Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

PDF Version Also Available for Download.

Description

Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as ... continued below

Physical Description

2.7 MB pages

Creation Information

Clark, Daniel S. & Fisch, Nathaniel J. June 27, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of {approx}10{sup 17}W/cm{sup 2} by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function.

Physical Description

2.7 MB pages

Notes

INIS; OSTI as DE00814695

Source

  • Other Information: PBD: 27 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3830
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/814695 | External Link
  • Office of Scientific & Technical Information Report Number: 814695
  • Archival Resource Key: ark:/67531/metadc735479

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 27, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 15, 2016, 10:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Clark, Daniel S. & Fisch, Nathaniel J. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas, report, June 27, 2003; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc735479/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.