Electronic Effects on Grain Boundary Structure in BCC Metals

PDF Version Also Available for Download.

Description

The dominant factor in determining the atomic structure of grain boundaries is the crystal structure of the material, e.g. FCC vs. BCC. However, for a given crystal structure, the structure of grain boundaries can be influenced by electronic effects, i.e. by the element comprising the crystal. Understanding and modeling the influence of electronic structure on defect structures is a key ingredient for successful atomistic simulations of materials with more complicated crystal structures than FCC. We have found that grain boundary structure is a critical test for interatomic potentials. To that end, we have fabricated the identical {Sigma}5 (3l0)/[001] symmetric tilt ... continued below

Physical Description

1,100 Kilobytes pages

Creation Information

Campbell, G.H.; King, W.E.; Belak, J.A.; Moriarty, J.A. & Foiles, S.M. November 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The dominant factor in determining the atomic structure of grain boundaries is the crystal structure of the material, e.g. FCC vs. BCC. However, for a given crystal structure, the structure of grain boundaries can be influenced by electronic effects, i.e. by the element comprising the crystal. Understanding and modeling the influence of electronic structure on defect structures is a key ingredient for successful atomistic simulations of materials with more complicated crystal structures than FCC. We have found that grain boundary structure is a critical test for interatomic potentials. To that end, we have fabricated the identical {Sigma}5 (3l0)/[001] symmetric tilt grain boundary in three different BCC metals (Nb, MO, and Ta) by diffusion bonding precisely oriented single crystals. The structure of these boundaries have been determined by high resolution transmission electron microscopy. The boundaries have been found to have different atomic structures. The structures of these boundaries have been modeled with atomistic simulations using interatomic potentials incorporating angularly dependent interactions, such as those developed within Model Generalized Pseudopotential Theory. The differing structures of these boundaries can be understood in terms of the strength of the angular dependence of the interatomic interaction. We report here the results for Ta.

Physical Description

1,100 Kilobytes pages

Source

  • 1999 Materials Research Society Fall Meeting, Boston, MA (US), 11/29/1999--12/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134537
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 792285
  • Archival Resource Key: ark:/67531/metadc734975

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 15, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 3:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Campbell, G.H.; King, W.E.; Belak, J.A.; Moriarty, J.A. & Foiles, S.M. Electronic Effects on Grain Boundary Structure in BCC Metals, article, November 15, 1999; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc734975/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.