The readout of the LHC beam luminosity monitor: Accurate shower energy measurements at a 40 MHz repetition rate

PDF Version Also Available for Download.

Description

The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction create showers in the absorbers placed in front of the cryogenic separation dipoles. The shower energy, as it can be measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. This principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, detector and front-end electronics must comply with extremely stringent requirements. To make the bunch-by-bunch measurement feasible, their speed of operation must match the 40 MHz bunch ... continued below

Physical Description

6 pages

Creation Information

Manfredi, P.F.; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V. et al. May 10, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction create showers in the absorbers placed in front of the cryogenic separation dipoles. The shower energy, as it can be measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. This principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, detector and front-end electronics must comply with extremely stringent requirements. To make the bunch-by-bunch measurement feasible, their speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, in the actual operation the detector must stand extremely high radiation doses. The front-end electronics, to survive, must be located at some distance from the region of high radiation field, which means that a properly terminated, low-noise, cable connection is needed between detector and front-end electronics. After briefly reviewing the solutions that have been adopted for the detector and the front-end electronics and the results that have been obtained so far in tests on the beam, the latest version of the instrument in describe in detail. It will be shown how a clever detector design, a suitable front-end conception based on the use of a ''cold resistance'' cable termination and a careful low-noise design, along with the use of an effective deconvolution algorithm, make the luminosity measurement possible on a bunch-by-bunch basis at the LHC bunch repetition rates.

Physical Description

6 pages

Notes

INIS; OSTI as DE00815505

Source

  • Frontier Detectors for Frontier Physics - 9th Pisa Meeting, La Biodola-Isola d'Elba (IT), 05/25/2003--05/31/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52654
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 815505
  • Archival Resource Key: ark:/67531/metadc735464

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 10, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 5:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Manfredi, P.F.; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V. et al. The readout of the LHC beam luminosity monitor: Accurate shower energy measurements at a 40 MHz repetition rate, article, May 10, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc735464/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.