Interannual/decadal variability in MJO activity as diagnosed in the 40-year NCEP/NCAR reanalysis and simulated in an ensemble of GISST integrations

PDF Version Also Available for Download.

Description

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The interannual behaviour of the MJO has been diagnosed initially in the 40-year NCEP/NCAR Reanalysis by calculating the variance of the 20-100 day filtered zonal mean zonal wind (10 o N-10 o S averaged) in a 100- day moving window. The results suggest that prior to the mid-1970s the activity of the MJO was consistently lower than during ... continued below

Physical Description

61 Kilobytes

Creation Information

Nortley, F; Rowell, D P; Slingo, J M & Sperber, K R April 21, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The interannual behaviour of the MJO has been diagnosed initially in the 40-year NCEP/NCAR Reanalysis by calculating the variance of the 20-100 day filtered zonal mean zonal wind (10 o N-10 o S averaged) in a 100- day moving window. The results suggest that prior to the mid-1970s the activity of the MJO was consistently lower than during the latter part of the record. This may be related to either inadequacies in the data coverage, particularly over the tropical Indian Ocean prior to the introduction of satellite observations, or to the real effects of a decadal timescale warming in the tropical SSTs. This interdecadal trend is captured by the dominant EOF (explaining 28% of the variance) of the monthly mean SSTs (after removal of the mean seasonal cycle), as used in the NCEP/NCAR Reanalysis for the region of the tropics where the MJO is convectively active (i.e., 60 o E-180 o E, 20 o S-20 o N). During the latter part of 1970�s there was an abrupt change from a predominantly negative PC1 (i.e. colder Indian Ocean) to a positive PC1 (i.e. warmer Indian Ocean), indicative of a general warming of the tropical Indian Ocean by at least 0.5 o K over the last 40 years. However, on interannual timescales, the teleconnection patterns between MJO activity and SST show only a weak, barely significant, influence of El Niño in which the MJO is more active during the cold phase. As well as the NCEP/NCAR Reanalysis, a 4-member ensemble of 45 year integrations with the Hadley Centre climate model (HADAM2a), forced by observed SSTs for 1949-93, has been used to investigate the relationship between MJO activity and SST. HADAM2a is known to give a reasonable simulation of the MJO, and the extended record provided by this ensemble of integrations allows a more robust investigation of the predictability of MJO activity than was possible with the 40-year NCEP/NCAR Reanalysis. The results have shown that, for the uncoupled system, with the atmosphere being driven by imposed SSTs, there is no reproducibility of the activity of the MJO from year to year. The interannual behaviour of the MJO is not controlled by the phase of El Niño and would appear to be mainly chaotic in character. However, the model results have confirmed the low frequency, interdecadal timescale variability of MJO ac-tivity seen in the NCEP/NCAR Reanalysis. The activity of the MJO is consistently lower in all realisations prior to the mid 1970s, suggesting that the MJO may become more active as tropical SSTs become warmer. This result may have implications for the effects of global warming on the coupled atmosphere-ocean system. The implications of these results for the predictability of the tropical ocean-atmosphere system are im-portant since intraseasonal activity in the atmosphere, associated with MJO�s and westerly wind bursts, can have a substantial impact on the Pacific Ocean. As the events in 1997 indicate, MJO activity may have a sig-nificant impact on the magnitude and growth rate of El Niño events. In turn the decadal changes in MJO ac-tivity suggest that if tropical SSTs continue to warm, the activity of the MJO may tend to increase which then might have implications for the future behaviour of El Niño. This work is presented in full by Slingo et al. (1999, Quart. J. Roy. Meteorol. Soc., in press).

Physical Description

61 Kilobytes

Source

  • Twenty-Third Climate Diagnostics and Prediction Workshop, Miami, FL, October 26-30, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00008057
  • Report No.: UCRL-JC-133991
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 8057
  • Archival Resource Key: ark:/67531/metadc734783

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 21, 1999

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • May 6, 2016, 10:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 26

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nortley, F; Rowell, D P; Slingo, J M & Sperber, K R. Interannual/decadal variability in MJO activity as diagnosed in the 40-year NCEP/NCAR reanalysis and simulated in an ensemble of GISST integrations, article, April 21, 1999; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc734783/: accessed October 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.