Occurrence, Characterization and Synthesis of Hanford and SRS Tank Heel Materials

PDF Version Also Available for Download.

Description

The long-range objective of this study was to develop chemically assisted technologies for removing heels from tanks. In FY 01, the first two steps toward this objective were taken: (1) catalogue the occurrence and nature of tank heels and assess which materials are available for study and (2) develop methods for synthesizing non-radioactive surrogate heel materials for use in testing potential removal technologies. The chief finding of Task 1 was the existence of ''heels'', depending on the definition used. Hard materials that would be almost impossible to remove by sluicing are all but absent from the records of both Savannah ... continued below

Physical Description

73 pages

Creation Information

KRUMHANSL, JAMES L. July 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The long-range objective of this study was to develop chemically assisted technologies for removing heels from tanks. In FY 01, the first two steps toward this objective were taken: (1) catalogue the occurrence and nature of tank heels and assess which materials are available for study and (2) develop methods for synthesizing non-radioactive surrogate heel materials for use in testing potential removal technologies. The chief finding of Task 1 was the existence of ''heels'', depending on the definition used. Hard materials that would be almost impossible to remove by sluicing are all but absent from the records of both Savannah River and Hanford. Historical usage suggests that the term ''heel'' may also apply to chunky, granular, or semi-solid pasty accumulations. These materials are documented and may also be difficult to remove by conventional sluicing technologies. Such heels may be comprised of normal sludge components, dominantly iron and aluminum hydroxides, or they may result from added materials which were not part of the normal fuel reprocessing operations: Portland cement, diatomaceous earth, sand and soil and spent zeolite ion exchange ''resins''. The occurrence and chemistry of the most notable ''heel'', that of the zeolite mass in Tank 19F at Savannah River, is reviewed in some detail. Secondly, no clear correlation was found between high tank temperatures and difficulties encountered in removing materials from a tank at a later date; nor did the sludges from these tanks give any indication of being particularly solid. Experimental studies to develop synthetic heel materials were caned out using a number of different approaches. For normal sludge materials settling, even when assisted by a centrifuge, it proved ineffective. The same result was obtained from drying sludge samples. Even exposing sludges to a molten salt melt at 233 C, only produced a fine powder, rather than a resilient ceramic which resisted disaggregation. A cohesive material, however, was produced by wicking the pore fluid out of a sludge gel (into packed diatomaceous earth), while simultaneously applying pressure to compact the sludge as it dehydrated. Osmotic gradients could provide the same function as the capillary forces provided by the diatomaceous earth sorbant placed in contact with the sludge. Tests on the anomalous materials added to the tanks all indicated potential problems. Hard granules, and maybe chunks, may be encountered where Portland cement was added to a tank. Sand, spent zeolite resin, and diatomaceous earth, will all react with the tank fluids to produce a sodalite/cancrinite material. The degree of reaction determines whether the grains become cemented together. SRS activities showed that heels formed when spent zeolites were added to tanks can be readily dislodged and it is expected that heels from sand would possess equal or less cohesion. Diatomaceous earth may form more resilient crusts or masses. To summarize, the existence of ''hard'' heels has yet to be documented. A broader definition suggests inclusion of poorly cohesive cancrinite-cemented masses and dense past-like accumulations of abnormally compacted ''normal'' sludges. Chemical treatments to remove these materials must focus on agents that are active against aluminosilicates and hydrous oxides of iron and aluminum. Exploiting the high pore-water content of these materials may provide a second avenue for dislodging such accumulations. Techniques were developed to produce synthetic sludges on which various removal technologies could be tried.

Physical Description

73 pages

Source

  • Other Information: PBD: 1 Jul 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2002-0627
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/800783 | External Link
  • Office of Scientific & Technical Information Report Number: 800783
  • Archival Resource Key: ark:/67531/metadc735505

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 12, 2016, 2:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

KRUMHANSL, JAMES L. Occurrence, Characterization and Synthesis of Hanford and SRS Tank Heel Materials, report, July 1, 2002; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc735505/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.