CHANGES IN EDGE AND SCRAPE-OFF LAYER PLASMA BEHAVIOE DUE TO VAARIATION IN MAGNETIC BALANCE IN DIII-D

PDF Version Also Available for Download.

Description

Changes in the divertor magnetic balance in DIII-D H-mode plasmas affects core, edge, and divertor plasma behavior. Both the pedestal density n{sub e,PED} and plasma stored energy W{sub T} were sensitive to changes in magnetic balance near the double-null (DN) configuration, e.g., both decreased 20%-30% when the DN shifted to a slightly unbalanced DN, where the B x {del}B drift direction pointed away from the main X-point. Recycling at each of the four divertor targets was sensitive to changes in magnetic balance and the B x {del}B drift direction. The poloidal distribution of the recycling in DN is in qualitative ... continued below

Physical Description

Medium: X; Size: 14 pages

Creation Information

PETRIE, T.W.; WATKINS, J.G.; BAYLOR, L.R.; BROOKS, N.H.; FENSTERMACHER, M.E.; HYATT, A.W. et al. June 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Changes in the divertor magnetic balance in DIII-D H-mode plasmas affects core, edge, and divertor plasma behavior. Both the pedestal density n{sub e,PED} and plasma stored energy W{sub T} were sensitive to changes in magnetic balance near the double-null (DN) configuration, e.g., both decreased 20%-30% when the DN shifted to a slightly unbalanced DN, where the B x {del}B drift direction pointed away from the main X-point. Recycling at each of the four divertor targets was sensitive to changes in magnetic balance and the B x {del}B drift direction. The poloidal distribution of the recycling in DN is in qualitative agreement with the predictions of UEDGE modeling with particle drifts included. The particle flux at the inner divertor target is shown to be much more sensitive to magnetic balance than the particle flux at the outer divertor target near the DN shape. These results suggest possible advantages and drawbacks for balanced DN operation.

Physical Description

Medium: X; Size: 14 pages

Notes

Oakland Operations Office, Oakland, CA (US); INIS

Source

  • 15th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Gifu (JP), 05/27/2002--05/31/2002; Other Information: THIS IS A PREPRINT OF A PAPER PRESENTED AT THE 15TH INTERNATIONAL CONFERENCE ON PLASMA SURFACE INTERACTIONS IN CONTROLLED FUSION DEVICES, MAY 27-31, 2002 GIFU, JAPAN, AND TO BE PUBLISHED IN THE :PROCEEDINGS''

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 804691
  • Archival Resource Key: ark:/67531/metadc735285

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 6:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

PETRIE, T.W.; WATKINS, J.G.; BAYLOR, L.R.; BROOKS, N.H.; FENSTERMACHER, M.E.; HYATT, A.W. et al. CHANGES IN EDGE AND SCRAPE-OFF LAYER PLASMA BEHAVIOE DUE TO VAARIATION IN MAGNETIC BALANCE IN DIII-D, article, June 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc735285/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.