Vadose Zone Impact Assessment for the 241-S-SX Tank Farms, Conceptual Models and Approach

A.J. Knapp
CH2MILL Hanford Group, Inc.

Date Published
December 2000

To be Presented at
2000 Fall Meeting of the American Geophysical Union
San Francisco, CA
December 15, 2000

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Copyright License
By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper

CH2MILL
Hanford Group, Inc.

Richland, Washington

Contractor for the U.S. Department of Energy
Office of River Protection under Contract DE-AC06-99RL14047

Approved for Public Release; Further Dissemination Unlimited
LEGAL DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy.
INFORMATION CLEARANCE FORM

A. Information Category
- [] Abstract
- [] Summary
- [x] Visual Aid
- [] Full Paper
- [] Other __________

B. Document Number
- RPP-6908

C. Title
- Vadose Zone Impact Assessment for the 241-S-SX Tank Farms: Conceptual Models and Approach

D. Internet Address

E. Required Information

1. Is document potentially Classified? [] No [] Yes (MANDATORY)
 - Manager's Signature Required
 - [] No [] Yes Classified
 - ADC Signature Required

2. Internal Review Required? [] No [] Yes
 - Counsel __________
 - Program __________

3. References in the Information are Applied Technology [] No [] Yes
 - Export Controlled Information [] No [] Yes

4. Does Information Contain the Following: (MANDATORY)
 - a. New or Novel (Patentable) Subject Matter? [] No [] Yes
 - If "Yes", Disclosure No.: __________
 - b. Information Received in Confidence, Such as Proprietary and/or Inventions? [] No [] Yes If "Yes", Affix Appropriate Legends/Notices.
 - c. Copyrights? [] No [] Yes If "Yes", Attach Permission.
 - d. Trademarks? [] No [] Yes If "Yes", Identify in Document.

5. Is Information requiring submission to OSTI? [] No [] Yes
 - If "Yes", UC-________ and B&R-________

6. Release Level? [] Public [] Limited

7. Charge Code 106497

F. Complete for a Journal Article

1. Title of Journal

2. Title for Conference or Meeting
 - 2000 Fall Meeting of the American Geophysical Union

3. Group Sponsoring
 - American Geophysical Union

4. Date of Conference
 - 12/15/00

5. City/State
 - San Francisco, CA

6. Will Information be Published in Proceedings? [] No [] Yes

7. Will Material be Handed Out? [] No [] Yes

H. Author/Requestor
- PM Rogers (Print and Sign)

I. Reviewers
- General Counsel [x] S. Vensussen
- Office of External Affairs [x] E. Kuhlen A. Fremd
- DOE-RL [x] R. Yasek
- Other
- Other

J. If Information includes Sensitive Information and is not to be released to the Public Indicate category below.
- [] Applied Technology
- [] Personal/Private
- [] Proprietary
- [] Business-Sensitive
- [] Predecisional
- [] Patentable
- [] Other (Specify) __________

K. If Additional Comments, Please Attach Separate Sheet

Page 2 of 2
Preliminary Results of Modeling Vadose Zone Flow at the 241-S-SX Tank Farms, Hanford Site

ABSTRACT
The U.S. Department of Energy (DOE) has initiated a Resource Conservation and Recovery Act (RCRA) Corrective Action project to address the impacts of past and potential future tank waste releases to the vadose zone at the 241-S-SX single-shell tank farms at the Hanford Site in southeastern Washington. The corrective actions include evaluation of impacts to groundwater resources (i.e., the concentration of contaminants in groundwater) and long-term risk to human health (associated with groundwater use). Numerical models have been developed that consider the extent of contamination presently within the vadose zone, contaminant movement through the vadose zone to groundwater, and contaminant movement in the groundwater to points of compliance. Results are included on analysis of laboratory measurements for physical and hydraulic properties for soil samples in the vicinity of the 241-S and 241-SX tank farms, and testing of small-scale measurements for soil properties characteristics. The two-dimensional model considers the accelerated movement of water around and beneath single-shell tanks that is attributed to bare, gravel surfaces and those enhancing net infiltration of meteoric water (from water precipitation and snowmelt). Water infiltration, possibility exceeding 100 mmyr⁻¹, is further enhanced in the tank farm because of the umbrella effect (i.e., the effect of percolating water being diverted by an impermeable, sloping surface), created by large, 24-m-diameter, buried tank domes. The enhanced recharge can potentially mobilize tank leak water and result in an earlier arrival of contaminants in the water table. Preliminary modeling results are presented.

COMPUTER CODES USED
The computer code used is STOMP (Subsurface Transport Over Multiple Phases), developed by Pacific Northwest National Laboratory. The simulator is specifically designed to provide scientists and engineers from varied disciplines with multidimensional analysis capabilities for modeling subsurface flow and transport phenomena.

Macroscopic Anisotropy Relationships: Polman (1990)

<table>
<thead>
<tr>
<th>Material</th>
<th>N</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>I</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sediment</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Soil</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Composite van Genuchten-Mualem Parameters for various strata at the S-SX Tank Farms

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Number of samples</th>
<th>N</th>
<th>b</th>
<th>c</th>
<th>I</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>50</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sediment</td>
<td>50</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Soil</td>
<td>50</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Calculated macroscopic anisotropy for different strata

- Enhanced Water Movement Around the Tank Domes
- No Barriers: Distribution of Fluxes at the Water Table
- Surface Barriers: Distribution of Fluxes at the Water Table
- Saturation Distribution Due to Water Line Leak (25,000 Gallons over 5 days)

SUMMARY
- A suite of two-dimensional simulations were used to investigate the impact of surface barriers and groundwater issues.
- The simulations consider the accelerated movement of water around the tank domes and the saturation-dependent anisotropy for the heterogeneous media.
- The surface barriers, as expected, reduce magnitude of fluxes to the water table.
- The water line leak (25,000 gallons over 5 days) was sufficient to saturate the soil near the tanks, but the saturated plumes diffused readily at 0 ppm through the vadose zone, having negligible impact below the Plio-Pleistocene layer.

U.S. Department of Energy
Office of River Protection

Roz Knauss
(509) 378-6903
Fuel Federal Services
Pacific Northwest National Laboratory

Mark White
(509) 372-6072
Pacific Northwest National Laboratory

Phillip Rogers
(509) 372-9234
Jacobs Engineering Group