Aluminosilicate Formation in High Level Waste Evaporators: A Mechanism for Uranium Accumulation

PDF Version Also Available for Download.

Description

High level waste Evaporators at the Savannah River Site (SRS) process radioactive waste to concentrate supernate and thus conserve tank space. In June of 1997, difficulty in evaporator operation was initially observed. This operational difficulty evidenced itself as a plugging of the evaporator's gravity drain line (GDL). The material blocking the GDL was determined to be a sodium aluminosilicate. Following a mechanical cleaning of the GDL, the evaporator was returned to service until October 1999. At this time massive deposits were discovered in the evaporator pot. As a result of the changes in evaporator chemistry and the resulting formation of ... continued below

Physical Description

vp.

Creation Information

Wilmarth, W.R. February 8, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High level waste Evaporators at the Savannah River Site (SRS) process radioactive waste to concentrate supernate and thus conserve tank space. In June of 1997, difficulty in evaporator operation was initially observed. This operational difficulty evidenced itself as a plugging of the evaporator's gravity drain line (GDL). The material blocking the GDL was determined to be a sodium aluminosilicate. Following a mechanical cleaning of the GDL, the evaporator was returned to service until October 1999. At this time massive deposits were discovered in the evaporator pot. As a result of the changes in evaporator chemistry and the resulting formation of aluminosilicate deposits in the evaporator, a comprehensive research and development program has been undertaken. This program is underway in order to assist in understanding the new evaporator chemistry and gain insight into the deposition phenomena. Key results from testing in FY01 have demonstrated that the chemistry of the evaporator feed favors aluminosilicate formation. Both the reaction kinetics and particle growth of the aluminosilicate material under SRS evaporator conditions has been demonstrated to occur within the residence times utilized in the SRS evaporator operation. Batch and continuous-flow experiments at known levels of supersaturation have shown a significant correlation between the deposition of aluminosilicates and mixing intensity in the vessel. Advances in thermodynamic modeling of the evaporator chemistry have been accomplished. The resulting thermodynamic model has been related to the operational history of the evaporator, is currently assisting in feed selection, and could potentially assist in expanding the operating envelopes technical baselines for evaporator operation.

Physical Description

vp.

Source

  • Waste Management 2002 Conference, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-2001-00911
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 799318
  • Archival Resource Key: ark:/67531/metadc735581

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 8, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 4, 2016, 9:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wilmarth, W.R. Aluminosilicate Formation in High Level Waste Evaporators: A Mechanism for Uranium Accumulation, article, February 8, 2002; South Carolina. (digital.library.unt.edu/ark:/67531/metadc735581/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.