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ABSTRACT

Superresolution concepts offer the potential of resolution beyond the classical

limit.  This great promise has not generally been realized.  In this study we investigate the

potential application of superresolution concepts to synthetic aperture radar.  The

analytical basis for superresolution theory is discussed.  In a previous report the

application of the concept to synthetic aperture radar was investigated as an operator

inversion problem.  Generally, the operator inversion problem is ill posed.  This work

treats the problem from the standpoint of regularization.  Both the operator inversion

approach and the regularization approach show that the ability to superresolve SAR

imagery is severely limited by system noise.
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1. Introduction

The purpose of this study is to investigate the potential of applying regularization

to the SAR superresolution problem.1,2  This work is an extension of the work reported in

SAND2001-1532.3  As with the previous study, we do not obtain an advantage using

regularization.

In this study we use regularization to construct families of approximate solutions

that are compatible with a given image. The principle of regularization uses additional

information say, a solution set that is restricted to functions satisfying a smoothness

condition, to obtain a better approximation to the image. By considering only well-

behaved approximations, one might expect that it is possible to use more than cN

eigenfunctions in the inverse operation, and, in this way, achieve higher fidelity. We

show, however, that regularized solutions exhibit essentially the same “ill-conditioned”

behavior as the solution we obtain if we invert the data directly by using finitely many

eigenfunctions (see Eq. (5) in SAND2001-1532).
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2. Regularization

Our objective is to analyze the signal-to-noise ratio required to obtain spectral

components beyond the bandpass of the system for the case of regularized solutions to

the image restoration problem. A regularized solution is a solution to the restoration

problem constrained to a class of  “well-behaved” functions.  For large space-bandwidth

products, we show that, to recover )log(cb  terms beyond the degrees of freedom in the

system, the signal-to-noise ratio must grow “exponentially” in b ; here b is a positive

constant. As a practical limit, in terms of the band-limited noise level, �  (see Lemma 2 in

SAND2001-1532), we can recover at most on the order of )log()log( c�  spectral

components outside the degrees of freedom in the system. In other words, regularized

solutions have essentially the same SNR requirements as the inverse (see Eq. (5) in

SAND2001-1532) obtained by using only finitely many eigenfunctions.

In an attempt to control error propagation, constraints are often introduced to

restrict the class of admitted solutions; this is the concept of regularization due to

Tikhonov and Arsenin.4  We define a regularized solution, in the presence of noise, to be

the minimum over a finite dimensional space S  of the functional,

� �
2)( ����� sLff                                                                                            (1)

subject to the constraint 22)( EBff ��� , where the operator BB* is positive and *B

is the adjoint of B . Here, the operator L  is defined by Eq. (10), kk

k

k aLs ��� �
�

�

��

1

,

and �  is the band-limited noise with � �kk ��� ,� , 0�k� , kk ��� 22
� , see Eq. (36)

and Eq. (46) in SAND2001-1532. We have imposed the finite dimensional assumption on
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S  and the positivity assumption on BB*  to ensure that )( f� satisfies the definition of a

stabilizing functional, in particular, this guarantees that � �22: EBfSfK E ���  is

compact. Since it can be shown that )( f�  is a stabilizing functional, it follows that the

minimization problem has a unique solution, see Tikhonov and Arsenin.4 The simplest

choice for B  is IB �  ( I  is the identity operator), so that, for object restoration, a bound

is imposed on the total energy. Another possibility is to let B  denote a differential

operator, so the constraint gives a bound on the derivatives, and the approximate solution

must satisfy a smoothness requirement.  Our goal is to provide an estimate of the

superresolution capabilities of regularized solutions for a wide class of stabilizing

functionals )( f� . 

Before we present an orthonormal expansion for the regularized solution, we

specify the space S , and the number of components, M , beyond the degrees of freedom.

Let us consider a case that appears to be very favorable to the recovery of information

outside of the bandpass, namely, we assume that the true solution, �
�

�

�

1k

kka �� ,

approximately resides in a small number of components, ))(log(cOM � , beyond the

degrees of freedom in the system. Specifically, we assume 2

2

1

��� ���
�

�

MN

k

kka , where

� �wxNN c 2�� , wxc �� , and ))(log(cOM � .  We define the space S  to be equal to

the span of the functions k� , MNk �� ,...,1 , and we refer to the projection,

k

MN

k
kMN a �� �

�

�

�
�

1
, of �  onto S  as the object.  The projection, h , of ��s onto LS
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(image of S  under L ) is given by � � k

MN

k

kkk ah ����
�

�

��

1

, and

� � kk

MN

k

kkk ahL ���� /
1

1 �
�

�

�

�� .  Since � � hs ���  is orthogonal to LS  we may define the

regularized solution as the minimum over S , of the functional,

� �
2

hLff ��� ,                                                                                                  (2)

where f  satisfies the condition 22)( EBff ��� . It can be shown, since BB*  is

positive, that for sufficiently large E , the set EK  contains hL 1� , and we set 0E  equal to

the smallest E  such that EKhL �
�1 .

To estimate the discrepancy between the object and the regularized solution, we

need an approximation for the eigenvalues. It is possible to give a simple asymptotic

expression for MN�
�  if we assume that M  takes the form

� � � �� �� �cbcMN 2log2 ��� � , that is, � �� � ccbNcM �
��

���� 2log22 , for some fixed

0�b  and c�  where 10 �� c� ; it follows that )2log(2~ cbM
�

, as ��c . In this

case, we have  

� � 11~ �

�
�

b
MN e�

� ,                                                                    (3)

as ��c , Slepian.5 We seek an estimate of the discrepancy when not all the energy of

the object, MN�
� , resides in the first N  components, that is 2

2

1
�� ���

�

��

MN

Nk
kka , and,

in particular, we assume ���
�MNa , so this term cannot be neglected.
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Since �  is convex and EK  is compact, if 2
0

2
��� , the minimum must lie on the

surface of the set E� ; that is, the inequality may be replaced by the equality 22
��Bf .

It follows that the minimization problem may be solved by the method of Lagrange

multipliers, namely, the problem of finding the unconditional minimum of the functional

� �
22

BfhLff �
�

����                                                                    (4)

where the parameter �  is to be determined. The 
�

f  minimizing the expression in Eq. (4)

is given by the solution to the Euler equation associated with the functional 
�

�  (Bertero

and Boccacci6),

� � hLfBBLL ��

��
�

�
*                                                          (5)

where �L  denotes the adjoint of L  ( LL �
� since L  is self-adjoint).  For 0�� , the

operator BBLL *
��

�  is self-adjoint and positive on S , so Eq. (5) has a unique solution

for every non-negative � . If there exists an � , say � � , for which 22
��

��
Bf  then 

� �
f

also solves the constrained minimum problem.

To obtain a series expansion for 
�

f , we need to also assume that the operators L

and B  commute (the range of B is contained in S  and BLLB � ). This implies that the

prolate spheroidal wave functions are also eigenfunctions for B ; that is, kkkB ��� � ,

MNk �� ,...,1 , and since BB*  is positive, �� �k  for some 0�� .

We seek a solution to the Euler equation in terms of the functions k� ; substituting

� � k

MN

k
kkkk ahL �����

�

�

�

��

1
 and �

�

�

�

MN

k
kkbf

1
�

�
 into Eq. (5) yields,

� � � ���
�

�

�

�

���

MN

k

kkkkkk

MN

k

kkk ab
11

22
�������� .                              (5a)
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It follows that 
� �

22
kk

kkkk
k

a
b

���

���

�

�

�  and the regularized solution is given by

� �
k

MN

k kk

kkkk a
f �

���

���
� �

�

�
�

�

�

1
22

,                                          (5b)

where �  is the unique non-negative root of the equation 

� �

� �
2

1
222

222
2

��

�

�
��

�

�

MN

k kk

kkkkk a
Bf

���

����
�

.                                                          (5c) 

Equation (5c) has a non-negative root since the function, � ��F , defined by

� � � � � �2222

1

22
kkkkk

MN

k
kk aF �������� ����

�

�

is monotonically decreasing

( � � 0���F ) with � � 22
00 ����F  and � � 0��F  as ��� . Here, we use the fact that

� � � � 22
2

1

212
0 kkkk

MN

k
k ahLBE ���� ��� �

�

�

�  since 
0

1
EKhL �

� and EKhL �
�1 for

0EE �  (recall that 0E  is the smallest E  such that EKhL �
�1 ).

We seek an estimate of the average discrepancy between the regularized solution 
�

f  and

the object, k

MN

k
kMN a �� �

�

�

�
�

1
, namely

� �
�
�

�

� �
�

�

�

�
�

�

�
�

�

�
	�

MN

k

k

k

kkkk
MN a

a
f

1

2

22

2

���

���
�

�
 ,                                               (6)

for different values of E . The thk  term in the sum may be written
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� �

� �222

22

22

2

22

2

2

22

2

kk

kk

kk

kkk
k

kk

kk

k

kk

kkkk

a
a

a

a
a

���

��

���

��

���

�

���

���

�
�

�
�

�
�

�

�

�
�

�

�
�

�

	
�
�

�

�

�
�

�

�
�

�

�

                          (7)

We note, to guarantee that the first two terms on the right are small for arbitrary

ka  and �� �k , we must have that �  is small; that is, if we expand about 0��  we see

that the first two terms tend to zero, in general, only if �  approaches zero. In particular,

for MNk �� , since this term cannot be neglected, we must have that 2
MN�

�� �� . From

Eq. (5c), it follows that E must approach 0E . For E  sufficiently close to 0E  we may

expand the right-hand-side of expression (6) about 0��  to obtain

��
�

�

�

�

�
��

MN

k k

MN

k k

k

MNf
1

2

1

2
2 1~

�
�

�

�
�

�
,                                                            (8)

as 0EE � (or as 0�� ). The expected discrepancy is bounded below, by using

expression (3),

� �
4

1
2

~1
2

1
2

21
22

1

2
2

b
b

MN

MN

k k

MN

e
ef

�

�

�
�

�

�

�

�

�
� �����

�

�

�

�

� � ,                     (9)

provided E  is sufficiently close to 0E , and c  is large.

We have arrived at our desired result; namely, to recover order � �cb ln

components of spectral information outside the bandpass of the system, the signal-to-

noise ratio, 
�

�
E

, (see expression (47) in SAND2001-1532) must grow exponentially in

b , that is,
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� �
�

�� �
�

E
ee MN

bb
����

�

�
� ~1 2/12/ .                                                                (10)

 It follows that the regularized solution suffers from the same “ill-conditioning” or SNR

requirements as the restriction, to the space S , of the inverse operator defined by Eq. (5)

in SAND2001-1532; namely, 
�

�
�

EMN ��
�

, compare expressions (47) in SAND2001-

1532 and (10).

        Additionally, we may write the number of components M  in terms of the level of

the bandlimited noise, � ; that is, if � ��
�

logp
b � , 0�p , 

44

2
22

pb

MN

e
f

�

�
���
�

��

�

�
,                                                                       (11)

It follows that 20 �� p ; for if 2�p , the average discrepancy is bounded away from

zero.  Conversely, using expression (8), it can be shown that if � ��
�

logp
b � , 20 �� p ,

the average discrepancy tends to zero as 0�� . In other words, as 0��  and ��c , we

can recover at most

� � � � � � � � � �c
p

c
p

cbM loglog~2loglog22log2~ 22 �

�

�

��

� ,                            (12)

 spectral components beyond the degrees of freedom in the system. Roughly, as a

practical limit, we can recover at most order � � � �cloglog �  components outside the

bandpass.

         One might expect that, by imposing a smoothness criterion on the solution set, the

resulting solutions might provide a better approximation to the object; however, as we

have seen, regularized solutions exhibit essentially the same ill-conditioning as the
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inverse of the restricted operator. The point is that, for the case considered here,

regularization does not solve the superresolution problem. Other types of regularization

procedures involving say convolution operators suffer from similar limitations, see

Tikhonov and Arsenin4 or Bertero and Boccacci.6



- 16 -

3. Summary

Although regularization offers the potential of resolution beyond the bandpass of the

system, this potential has not been realized. In fact, as we have seen, regularization has

the same SNR requirements as the operator inversion approach. An increase in the

number of spectral components beyond cN , in either case, the operator inversion or

regularization approach, is severely limited by noise. As a practical limit we can recover

at most on the order of � � � �cloglog �  spectral components beyond cN , where �  is the

band-limited noise level. Roughly, the constraints imposed on the solution set, by the

regularization technique, do not produce a “better” behaved class of solutions, instead we

recover the original set of solutions. In this sense, regularization does not provide

additional information for the image restoration problem, and does not significantly

improve image restoration.
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