Modeling and Simulation of Microelectrode-Retina Interactions

PDF Version Also Available for Download.

Description

The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best ... continued below

Physical Description

34 pages

Creation Information

Beckerman, M November 30, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant, TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.

Physical Description

34 pages

Source

  • Other Information: PBD: 30 Nov 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: Y/TC-3210
  • Grant Number: AC05-00OR-22800
  • DOI: 10.2172/810944 | External Link
  • Office of Scientific & Technical Information Report Number: 810944
  • Archival Resource Key: ark:/67531/metadc734863

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 30, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • May 6, 2016, 4:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Beckerman, M. Modeling and Simulation of Microelectrode-Retina Interactions, report, November 30, 2002; Tennessee. (digital.library.unt.edu/ark:/67531/metadc734863/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.