Electroactive Materials For Anion Separation-Technetium From Nitrate

PDF Version Also Available for Download.

Description

In order to increase the capacity of electroactive polymers for radioactive waste separations, we have focused on two ways of processing these polymers: phase inversion, and coating onto a porous conductive substrate. Both techniques are intended to increase the surface area for access of the guest anions to the intercalation host. Phase inversion of polyvinylferrocene (PVF) was unsuccessful, but we were able to use electroprecipitation to coat PVF onto porous carbon substrates such as Toray paper. Due to the wide molecular weight distribution and batch variations of commercial PVF, we have chosen to examine the more manageable polyaniline.

Physical Description

vp.

Creation Information

William H. Smyrl, PI & Gronda, Dr. Ann October 10, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In order to increase the capacity of electroactive polymers for radioactive waste separations, we have focused on two ways of processing these polymers: phase inversion, and coating onto a porous conductive substrate. Both techniques are intended to increase the surface area for access of the guest anions to the intercalation host. Phase inversion of polyvinylferrocene (PVF) was unsuccessful, but we were able to use electroprecipitation to coat PVF onto porous carbon substrates such as Toray paper. Due to the wide molecular weight distribution and batch variations of commercial PVF, we have chosen to examine the more manageable polyaniline.

Physical Description

vp.

Notes

INIS; OSTI as DE00820950

Source

  • Other Information: PBD: 10 Oct 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: doe/er/14927
  • Grant Number: FG07-98ER14927
  • DOI: 10.2172/820950 | External Link
  • Office of Scientific & Technical Information Report Number: 820950
  • Archival Resource Key: ark:/67531/metadc735314

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 10, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 12:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

William H. Smyrl, PI & Gronda, Dr. Ann. Electroactive Materials For Anion Separation-Technetium From Nitrate, report, October 10, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc735314/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.