Review of arsenic removal technologies for contaminated groundwaters.

PDF Version Also Available for Download.

Description

This review was compiled to summarize the technologies currently being investigated to remove arsenic from drinking waters, with a special focus on developing and third-world countries where the problem is exacerbated by flooding and depressed economic conditions. The reason for compiling this report is to provide background material and a description of competing technologies currently described in the literature for arsenic removal. Based on the sophistication and applicability of current technologies, Argonne National Laboratory may develop an improved method based on magnetic particle technology. Magnetic particle sorbents may afford improved reaction rates, facilitate particle-water separation, and offer reusability. Developing countries ... continued below

Physical Description

43 pages

Creation Information

Vu, K. B.; Kaminski, M. D. & Nunez, L. May 2, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This review was compiled to summarize the technologies currently being investigated to remove arsenic from drinking waters, with a special focus on developing and third-world countries where the problem is exacerbated by flooding and depressed economic conditions. The reason for compiling this report is to provide background material and a description of competing technologies currently described in the literature for arsenic removal. Based on the sophistication and applicability of current technologies, Argonne National Laboratory may develop an improved method based on magnetic particle technology. Magnetic particle sorbents may afford improved reaction rates, facilitate particle-water separation, and offer reusability. Developing countries like Vietnam and Bangladesh cannot afford expensive, large-scale treatments to remove arsenic from drinking waters to acceptable limits (from 50 ppb to 10 ppb, depending on the country). Low-cost, effective technologies that can be readily available at the household or community level are needed to solve the present crisis. Appropriate technologies should meet certain criteria, including the following: The treatment must be applicable over a wide range of arsenic concentrations; It should be easy to use without running water or electricity; and The materials for the treatment should be cheap and readily available, and/or suitable for reuse. Our review of arsenic removal technologies and procedures indicates that iron filings, ferric salts, granular ferric hydroxide, alumina manganese oxide, Aqua-bind., and Kimberlite tailings are potentially low-cost sorbents that can remove arsenic after simple mixing in a relatively short time. However, all these technologies suffer from significant shortcomings. Ferric salts are cheap and very effective at removing arsenic but the reaction rates are slow. Fixed-bed columns make use of activated alumina and iron-coated sands but do not work well with groundwater having high concentrations of iron because iron precipitates in the presence of air, which could clog and foul the column. Synthetic sorbents are highly selective and effective and do not pose a significant waste disposal concern because they are generally non-hazardous. Aqua-bind. is perhaps the most effective synthetic sorbent available for removing arsenic, but it must be mass-produced to realize low cost. Naturally occurring solids are cheap and remove arsenic well; however, the removal rate is often very slow and the solids can harbor bacteria. This report reviews competing technologies for removal of water-borne arsenic to establish a baseline for technology improvements. Specifically, the information in this report will serve as a basis for developing a low-cost separation technology using functionalized magnetic particles to adsorb arsenic and permanent magnets to separate the arsenic-loaded magnetic particles from the cleaned water.

Physical Description

43 pages

Source

  • Other Information: PBD: 2 May 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL-CMT-03/2
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/815660 | External Link
  • Office of Scientific & Technical Information Report Number: 815660
  • Archival Resource Key: ark:/67531/metadc735691

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 2, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • March 23, 2016, 3:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vu, K. B.; Kaminski, M. D. & Nunez, L. Review of arsenic removal technologies for contaminated groundwaters., report, May 2, 2003; Illinois. (digital.library.unt.edu/ark:/67531/metadc735691/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.