Scattering in a magnetic field

PDF Version Also Available for Download.

Description

The fixed target program at Fermilab has come to an end. New projects are in the planning stage. Among them is a muon storage ring. Up to the present, all storage rings in high-energy physics have carried stable particles, namely the electron and proton and their antiparticles. The muon is unstable and decays with a mean lifetime of 2.0 x 10{sup -6} sec. Two types of cooling have been used in the past. One is stochastic cooling where an electrode is used to detect the positions of the particles and send a signal to another position across the ring. Through ... continued below

Physical Description

142 Kilobytes pages

Creation Information

Carey, David C. August 19, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The fixed target program at Fermilab has come to an end. New projects are in the planning stage. Among them is a muon storage ring. Up to the present, all storage rings in high-energy physics have carried stable particles, namely the electron and proton and their antiparticles. The muon is unstable and decays with a mean lifetime of 2.0 x 10{sup -6} sec. Two types of cooling have been used in the past. One is stochastic cooling where an electrode is used to detect the positions of the particles and send a signal to another position across the ring. Through successive applications of this technique, the phase space is ultimately greatly reduced and beams can be made to collide with a useful event rate. The second type of cooling is electron cooling. Here protons and electrons are made to travel together for a short distance. Equipartition causes transfer of transverse energy of the protons to that of the electrons. Neither of these methods is fast enough to allow acceleration of a sufficient number of muons up to maximum energy before they decay. A new method known as ionization cooling has been proposed.[1] The muons are cooled by passing them through a container of liquid hydrogen. The energy loss reduces both transverse and longitudinal momentum. The longitudinal momentum is restored with RF cavities. The net result is to maintain the longitudinal momentum while cooling the transverse momentum. To minimize the total travel distance of the muons the liquid hydrogen is placed inside the focusing solenoids. The question arises as to whether the presence of the solenoids influences the phase space occupied by the muons. After the muon scatters it has transverse momentum. In a constant longitudinal magnetic field the trajectory wraps around the field lines and coincides in momentum and position with a particle which scatters one cycle later. Here we calculate the change in emittance for both a drift space and a solenoid. We find that the presence of the solenoid does cause a reduction in phase space. Shown below are both a derivation of the behavior of the muon phase space and a plot showing the strength of the effect described.

Physical Description

142 Kilobytes pages

Source

  • 2002 Charged Particle Optics Conference, College Park, MD (US), 10/22/2002--10/25/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-02/179-E
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 799179
  • Archival Resource Key: ark:/67531/metadc734711

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 19, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 1, 2016, 4:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carey, David C. Scattering in a magnetic field, article, August 19, 2002; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc734711/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.