Neutralized transport of high intensity beams

PDF Version Also Available for Download.

Description

The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided ... continued below

Physical Description

3 pages

Creation Information

Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W. et al. May 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented.

Physical Description

3 pages

Notes

INIS; OSTI as DE00815515

Source

  • Particle Accelerator Conference PAC 03, Portland, OR (US), 05/12/2003--05/16/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53078
  • Report No.: HIFAN 1183
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 815515
  • Archival Resource Key: ark:/67531/metadc734968

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 3:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W. et al. Neutralized transport of high intensity beams, article, May 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc734968/: accessed January 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.