Infernal Fishbone Mode

PDF Version Also Available for Download.

Description

A new kind of fishbone instability associated with circulating energetic ions is predicted. The considered instability is essentially the energetic particle mode; it is characterized by m/n not equal to 1 (m and n are the poloidal and toroidal mode numbers, respectively). The mode is localized inside the flux surface where the safety factor (q) is q* = m/n, its amplitude being maximum near q*. The instability arises in plasmas with small shear inside the q* surface and q(0) > 1. A possibility to explain recent experimental observations of the m = 2 fishbone oscillations accompanied by strong changes of ... continued below

Physical Description

756 Kilobytes pages

Creation Information

Kolesnichenko, Ya.I.; Marchenko, V.S. & White, R.B. February 11, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A new kind of fishbone instability associated with circulating energetic ions is predicted. The considered instability is essentially the energetic particle mode; it is characterized by m/n not equal to 1 (m and n are the poloidal and toroidal mode numbers, respectively). The mode is localized inside the flux surface where the safety factor (q) is q* = m/n, its amplitude being maximum near q*. The instability arises in plasmas with small shear inside the q* surface and q(0) > 1. A possibility to explain recent experimental observations of the m = 2 fishbone oscillations accompanied by strong changes of the neutron emission during tangential neutral-beam injection in the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] is shown.

Physical Description

756 Kilobytes pages

Notes

INIS; OSTI as DE00812019

Source

  • Other Information: PBD: 11 Feb 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3786
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/812019 | External Link
  • Office of Scientific & Technical Information Report Number: 812019
  • Archival Resource Key: ark:/67531/metadc734970

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 11, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 15, 2016, 10:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kolesnichenko, Ya.I.; Marchenko, V.S. & White, R.B. Infernal Fishbone Mode, report, February 11, 2003; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc734970/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.