DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Gas/Liquid Membranes For Natural Gas Upgrading
GTI Project 61147 Contract Number: DE-FC26-01NT41227

ABSTRACT
Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated.

TABLE OF CONTENTS
DISCLAIMER 2
ABSTRACT 3
TABLE OF CONTENTS 3
INTRODUCTION 3
EXECUTIVE SUMMARY 4
EXPERIMENTAL 4
RESULTS AND DISCUSSION 4
CONCLUSION 4
REFERENCES 4

INTRODUCTION
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications.

Kværner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50 – 70% smaller and lower weight for the same treating service.

The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical
Gas/Liquid Membranes For Natural Gas Upgrading
GTI Project 61147 Contract Number: DE-FC26-01NT41227

procedures are used. Kværner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

EXECUTIVE SUMMARY
During the report period, the major effort has been in establishing legal agreements and requirements for the laboratory unit in Des Plaines. Subcontract terms with Kværner are in negotiation. The cofunding agreement with Chevron is also under discussion, but is temporarily on hold as Chevron finalizes purchase agreements for gas supply at the Chinchaga Gas Plant in Alberta, Canada. A preliminary set of bench-scale equipment specifications has been prepared and is in review. A meeting has been scheduled for next quarter to visit the low-pressure unit at SINTEF, Trondheim, Norway to establish the design for the high-pressure unit in Des Plaines.

EXPERIMENTAL
No experimentation was performed this quarter.

RESULTS AND DISCUSSION
No results have been achieved at this point.

CONCLUSION
No conclusions have been reached at this point.

REFERENCES
None