Feasibility of natural circulation heat transport in the ENHS.

PDF Version Also Available for Download.

Description

An analysis has been carried out of natural circulation thermal hydraulics in both the primary and intermediate circuits of the Encapsulated Nuclear Heat Source (ENHS). It is established that natural circulation enhanced by gas injection into the primary coolant above the core, or the intermediate coolant above the heat exchange zone, is effective in transporting the nominal core power to the steam generators without the attainment of excessive system temperatures. Uncertainties in thermophysical properties and wall friction have a relatively small effect upon the calculated best estimate primary and intermediate coolant system temperature rises.

Physical Description

9 pages

Creation Information

Sienicki, J.J. February 14, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An analysis has been carried out of natural circulation thermal hydraulics in both the primary and intermediate circuits of the Encapsulated Nuclear Heat Source (ENHS). It is established that natural circulation enhanced by gas injection into the primary coolant above the core, or the intermediate coolant above the heat exchange zone, is effective in transporting the nominal core power to the steam generators without the attainment of excessive system temperatures. Uncertainties in thermophysical properties and wall friction have a relatively small effect upon the calculated best estimate primary and intermediate coolant system temperature rises.

Physical Description

9 pages

Source

  • 10th International Conference on Nuclear Engineering (ICONE-10), Arlington, VA (US), 04/14/2002--04/18/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/RAE/CP-106447
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 793885
  • Archival Resource Key: ark:/67531/metadc735663

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 14, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 21, 2016, 4:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sienicki, J.J. Feasibility of natural circulation heat transport in the ENHS., article, February 14, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc735663/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.