custom or standard analysis codes.

54



Experience with the prototype revealed some design limitations that have been
remedied in an improved software architecture. Features of the improved architecture
include

• System components are built modularly and dynamically by object composition.

• Data is independent of the system components and is stored in the XML format.
Thus properties can be added easily and dynamically, data serialization is not
dependent on the implementation, versioning becomes viable, and multiple user
interface frameworks can be easily used.

• Module interaction and functionality are implemented through interfaces. Ma-
nipulating objects through interfaces “hides” underlying changing code leading
to an overall improvement in code reuse. Application modules add the appro-
priate physics and geometry needed to use an application through interfaces.
Ports also handle data through interfaces, allowing interpolation algorithms to
be independent of software architecture.

• Mixed-fidelity modeling is supported through ports.

We developed an improved version of the Entero environment for coupled thermal-
electrical analysis in the new architecture. The improved environment guides the user
through the process of setting up a system model using a series of software wizards,
and the user can replace a zero-dimensional model with a three-dimensional finite-
element model (Figure 37).

Our current work includes integrating design optimization capabilities into the
architecture, and coupling radiation transport codes to the Xyce parallel electrical
circuit simulator in support of the FY 2003 Hostile Environments Milestone for the
Accelerated Strategic Computing Initiative.

55



References

[1] W. E. Vesely, F. F Goldberg, N. H Roberts, and D. F. Haasl. Fault Tree Hand-
book. Technical Report NUREG-0492, United States Nuclear Regulatory Com-
mission, January 1981.

[2] ASCI Update. Sandia National Laboratories, Albuquerque, New Mexico, Octo-
ber 2000.
www.sandia.gov/ASCI/asciupdate/0010update.pdf.

[3] Strategic Objectives 1999. Technical Report SAND99-0412, Sandia National
Laboratories, Albuquerque, NM, February 1999.
www-irn.sandia.gov/organization/div1/99strategic/sp99.pdf/.

[4] Paul K. Davis. Exploratory analysis enabled by multiresolution, multiperspective
modeling. In J. A. Joines, R. R. Burton, K. Kang, and P. A. Fishwick, editors,
Proceedings of the 2000 Winter Simulation Conference, pages 293–302, Orlando,
FL, 10–13 December 2000. IEEE.

[5] G. Follen and M. auBouchon. Numerical zooming between the NPSS Version 1
and a 1-dimensional meanline design analysis code. In Proceedings of the ISABE,
the 14th International Symposium on Air Breathing Engines, Florence, Italy, 5–
10 September 1999. AIAA-99-7196.

[6] Paul K. Davis and James H. Bigelow. Experiments in multiresolution modeling
(MRM). Technical Report MR-1004-DARPA, RAND, Santa Monica, CA, 1998.

[7] Paul K. Davis. An introduction to variable-resolution modeling and cross-
resolution model connection. In Paul K. Davis and Richard Hillestad, editors,
Proceedings of the Conference on Variable-Resolution Modeling, Washington,
D.C., 5–6 May 1992. RAND Report CF-103-DARPA.

[8] Paul K. Davis. An introduction to variable-resolution modeling and cross-
resolution model connection. Technical Report R-4252-DARPA, RAND, Santa
Monica, CA, 1993.

[9] Paul K. Davis and Reiner K. Huber. Variable-resolution combat modeling: Moti-
vations, issues, and principles. Technical Report N-3400-DARPA, RAND, Santa
Monica, CA, 1992.
Added 13 July 2000.

[10] Dennis R. Powell. Control of entity interactions in hierarchical variable resolution
simulation. Technical Report LA-UR-97-1287, Los Alamos National Laboratory,
Los Alamos, NM, 1997.

[11] Keith W. Brendley and Jed Marti. A distributed network approach to variable
resolution modeling. In Paul K. Davis and Richard Hillestad, editors, Proceedings
of the Conference on Variable-Resolution Modeling, pages 248–255, Washington,
D.C., 5–6 May 1992. RAND Report CF-103-DARPA.

56



[12] Paul F. Reynolds, Jr., Sudhir Srinivasan, and Anand Natrajan. Consistency
maintenance in multi-resolution simulations. ACM Transactions on Modeling
and Simulations, 7(3):368–392, July 1997.

[13] Paul K. Davis and Richard Hillestad. Families of models that cross levels of
resolution: Issues for design, calibration, and management. In G. W. Evans,
M. Mollaghasemi, E. C. Russell, and W. E. Biles, editors, Proceedings of the 1993
Winter Simulation Conference, pages 1003–1012, Los Angeles, CA, December
1993. International Society for Computer Simulation.

[14] Paul K. Davis and James Bigelow. Introduction to multi-resolution modeling
(MRM) with an example involving precision fires. In Proceedings of the Enabling
Technology for Simulation Science II Conference, pages 14–27, Orlando, FL,
April 1998. SPIE.

[15] Radharamanan Radhakrishnan and Philip A. Wilsey. Ruminations on the impli-
cations of multi-resolution modeling on DIS/HLA. In A. Boukerche and R. Fu-
jimoto, editors, Proceedings of the 3rd IEEE International Workshop on Dis-
tributed Interactive Simulation and Real-Time Applications, pages 101–108, Col-
lege Park, MD, 23–24 October 1999. The Institute of Electrical and Electronics
Engineers (IEEE), IEEE Computer Society.

[16] A. Natrajan and A. Nguyen-Tuong. To disaggregate or not to disaggregate,
that is Not the question. In Proceedings of the Electronic Conference on Scala-
bility in Training Simulation (ELECSIM ’95), CS-95-18. Society for Computer
Simulation, 10 April–18 June 1995.

[17] Anand Natrajan, Paul F. Reynolds, and Sudhir Srinivasan. MRE: An approach
to multi-resolution modeling. In Proceedings of PADS’97, Lockenhaus, Austria,
10–13 July 1997.

[18] Richard J. Hillestad and Mario L. Juncosa. Cutting down some trees to see
the forest: On aggregation and disaggregation in combat models. In Paul K.
Davis and Richard Hillestad, editors, Proceedings of the Conference on Variable-
Resolution Modeling, pages 256–292, Washington, D.C., 5–6 May 1992. RAND
Report CF-103-DARPA.

[19] Bruce W. Fowler. Resolution changes and renormalization for partial differen-
tial equation combat models. In Paul K. Davis and Richard Hillestad, editors,
Proceedings of the Conference on Variable-Resolution Modeling, pages 332–340,
Washington, D.C., 5–6 May 1992. RAND Report CF-103-DARPA.

[20] Alex F. Sisti and Steven D. Farr. Model abstraction techniques: An intuitive
overview. In Proceedings of the National Aerospace Electronics Conference, Day-
ton, OH, July 1998.

[21] Alex F. Sisti and Steven D. Farr. Modeling and simulation enabling technologies
for military applications. In Proceedings of the Winter Computer Simulation
Conference, Coronado, CA, December 1996.

57



[22] D. Caughlin and A. F. Sisti. A summary of model abstraction techniques. In
Proceedings of the Enabling Technology for Simulation Science I Conference,
pages 2–13, Orlando, FL, April 1997.

[23] Kangsun Lee and Paul A. Fishwick. Dynamic model abstraction. In Proceedings
of the 1996 Winter Simulation Conference, Coronado, CA, 8–11 December 1996.
Society for Computer Simulation.

[24] Frederick K. Frantz. Analyzing models for abstraction. In Proceedings of the
Enabling Technology for Simulation Science I Conference, pages 14–21, Orlando,
FL, April 1997. SPIE.

[25] Frederick K. Frantz. A taxonomy of model abstraction techniques. Technical
Report RL-TR-96-87, Air Force Rome Laboratory, Rome, NY, August 1996.

[26] A. T. Norris. Automated simplification of full chemical mechanisms: Im-
plementation in the national combustion code. In Proceedings of the 34th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland,
OH, 13–15 July 1998. The American Institute of Aeronautics and Astronautics,
AIAA 98-3987.

[27] Levent Acar, James S. Albus, and Alexander M. Meystel. A mathematical repre-
sentation of multi-resolutional world modeling. In Proceedings of the 1995 IEEE
International Symposium on Intelligent Control, Monterey, CA, 27–29 August
1995. The Institute of Electrical and Electronics Engineers (IEEE).

[28] John A. Reed and Abdollah A. Afjeh. Connecting components of varying fidelity
in a turbofan engine simulation. Modeling and Simulation—Control, Signal Pro-
cessing, Robotics, Power, 23(4):2291–2298, 1992.

[29] John A. Reed and Abdollah A. Afjeh. Integrating computer generated fan per-
formance data with a turbofan engine simulator. In Proceedings of the Modelling,
Simulation, and Identification Conference, pages 83–90, Vancouver, BC, August
1992.

[30] John A. Reed and Abdollah A. Afjeh. A comparative study of high and low
fidelity fan models for turbofan engine system simulation. In Proceedings of the
IASTED International Conference on Applied Modelling and Simulation, Banff,
Canada, July 1997.

[31] Patrick J. Roach. Computational Fluid Dynamics. Hermosa Publishing Com-
pany, Albuquerque, NM, 1985.

[32] David R. Gardner, Joseph P. Castro, Gary L. Hennigan, and Benjamin H. Cole II.
A prototype of the Entero system engineering code package. Technical Report
SAND2000-1368, Sandia National Laboratories, Albuquerque, NM, June 2000.

58



[33] David K. Gartling and Roy E. Hogan. Coyote–a finite element computer pro-
gram for nonlinear heat conduction problems. part i–theoretical background.
version 3.03. Technical Report SAND94-1173, Sandia National Laboratories,
Albuquerque, NM, December 1999.

[34] David K. Gartling, Roy E. Hogan, and Micheal W. Glass. Coyote–a finite element
computer program for nonlinear heat conduction problems. part ii–user’s manual.
version 3.03. Technical Report SAND94-1173, Sandia National Laboratories,
Albuquerque, NM, December 1999.

[35] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. PVM: Parallel Virtual Machine—A Users’ Guide and Tutorial
for Networked Parallel Computing. Scientific and Engineering Computation. MIT
Press, Cambridge, MA, 1994.

[36] David R. Gardner and Gary L. Hennigan. A multifidelity modeling algorithm for
system-level engineering analysis. (in preparation) SAND 2002-XXXX, Sandia
National Laboratories, Albuquerque, NM, 2002.

[37] The Spice Circuit Simulator. [Online].
http://infopad.eecs.berkeley.edu:80/~icdesign/SPICE.

[38] S. Hutchinson, E. Keiter, R. Hoekstra, H. Watts, A. Waters, T. Russo, R. Schells,
and C. Bogdan. The XyceTM Parallel Electronic Simulator–An Overview. In Pro-
ceedings of Parallel Computing 2001 (ParCo2001), Naples, Italy, 4–7 September
2001.

[39] D. R. Gardner, J. P. Castro, P. N. Demmie, M. A. Gonzales, G. L. Hennigan,
M. F. Young, and S. S. Dosanjh. Developing a flexible system modeling environ-
ment for engineers. In Proceedings of the 35th Hawaii International Conference
on System Sciences, Hilton Waikoloa Village, Big Island, HI, 7–10 January 2002.

[40] David R. Gardner, Joseph P. Castro, Paul N. Demmie, Mark A. Gonzales,
Gary L. Hennigan, and Michael F. Young. The Entero Project: Developing
a Multifidelity System Environment for Design Engineers. In Proceedings of
the Summer Computer Simulation Conference 2002, San Diego, CA, 14–18 July
2002.

[41] Joseph P. Castro, Paul N. Demmie, David R. Gardner, Mark A. Gonzales,
Gary L. Hennigan, and Michael F. Young. The Entero Software Architecture:
Reflecting the Way Engineers Think about Systems. In Proceedings of the Sum-
mer Computer Simulation Conference 2002, San Diego, CA, 14–18 July 2002.

[42] Mark A. Gonzales, Joseph P. Castro, Paul N. Demmie, David R. Gardner,
Gary L. Hennigan, and Michael F. Young. The Entero Environment: An Ex-
ample of Agile Software Development. In Proceedings of the Summer Computer
Simulation Conference 2002, San Diego, CA, 14–18 July 2002.

59



[43] M. W. Glass. CHAPARRAL: A library for solving large enclosure radiation heat
transfer problems. Technical Report SAND95-2049, Sandia National Laborato-
ries, Albuquerque, NM, August 1995.

[44] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, Boston, MA, 2nd edition, 1996.

[45] James Gosling and Henry McGilton. The Java language environment: A white
paper. Sun Microsystems, Inc., 1997.
java.sun.com/docs/white/langenv.

[46] Sun Educational Services. JavaBeans Component Development. Sun Microsys-
tems, B edition, April 1999.

[47] Sun Microsystems. Sun Microsystems JavaBeans API, 1.01 edition, July 1997.

[48] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[49] JSX. [Online]. http://www.csse.monash.edu.au/~bren/JSX.

[50] Brett McLaughlin. Java and XML. O’Reilly & Associates, Inc., Sebastopol, CA
2000.

[51] Edwin S. Wong. Developing an event-driven generator for user interfaces in the
Entero software. Technical Report SAND 2002-2917, Sandia National Laborato-
ries, Albuquerque, NM, September 2002.

60



Distribution

1 MS 0739 G. E. Rochau, 6415

5 0739 M. F. Young, 6415

1 1137 K. L. Hiebert-Dodd, 6535

5 1137 M. A. Gonzales, 6535

1 0316 W. J. Camp, 9200

1 0847 S. A. Mitchell, 9211

1 0310 M. D. Rintoul, 9212

1 1110 D. E. Womble, 9214

1 1111 B. A. Hendrickson, 9215

1 0310 R. W. Leland, 9220

1 0316 P. Yarrington, 9230

1 0819 E. A. Boucheron, 9231

1 0819 P. F. Chavez, 9232

1 0316 S. S. Dosanjh, 9233

5 0316 J. P. Castro, 9233

6 0316 D. R. Gardner, 9233

5 0316 G. L. Hennigan, 9233

1 0316 R. J. Hoekstra, 9233

1 0316 S. A. Hutchinson, 9233

1 0316 E. R. Keiter, 9233

1 0316 C. C. Ober, 9233

1 0316 R. C. Schmidt, 9233

1 0316 J. N. Shadid, 9233

1 0316 J. B. Aidun, 9235

1 0188 LDRD Office, Attn: D. L.
Chavez, 1030

1 MS 9018 Central Technical Files,
8945-1

2 0899 Technical Library, 9616

1 0612 Review & Approval Desk,
9612

61


	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	1 Introduction
	2 Multifidelity Modeling Concepts
	Combat Modeling
	Numerical Zooming

	3 Issues in Multifidelity Modeling
	4 A Multifidelity Algorithm for Thermal Radiation
	Description of the Multifidelity Algorithm
	Implementation of the Multifidelity Algorithm
	Linking Electronics Modeling to Modules in the System
	Tests of the Multifidelity Algorithm
	The Heating Problem
	The Cooling Problem
	The Time-Dependent Thermal Radiation Boundary Condition Problem
	Timing Results
	Extension of the Multifidelity Algorithm to Thermal Conduction

	5 The Entero System Engineering Environment
	Entero Design Goals
	A Prototype Entero Environment for Coupled Thermal-Electrical Modeling
	Limitations of the Prototype Architecture
	An Improved Entero Software Architecture
	Modular Functionality
	Implementing an Object-Oriented Design
	Modules
	Application Integration
	Data Persistence
	An Improved Entero Environment for Coupled Thermal-Electrical Modeling

	6 Summary
	References
	Distribution

