
Final Report

Integrated Intelligent Industrial Process Sensing
and Control: Applied to and Demonstrated on Cupola

Furnaces

US Department of Energy Contract # DE-FC02-99CH10975

Tennessee Technological University

Utah State University

Idaho National Environmental Engineering Laboratory

Albany Research Center

2

Final Report

Integrated Industrial Process Sensing and
Control: Applied to and Demonstrated on Cupola

Furnaces

US Department of Energy Contract # DE-FC02-99CH10975

Center for Manufacturing Research,
Tennessee Technological University

Mohamed Abdelrahman, Principal Investigator

Roger Haggard and Wagdy Mahmoud

Utah State University
Kevin Moore

INEEL

Denis Clark and Eric Larsen

Albany Research Center

Paul King

3

Section 1

Algorithms and Software Development

4

Table of Contents

ALGORITHMS AND SOFTWARE DEVELOPMENT ... 3

LIST OF FIGURES .. 9

1 CHAPTER 1 ... 13

1 CHAPTER 1 ... 13

1.1 Introduction... 13

1.2 Objectives and Scope of the Project .. 15

1.3 Deliverables ... 17

1.4 Project Organization, Administration, and Execution........................ 18

1.4.1 Management Organization.. 18

1.4.2 External Advisory Board .. 19

1.4.3 Coordination of Teams Efforts ... 20

1.4.4 Overall System Vision .. 22

1.5 Evaluation based on Proposed objectives:.. 23

1.6 Summary and Report Organization.. 26

APPENDIX 1.A.. 28

LIST OF PUBLICATIONS SUPPORTED BY THE PROJECT 28

5

APPENDIX 1.B.. 31

THESES SUPPORTED BY THE PROJECT ... 31

CHAPTER 2 .. 33

2 MOTIVATION AND OVERVIEW .. 33

2.1 Motivation.. 34

2.2 Research Approach... 36

2.3 Multiple Sensor Fusion and Signal Validation..................................... 37

2.3.1 Multiple Sensor Fusion... 37

2.3.2 Signal Validation .. 40

2.3.3 Self-Validation.. 42

2.4 Adaptive controllers.. 45

2.5 Conclusions.. 49

CHAPTER 3 .. 52

3 MULTIPLE SENSOR FUSION ... 52

3.1 Parzen-like Methodology for Redundant Sensor Fusion 53

3.1.1 Description of Parzen Estimator ... 53

3.1.2 Estimation of Measurand Value from PDF .. 54

3.1.3 Confidence in Estimate ... 57

3.2 Considering Self-Confidence in Redundant Sensor Fusion................ 59

6

3.3 Application and Testing ... 62

3.3.1 Results of the Sensor Fusion Methodology without Considering Self-

Confidence 62

3.3.2 Results of the Sensor Fusion Methodology Considering Self-

Confidence 65

3.4 A unified Framework for Multi-Modal Sensor Fusion 68

3.4.1 Trend Fusion ... 68

3.4.2 Multiple Sensor Fusion... 69

3.4.3 Fusion based on Trend .. 72

3.4.4 Confidence based on agreement among the Sensors 77

3.4.5 Measure of Fused Confidence .. 80

3.4.6 Summary ... 81

3.5 Fusion of Linguistic Sources .. 81

3.5.1 Linguistic Information on Trend... 81

3.5.2 Fusion of Linguistic Information on the Measurand Value.................. 84

3.6 Wavelet-Based Sensor Fusion for Data having Different Sampling

Rates 88

3.6.1 Introduction... 88

CHAPTER 4 .. 92

4 INTEGRATION OF MULTIPLE SENSOR FUSION IN CONTROLLER
DESIGN 92

4.1 Motivation.. 93

4.2 Controller Design.. 94

7

4.3 Stability Analysis... 96

4.4 Fuzzy Controller ... 104

4.4.1 Controller design... 105

4.4.2 Smith Predictor ... 109

4.4.3 Integration of Sensor Fusion in Controller Design 110

4.4.4 SIMULATOR DESIGN.. 111

4.4.5 BASIC LAYOUT ... 111

4.4.6 NOISE, DISTURBANCES, AND VARYING PARAMETERS....... 112

4.4.7 RESULTS ... 113

4.4.8 Integration of Sensor Fusion In Controller Design............................. 118

4.4.9 VARYING MODEL PARAMETERS ... 121

4.4.10 Varying Pure Time Delay of the CMR... 122

4.4.11 COMBINING ALL NOISES AND DISTURBANCES................... 124

APPENDIX 4.A.. 126

CHAPTER 5 .. 129

5 DEMONSTRATION PLANS... 129

5.1 Introduction... 129

5.2 Setup of I3PSC for Demonstration Runs .. 132

5.3 Results and Analysis of Demo Runs.. 134

5.4.. 148

APPENDIX 5.A.. 149

8

CHAPTER 6 .. 155

6.1 SUMMARY AND CONCLUSIONS .. 155

REFERENCES .. 161

APPENDIX A: USER MANUAL .. 166

9

List of Figures
Figure 1-1: Graphical Representation of Project Organization .. 21

Figure 1-2 Detailed representation of Project Organization ... 21

Figure 1-3 Overall System Vision for I3PSC applied to Cupola Furnaces 23

Figure 2-1 Schematic Diagram of a Feedback Control System.. 33

Figure 2-2 A Feedback Control System with Multiple Sensor Fusion............................ 35

Figure 2-3 Block Diagram of Proposed System ... 37

Figure 2-4 Membership Functions... 44

Figure 2-5 Block Diagram of the Self-Validation Technique ... 44

Figure 3-1 Individual Gaussian Functions and the Cumulative PDF 54

Figure 3-2 Estimation of the Measurand Value.. 56

Figure 3-3 Comparison of Estimate with the Centroid.. 57

Figure 3-4 Comparison of Estimate with Peak Values.. 57

Figure 3-5 Measurand Estimate with High Confidence .. 58

Figure 3-6 Measurand Estimate with Low Confidence ... 59

Figure 3-7 Estimation of Measurand without Considering Self-Confidence 60

Figure 3-8 Estimation of Measurand Considering Self-Confidence................................ 61

Figure 3-9 Block Diagram of Multiple Sensor Fusion .. 61

Figure 3-10 Estimated Value from PDF without Considering Self-Confidence 63

Figure 3-11 Estimated Measurand Value Using Average Method.................................. 64

Figure 3-12 Self-Confidence of the Three Sensors.. 64

Figure 3-13 Confidence of the Estimate Value Using PDF.. 65

Figure 3-14 A Closeup that Shows Effect of Not Considering Self-Confidence 65

Figure 3-15 Estimated Value using PDF Considering Self-Confidence 66

Figure 3-16 Close Up of Figure 3-15... 67

Figure 3-17 Confidence of the Estimate from PDF including the Self-Confidence........ 67

Figure 3-18 Multiple Sensor Fusion without trend information....................................... 70

10

Figure 3-19 Confidence Plot... 71

Figure 3-20 Sources of Trend Information ... 71

Figure 3-21 General Methodology for Sensor Fusion using Trend.................................. 74

Figure 3-22 Distributions of Trends and Fused Trend.. 75

Figure 3-23 Distribution of Temperatures at the previous instant.................................... 76

Figure 3-24 Final Distribution of Temperature .. 76

Figure 3-25 Multiple Sensor Fusion Considering Trend .. 77

Figure 3-26 Distributions of Trend after accounting for agreement between sensor trends

... 78

Figure 3-27 Multiple Sensor Fusion after filtering ... 79

Figure 3-27 Fused Confidence Plot ... 80

Figure 3-27 Failure of a Sensor .. 82

Figure 3-27 Trends after considering Linguistic Source .. 84

Figure 3-27 Sensor Fusion with Linguistic Trend Information .. 84

Figure 3-27 Another Case of Sensor Failure .. 86

Figure 3-27 Multi-Modal Sensor Fusion with Linguistic Sources 86

Figure 3-27: Cupola temperature data .. 89

Figure 3-28 Low sampling rate signal][2 nX .. 90

Figure 4-1 Wrong Estimate from the Multiple Sensor Fusion ... 93

Figure 4-2 Schematic Diagram of the System with Sensor Fusion Integrated with the

Controller .. 95

Figure 4-3 Uncertainty in the Estimate from Multiple Sensor Fusion............................ 100

Figure 4-4 Region of Stability ... 101

Figure 4-5 Membership functions of the error in melt rate (eMRate) 108

Figure 4-6 Membership functions of the change in error for the melt rate (deMRate) .. 108

Figure 4-7 Implementing a Smith predictor.. 109

Figure 4-8 Simulation layout .. 112

11

Figure 4-9 Step response under ideal conditions .. 117

Figure 4-10 Step response with noisy outputs .. 118

Figure 4-11 Step response with input disturbances generated with square waves 118

Figure 4-12 Response for melt rate confidence of 0.9 and –0.1 pulse for 600 seconds . 120

Figure 4-13 Response for melt rate confidence of 0.5 and –0.1 pulse for 600 seconds . 120

Figure 4-14 The results of varying the model parameters .. 122

Figure 4-15 Smith predictor with a +600 second time delay plant offset....................... 123

Figure 4-16 Smith predictor with a -600 second plant time delay offset........................ 124

Figure 4-17 System Performance Under Effect of All Disturbances 125

Figure 5-1 Configuration for Interfacing I3PSC with ALRC DAQ for Demo Runs...... 132

Figure 5-2 Control of Carbon Content, Run #2 .. 135

Figure 5-3 Metal Stream Changes suggested by I3PSC for control of %C for Run #1 . 135

Figure 5-4 Individual Measurements and Fused Melt Rate for Run #1 136

Figure 5-5 Confidence of Fused MR .. 136

Figure 5-6 Individual Measurements and Fused Temperature 137

Figure 5-7 Confidence of Fused Temperature .. 137

Figure 5-8 Oxygen Enrichment for Temperature Control for Run #1............................ 138

Figure 5-9 Blast Rate for Melt Rate Control for Run #1 .. 138

Figure 5-10 Control of %C during Run #2 ... 139

Figure 5-11 Changes in MR during Run #2.. 140

Figure 5-12 Changes in MR during Run #2.. 140

Figure 5-13 Metal Stream Changes control of %C for Run #2 142

Figure 5-14 Forward Change in CMR to Achieve Large Change in MR (Run #3) 143

Figure 5-15 Changes in Metal Stream to compensate for Change in CMR 143

Figure 5-16 Changes in Oxygen Enrichment (SCFM) during Run #3 144

Figure 5-17 Changes in Blast Rate (SCFM) during Run #3... 144

Figure 5-18 Control of Melt Rate during Run #3 ... 145

Figure 5-19 Changes in Iron Temperature deg F during Run #3.................................... 145

12

Figure 5-20 Changes in % Carbon during Run #3.. 146

Figure 5-21: Detection of Bridging in the Cupola-Changes in Exit Temperature 147

Figure 5-22: Detection of Bridging in the Cupola-Changes in Cupola Pressure................................ 148

Figure 5-23: Opening the Tap-hole at ALRC Cupola ... 149

Figure 5-24: Cupola Always Provides Operational Challenges 149

Figure 5-25: An Overview of the ALRC Research Cupola... 150

Figure 5-26: Manual Sampling and Quick Analysis of Molten Iron 151

Figure 5-27: Manual Measurement of Temperature of Molten Iron 151

Figure 5-28: Optical Pyrometers for Continuous Measurements of Iron Temperature` 151

Figure 5-29: A Dip Thermocouple for Continuous Temperature Measurement 152

Figure 5-30: Charging Deck of the Cupola at ALRC.. 152

Figure 5-31: Measurement of Melt rate, Chemical Composition, and Temperature 153

Figure 5-32: Remote Monitoring and Control of the Cupola during Demo Runs......... 153

1

13

Chapter 1

1.1 Introduction

The cupola furnace is used by the iron foundry industry to melt scrap steel, cast

iron and alloying materials into a consistent grade of iron for casting purposes. There are

approximately 400 cupolas in the United States, which accounts for 70% of cast iron

production [28]. With an industry estimate of 60% yield on castings, this equates to the

direct production 1.204 million tons of carbon generating 4.412 million tons of carbon

dioxide per year. This amounts to 1-2% of the total annual national production of green

house gas [29]. The cupola has maintained its competitiveness for several reasons.

Compared with competing technologies such as arc or induction melting, the cupola uses

the energy in coal more efficiently because it does not have to go through the

intermediate step of producing electricity, and the required coke making consumes little

energy. The combustion products in cupola melting are easily contained, another

advantage over arc melting. The cupola is a relatively simple device that can be made in

many sizes to suit the molten metal needs of foundries of various sizes.

While cupola melting is simple in principle— burning coke with an air blast and

melting metal— the actual physical and chemical details of the process are quite

complex, and the phenomena occurring in the melt zone are difficult to measure directly

14

because of the aggressive chemical environment that exists inside the cupola. Controlling

these phenomena is desirable, however, for efficient energy use, for producing iron of

acceptable quality, and for reducing the environmental impact of the melting process.

The inevitable random variations in charge composition, blast effectiveness, and even

local meteorological conditions, however, lead to a degree of variability in the cupola

output. This variability can be reduced by expert operation of the cupola by experienced

personnel. Reducing this variability is more important for some cast products than for

others; where iron temperature and composition are crucial, as in the production of

automotive parts, holding furnaces, sometimes hundreds of tons in size, are used to pool

the output of one or more cupolas, and temperature and composition can be adjusted

before the hot metal goes to the casting line [28].

The economic and environmental costs of this variability can be substantial. Iron

that fails to meet specifications can cause substandard castings or even casting failure; the

material may be re-melted, but the energy spent melting it the first time is wasted. The

costs of installing, maintaining, and operating large holding furnaces to level out the

variability is an additional cost of producing iron. Materials such as coke breeze (fines

from the handling of coke) that would cause poor operation if charged from above can

also be injected through the tuyeres for added energy; the incinerator-like nature of the

cupola incorporates these, and even other hazardous wastes unrelated to cupola operation,

into the relatively benign cupola outputs: cast iron, CO, CO2, and slag.

15

1.2 Objectives and Scope of the Project

The purpose of the project was to develop and demonstrate an intelligent, integrated

industrial process sensing and control system, or PSCI 3 for short, for the foundry cupola,

the primary industrial process used for producing cast iron. However, the PSCI 3 is a generic,

enabling, cross-cutting technology that can be broadly applied to advanced process sensing and

control problems in the ferrous metal casting industries as well as in other industrial

environments. The project addressed two main objectives:

A. Development of a generic architecture for the integrated, intelligent industrial process

sensing and control system. The proposed PSCI 3 architecture is characterized by

• Intelligent signal processing capabilities and sensor fusion methodologies,

• Intelligent algorithms for hybrid model fusion,

• Methodologies for integrating intelligent signal analysis and sensor and model

fusion algorithms with intelligent model-based control methodologies,

• An object oriented generic architecture for integrating all system components.

• Implementation of the intelligent signal processing and sensor fusion

algorithms through hardware realization using reconfigurable logic,

B. Demonstration of the application of PSCI 3 to the specific industrial setting of cupola iron

melting furnaces). The demonstration will include:

16

• Testing of the developed algorithms using experimental data, and static and

dynamic models available from a production cupola and the ALRC research

cupola,

• Implementation of the developed algorithms on the 18-inch research cupola at

DOE’s Albany Research Center (ALRC) ,

• Testing the developed PSCI 3 for regulations of melt rate, temperature,

and selected iron composition on the ALRC experimental cupola furnace.

17

1.3 Deliverables

The final goal of this project was the development of a system that is capable of controlling

an industrial process effectively through the integration of information obtained through

intelligent sensor fusion and intelligent control technologies. The industry of interest in this

project was the metal casting industry as represented by cupola iron-melting furnaces.

However, the developed technology is of generic type and hence applicable to several other

industries. The system architecture was divided into the following four major interacting

components:

1. An object oriented generic architecture to integrate the developed software and hardware

components

2. Generic algorithms for intelligent signal analysis and sensor and model fusion

3. Development of supervisory structure for integration of intelligent sensor fusion data into

the controller

4. Hardware implementation of intelligent signal analysis and fusion algorithms

Table 1-1 lists the deliverables as they appeared in the proposal. They are listed here

for completeness. As will be illustrated in the current report, the objectives stated in the

proposal have been achieved.

18

Table 1-1 I3PSC Project Tasks

Task # Description

1 Generic Structure for Integrating Sensor Fusion and Control

System Components

2 Algorithms for Intelligent Signal Preprocessing, Multi-Modal

Sensor Fusion, Model Fusion, Sensor and Model Fusion

3 Re-configurable Logic Implementation for Intelligent Signal

Processing and Sensor Fusion Algorithms

4 Algorithms for Integration of Intelligent Sensor Fusion Data into

the Controller

5 Prototype Implementation and Testing for ALRC Cupola

1.4 Project Organization, Administration, and Execution

1.4.1 Management Organization

This project represented a model for collaboration between technical developers,

industry oversight, and end users as represented in Figure 1. The technical expertise was

provided by:

1- Tennessee Technological University ((TTU) as the main contractor,

19

2- Utah State University (USU) as a subcontractor,

3- Idaho National Environmental and Engineering Laboratory (INEEL) as a

subcontractor, and

4- Albany Research Center (ALRC) as a subcontractor.

The industry oversight was provided by American Foundry Society (AFS) and the end

users represented by General Motors (GM).and US Pipe.

Detailed management organization of the project technical development team is shown in

Figure 2. The main tasks of the project are listed in Table 1 along with the groups responsible

for the completion of each task.

1.4.2 External Advisory Board

In a kickoff meeting in Detroit in January 1999, TTU, USU, INEEL, GM and

AFS agreed to create an external advisory board for the project under the direction of the

AFS. This board had representatives from foundries and industrial control companies

and will serve to assess the progress of the project and the achievement of its goals.

Collaborators arranged several meetings with the advisory board over the period of the

project. These meeting were coordinated with meetings of the AFS cupola steering

committee. The purposes of these meetings were to review the status of the completion

of the project, exchange ideas among collaborators and external advisory board and to

inform the industry about the benefits of the technology and its potential advantages.

20

1.4.3 Coordination of Teams Efforts

Coordinating the efforts among the teams working on the project was the

responsibility of the principal investigator. This coordination was achieved through

continuous communication through:

• Use of Email and Phone, as needed, to address individual teams concerns, problems

or achievements. Emails could be addressed to a specific team leader or to the PI.

• Conference calls were scheduled as needed, among TTU investigators and

investigators from USU and INEEL to discuss the progress and coordinate the efforts.

• The meetings with the advisory boards were used to have technical meeting among

the technical developers at TTU, USU, INEEL, and ALRC.

• A web site and ftp sites were developed where technical materials were exchanged

among the collaborators. (www.ece.tntech.edu/I3PSC)

21

Mohamed Abdelrahman
Principal Investigator

Jeff Frolic
Faculty Investigator

Graduate
Research
Assistant

TTU_Group2

TTU_Group3

Roger Haggard
Faculty Investigator

W. Mahmoud
Faculty Investigator

Graduate
Research
Assistant

TTU_Group1

Mohamed Abdelrahman
PI

Graduate
Research
Assistant

Kevin Moore
Faculty Investigator

Graduate
Research
Assistant

USU

ALRC

Denis Clark
Investigator

INEEL

Paul King
Investigator

Technicians & Engineers

Utah State University Idaho National Engineering
Laboratory

Albany Research
Center

Technical Development

Tennessee
Technological University

Industry
Oversight

American
Foundreymen's

Society

End User

General Motors

Figure 1-1: Graphical Representation of Project Organization

Figure 1-2 Detailed representation of Project Organization

22

1.4.4 Overall System Vision

Figure 3 shows a schematic of the different components developed in this project

and how they are tied together for a cupola furnace application. The system is generally

divided into online and offline components. The offline analysis component is aimed at

analyzing the data collected during a heat and plan for next heats. This analysis is based

mainly on cupola models. The model currently in use is the model developed by the

American Foundry Society (AFS). However, the developed tool can be adapted to accept

other models as they become available. The online component is aimed at actual analysis

and control of the cupola furnace during a heat. It is composed of several modalities that

handle the data as it is collected from the sensors, fuse this data along with other data that

are pertinent to the cupola operation such as data coming from other sensors, virtual

sensors, models, or expert systems (MMSF). The data is then fed to an intelligent

controller, which decides based on the required operational parameters, which input

variables to manipulate. The required operational parameters are fed to the controller

using the planner. The planner can be used, by the user, to plan, offline, how the heat

will be conducted. However, it can also be used online to make changes, as appropriate,

to the heat plan.

23

Figure 1-3 Overall System Vision for I3PSC applied to Cupola Furnaces

1.5 Evaluation based on Proposed objectives:

In fulfilling the proposed objectives, the following has been achieved:

• Innovative sensor fusion algorithms based on a new concept has been developed,

implemented and tested. These Algorithms allow for the fusion of quasi-

redundant sensors data and produces a best estimate and a parameter indicating

the degree of confidence in the measurement. The algorithms were presented in

conference publication namely, the American Control Conference (ACC), and

24

published in the prestigious journal of IEEE Transactions on Instrumentation and

Measurements.

• The developed algorithms were improved to incorporate trend information as well

as linguistic information. This allows for the fusion of information from sources

other than physical sensors such as virtual sensors, models and expert system

information.

• Generic algorithms for the integration of sensing and control based on the

previously developed algorithms for sensor fusion were developed and

implemented.

• The developed generic algorithms for sensor fusion and integration of sensing and

control represent advances in basic science. The researchers have also presented

application specifically for cupola furnaces. These results were presented at

professional conferences with audience interested in the advancement of melting

methods.

• Algorithms for the implementation of the sensor validation and multiple sensor

fusion algorithms on hardware were developed, simulated and tested .

• A generic data structure and an object oriented based software package were

developed for the incorporation of the different algorithms. The current package

incorporates the following modules:

o A Data Acquisition modality for interfacing with existing data acquisition

system in a cupola or other industrial plant,

25

o A planner modality where a plan for the cupola heat can be developed,

o A sensor fusion modality,

o A virtual sensors modality for predicting values of some important

parameters based on other system measurements,

o A controller modality for producing suggested values for the manipulated

variables based on the system requirements,

o A monitoring modality for monitoring trends of specific variables and

alerting operator when certain patterns take place.

The software and data structure were designed to allow for easily

incorporating other modalities and modifying the existing ones.

• The integrated system was successfully demonstrated on a research cupola facility

in Albany Research Center, Albany, Oregon. The demo involved successful

interface of the developed system to the existing DAQ system, monitoring and

controlling the main parameters of the cupola furnace, namely, molten iron

temperature, melt rate and Carbon composition using manipulated variables,

namely, oxygen enrichment, blast rate, steel/cast ration and coke/metal ratio. The

control system ability to achieve and maintain operational parameters as well as

reject disturbances and minimize transition periods was illustrated.

A list of the papers supported by the project and published in refereed journals

and conferences is presented in Appendix 1.A. A list of academic theses supported by

26

the project is listed in Appendix 1.B. Other information pertaining to the project

achievements were presented in previous reports [32] - [34].

1.6 Summary and Report Organization

In summary, the project has achieved all the proposed objectives starting from

development of algorithms for sensor validation and fusion, integration of sensing and

control, development of a package for integrating system components and a proof of

concept of using FPGA to implement sensor fusion algorithms. The project has

supported the development of basic science in the form of publications in professional

refereed journals and conferences as well as practical and applied science with reference

to cupola furnace as evidenced by demonstration using cupola furnace data and models

and actual demo plans on a research cupola.

This report is divided into two sections. Section 1 describes a subset of the developed

algorithms and results of demonstration runs. Chapter 1 summarizes the project

organization, objectives and results of the project. Chapters 3 and 4 provide a description

of the basic algorithms that were developed for sensor fusion and control. More

information can be found in the published work listed in Appendices 1.A and 1.B. A brief

description of the developed software package is provided in the form of a user manual in

Appendix A of Section One. Section 2 describes the hardware implementation. Chapters

1-3 describe work accomplished during project years. Chapter 4 gives a summary of the

27

work accomplished and future recommendations. The section ends with Appendices that

describes more details of the algorithms hardware implementation.

28

Appendix 1.A

List of Publications Supported by the Project

1. Jeff Frolik, Mohamed Abdelrahman, and Param Kandasamy, “A confidence

Based Approach to the self-validation, fusion and reconstruction of quasi-

redundant sensors," IEEE Transaction on Instrumentation and Measurement. ,

Vol. 50, No. 6, December 2001.

2. Mohamed Abdelrahman and Param Kandasamy, “Integration of Multiple Sensor

Fusion In Controller Design,” Accepted for Publication in the Transactions of

Instrumentation Society of America, 2002.

3. Mike Baswell and Mohamed Abdelrahman, “Fuzzy Control Of A Cupola Iron

Melting Furnace,” To Appear in Transactions of American Foundry Society,

2003.

4. Mohamed Abdelrahman and Param Kandasamy, “Integration Of Intelligent

Industrial Process Sensing and Control for Cupola Iron Melting Furnace,” in

proceedings of the 7th Mechatronic Forum International Conference, Atlanta, 6 –

8 September, Atlanta, GA, 2000.

29

5. Mike Baswell and Mohamed Abdelrahman, “Fuzzy Control Of A Cupola Iron

Melting Furnace,” AFS Congress, Kansas City, MO, May 2002.

6. Min Luo and Mohamed Abdelrahman, ”Wavelet-Based Sensor Fusion for Data

with Different Sampling Rates,” ," in Proceedings of American Control

Conference, Washington D.C., June 2001.

7. Mohamed Abdelrahman et al, "A Methodology For Fusion Of Redundant

Sensors," in Proceedings of American Control Conference, Chicago, IL, June

2000.

8. Jeff Frolik and Mohamed Abdelrahman, "Synthesis of quasi-redundant sensor

data: a probabilistic approach," ," in Proceedings of American Control

Conference, Chicago, IL, June 2000.

9. Steve Orth, Jeff Frolik and Mohamed Abdelrahman, "Fuzzy rules for automated

sensor self-validation and confidence measure," in Proceedings of American

Control Conference, Chicago, IL, June 2000.

10. Vipin Vijayakumar and Mohamed Abdelrahman, "A convenient methodology for

the hardware implementation of fusion of quasi-redundant sensors," Proceedings

of 32nd SSST Conference, Tallahassee, FL, Mar 2000, pp. 349-353.

11. Param Kandasamy and Mohamed Abdelrahman, "A Methodology for Integrating

Multiple Sensor Fusion in the Controller Design," in Proceedings Of 32nd SSST

conference, Tallahassee, FL, March 2000, pp. 115 -118.

30

12. Mike Baswell and Mohamed Abdelrahman, “Intelligent Control of Cupola

Furnaces,” in Proceedings of the 34th SSST conference, Huntsville, AL, March

2002, pp. 435-440.

13. Wagdy Mahmoud, “Hardware Implementation of Automated Sensor Self-

validation System For Cupola Furnaces”, in Proceedings of 31st

conference on Computers and Industrial Engineering, San

Francisco, CA, Feb 2-4, 2003.

14. Mohamed Abdelrahman et al, “A Methodology For Multi-Modal Sensor Fusion

Incorporating Trend Information”, in Proceedings of 31st conference on

Computers and Industrial Engineering, San Francisco, CA, Feb 2-

4, 2003.

31

Appendix 1.B

Theses supported by the project

1. Min Luo, Fusion of Multi-resolution Sensors using Wavelet Transform, Tennessee

Technological university, September 2001.

2. Vipin Vijayakumar. A Methodology for Multi-Modal Sensor Fusion. June 2001

3. Parameshwaran Kandasamy. Development of Sensor Fusion Algorithms for

Redundant Sensors and Integration in Controller Design, Tennessee

Technological university, May 2000.

4. Avinash Seegehalli. Multi Dimensional Data Structure for Cupola Furnace

Information Processing, USU, 2000.

5. Jie Chen. Detection and Extraction of Parallel Hardware During C to VHDL

Translation, Tennessee Technological University, May 2003.

6. Sobha Sankaran. Hardware/Software Codesign - Efficient Algorithms for

Hardware Synthesis from C to VHDL, Tennessee Technological University, 2001.

7. Srikala Vadlamani. Comparison of Cordic Algorithms Implementation on FPGA

Families, Tennessee Technological University, 2002

32

33

Chapter 2

2 MOTIVATION and OVERVIEW

Feedback control systems have gained extreme importance in modern engineering

world. Feeding back the output has made it possible for systems to perform their

assigned tasks with better reliability. A number of control techniques have been

developed to achieve the desired response from a feedback control system. These

techniques achieve accurate tracking of the system output along a specified reference

value [1]. There are also robust techniques that can achieve good performance even if the

system is not modeled accurately [2]. Robust feedback control system also reduces the

sensitivity of the system with respect to the system parameter variation and external

disturbances. A schematic diagram of a general feedback control system is shown in

Figure 2-1.

Plant

Feedback
Element

ControllerError
Detector

Reference
Input Output

Figure 2-1 Schematic Diagram of a Feedback Control System

34

2.1 Motivation

Sensors are used to measure and feedback output data in feedback control systems.

The feedback data are used to decide the necessary control action. The performance of a

feedback control system depends heavily on the reliability of the sensors' readings. There

are different reasons why the sensor data may not be reliable. These reasons include:

1) Sensors may be prone to high levels of noise and disturbances during measurement

and transmission of the data;

2) Sensors' characteristics may vary with changes in environmental parameters, such as

the temperature, humidity, or due to aging;

3) Accurate measurement of some variables may not be possible due to the physical

nature of the process; and

4) Failure of electronic circuitry of the sensor.

There are several methods available to increase the reliability of process

measurements using redundant sensors. The redundancy may be achieved through

physical sensors, analytical sensors, or inferential sensors. Analytical sensors depend on

a model of the physical process to estimate the value of the intended system parameter.

Inferential sensors utilize other output variables to infer estimates for different variables.

Techniques such as signal validation and multiple sensor fusion are usually used to get a

better estimate for the desired variable. These techniques will be discussed in detail in

35

Chapter 2. A schematic diagram of a closed loop system that utilizes the multiple sensor

fusion is presented in Figure 2-2.

Error
Detector Controller Plant

Plant
Model

Analytical
Sensor

Inferential
Sensor

Multiple
Sensor
Fusion

Reference
Input

Analytical Sensors

Inferential Sensors
Redundant

Physical
Sensors

Best Estimate

Figure 2-2 A Feedback Control System with Multiple Sensor Fusion

The above techniques are used to reduce the sensitivity of the system performance

with respect to sensors' failures. This is accomplished by not relying on a single sensor

measurement. For multiple sensor fusion or signal validation techniques to work

satisfactorily, certain conditions need to be satisfied. These include, for example, the

availability of redundant sensors, an accurate plant model, or known relations between

variables. Since most techniques still rely back on other sensors for the feedback value,

there will be situations where the feedback value is not reliable. A measure for the

performance of the signal validation or multiple sensor fusion technique needs to be

developed and utilized in the controller structure.

36

2.2 Research Approach

The research focus of this report is to develop a methodology to prevent the

performance degradation of an automatic control system due to unreliable sensor data.

The suggested solution to the problem is twofold:

1) The development of a multiple sensor fusion algorithm that can produce a best

estimate and reliability measure for the estimate of the sensor data.

2) The development of a controller structure, which utilizes the estimate and the

reliability measure to change its performance, so as to prevent costly mistakes.

The methodology developed should reduce the sensitivity of the system to the

sensor data when the reliability of the sensor data is found to be low. This is achieved by

changing the controller's dependability on the sensor signal according to the reliability

measure from the multiple sensor fusion. A block diagram of the feedback control

system to be developed is shown in Figure 2-3. It resembles Figure 2-2, but for the

additional flow of information, the confidence, from the multiple sensor fusion block to

the controller.

37

Error
Detector Controller Plant

Plant
Model

Analytical
Sensor

Inferential
Sensor

Multiple
Sensor
Fusion

Reference
Input

Analytical Sensors

Inferential Sensors
Redundant

Physical
Sensors

Best Estimate

Confidence

Figure 2-3 Block Diagram of Proposed System

 The problem considered in this report is that the performance of the

feedback controller degrades when the feedback signal from the sensor data is unreliable.

The problem of increasing the reliability of the feedback signal was tackled in many

ways. The most common method used to increase the reliability of the feedback signal is

multiple sensor fusion. One other approach is to check the reliability of each sensor by

using self-validation. In this chapter, a quick review of some of these multiple sensor

fusion and self-validation techniques is presented. A basic overview of adaptive

controllers and some adaptive methods are also discussed.

2.3 Multiple Sensor Fusion and Signal Validation

2.3.1 Multiple Sensor Fusion

Sensor fusion is defined as the method to fuse or manipulate information from

different sensors and come up with one value of interest. These sensors may measure the

38

desired measurand or may measure different values, which should be combined to get the

required information. If the different sensors are measuring the same quantity, then these

sensors are called redundant sensors. In this report multiple sensor fusion is constrained

to mean only the fusion of redundant sensors.

There are many reasons why multiple sensor fusion is used. Combining several

sensors' data will give more accurate information of a measurand improving the

reliability of measurement data. The measurement data become less sensitive to noise

and disturbances that might not affect all the sensors, when many sensors are used.

Efficiency and performance of the measured data are enhanced [3].

Several techniques are available to fuse the values from the redundant sensors [4].

The most obvious approach is to find the average of the sensor data. In this case,

however, the estimate will be affected by the invalid sensor data. A simple improvement

to this was to have a weighted average of the redundant information. A weight is given

to each sensor depending upon a threshold. The threshold for the current decision is

usually the previous estimate. This helps in eliminating the spurious data. The choice of

threshold is important in this method. If the process data has large variations between

adjacent values, the threshold technique may result in removing valid sensor data.

Kalman filtering technique is generally used for sensor fusion where Gaussian

noise exists. The performance of the Kalman filter technique depends upon the accuracy

of the system model [Chapter 12, [3]]. It gives better results if there exists a linear model

to the system and if both the system and the sensor noise can be modeled as Gaussian

39

noise. Finding an accurate model for systems is not always possible in many cases and

most of the real time systems are nonlinear.

A method developed by Luo and Lin [5] finds the estimate from the multiple

sensor fusion of only consensus sensors. The method first eliminates those sensors' data

that are likely to be erroneous. This is accomplished by using a probability density

function(PDF) around each sensor's data. This PDF around each sensor's data is used to

find the distance from other sensors' data. This distance measure is stored as a matrix for

each sensor, which are combined later to find a combined matrix from which the optimal

fusion estimate is found. This method of having an individual matrix and forming a

combined large matrix that is reduced to get optimal value is called the Bayesian

approach [5].

Many others also approach the multiple sensor fusion problem by finding the best

combination of sensors that are to be fused. The search is based on the distance between

the sensors, each sensor's failure rate and its previous data. Algorithms like neural based

search and genetic algorithms were used [Chapter 10, [3]]. The combination of selected

sensors is then usually averaged to find the estimate. The performance of these

approaches depends on the search algorithm. These are best suited for decision-making

sensor fusion problems.

As an extension to the above search first and then fuse, multiple sensor fusion is

implemented using approximate agreement approach in [Chapter 11, [3]]. The approach

first establishes an agreement set on each sensor data. This is done by each sensor

40

broadcasting its value to other sensors. Each sensor then forms the agreement set based

on the distance from other sensor data. This agreement set helps in eliminating invalid

sensor data and find the estimate on which most sensors agree. This approach requires

3t+1 sensors with t+1 giving accurate reading, where t is the number of faulty sensors.

The mean of the agreement set after removing t lower and t higher data gives the

estimate. This algorithm is again best suited for binary decision-making (Target or no

Target).

Multiple sensor fusion techniques use the redundant data and come up with one

value. Each sensor data have an effect on the final estimate. A failed sensor will have

adverse effect on the estimate if not removed. So it is necessary to validate the sensor

data before fusing the redundant data and remove the sensor. The next section discusses

some of the signal validation techniques that achieve this.

2.3.2 Signal Validation

Signal validation is a technique by which the sensor's signal is validated for its

accuracy. Signal validation may involve all or one of the following: detection, isolation,

and characterization of faulty sensors [6]. Most of the initial researches depended on

finding an additional measure for the sensor, either by having redundant sensors or by

producing an analytical redundancy to the sensor data by using a model for the process.

A detailed survey of the signal validation using redundant sensors based on

statistical methods is described in Ray and Luck [7]. The statistical approach is based on

the difference between the current sensor data and other redundant sensor data. Fuzzy

41

logic (FL) is also used for signal validation using redundant sensors. The advantage of

using FL is that the strict boundary posed by the numerical sensor data can be replaced

with linguistic terms [6].

Analytical redundancy is used in situations where physical redundancy is not

possible. Analytical redundancy is created using a model for the process. Neural

networks have been used to create the analytical redundancy using historical data of the

process [8]. Combinations of fuzzy and neural systems have been used to create

analytical redundancy for a specific sensor. Another type of redundancy is created using

inferential sensors. The redundancy is obtained from using sensors that measure other

variables and the relationship between the variables and the variable of intent. Genetic

algorithm is used to find empirically the variables best suited for use in the inferential

redundancy while neural based fuzzy system is trained to estimate the monitored sensor

signal [9]. These analytical and inferential redundancy are then treated as physical

redundancy and used in validating physical sensor data.

There are many difficulties in creating physical or analytical redundancy for

sensor signals like increased cost, complexity in hardware implementation for the

sensors, and uncertainty in modeling the plant. Moreover, the reliability of the sensors

that are used for the redundant measurement cannot be assumed. Hence, few researchers'

started to work on the validation of sensors using data from the sensor that is being

validated. This is discussed in the next section.

42

2.3.3 Self-Validation

The technique of validating a sensor using the historical data from that sensor

alone is called self-validation. These self-validating sensors are called intelligent sensors

and many researches are taking place to create intelligent measurements. Yang and

Clarke in their section [10] have defined the self-validating sensors, their rationale, and

how they can evolve into intelligent measurements.

Initial research in this area started by considering the invalid data of sensors as

noise and hence using filtering techniques for the self-validation. Kalman filter was found

to give good results for self-validation. A detailed description of self-validating sensors

was given in Henry and Clarke [11]. The research by Tsai and Chou [12] uses the

correlation of system dynamics with multistep readings of a sensor.

Using historical data of the sensors for self-validation was used by Mercadal [13].

This reference paper uses the historical data to create an analytical model for the sensor

depending upon its previous values. The actual sensor data are then validated by

comparing it with the value predicted from the model.

The paper [14] develops a fuzzy based self-validating algorithm based on the

validated historical data of the sensor. The algorithm developed in this paper is described

in detail as it is implemented and used as a part in this report. In this paper a measure of

reliability of the sensor data, called self-confidence, is obtained. Self-confidence is a

measure of the agreement between the characteristics of current sensor data and historical

43

sensor data that are deemed valid. This self-confidence can be used for the detection and

isolation of faulty sensors.

An FL-based system is developed based on same basic rules that characterize the

sensor data, namely:

1) The data from the sensor should be within a valid range;

2) The absolute value of the rate at which data varies should not be higher than a given

threshold that is determined using historical data;

3) The standard deviation of the sensor data within a certain window should be less than

a given threshold; and

4) The standard deviation of the sensor data should not be zero, which would indicate a

constant value. This indicates that the sensor is not working properly.

These requirements are coded as rules in the fuzzy system. The input variables

used are the data, rate of change in the data, and the standard deviation of a certain

window. The membership functions for these input variables are defined by finding the

variation and the trend in the historical data. The membership functions are shown in

Figure 2-4. The limits in the membership function, namely MT1, MT2, etc., are found

from the processing of the historical data. The deviation of the data from the curve is

considered as the standard deviation of the sensor. The block diagram of the self-

validation algorithm from the paper is shown in Figure 2-5.

44

Low Ideal High

MT1 MT2 MT3 MT4

MemberShip Function1 - Temperature

-10*MR8 10*MR8-MR8 -MR7 MR7 MR8

Very_Negative Small Very_Positive

Membership Function2 - Rate of Change in Temperature

MS1 MS2

Membership Function 3 - standard Deviation

Normal High_Noise

MS1/2 MS3 10*MS3

Constant

Figure 2-4 Membership Functions

Acquire Data
Set

Pre-process
Data

Create
Parameters from

Verified Data
Set

Create Fuzzy
Membership

Functions from
Parameters

Acquire Real
Data

(Runtime)
Median Filter Obtain

ConfidenceFuzzy System
Pre-Processing to

calculate input
parameters

Figure 2-5 Block Diagram of the Self-Validation Technique

45

The rules of the fuzzy system remains the same for all sensors while the

membership function varies from one sensor to another sensor depending upon the

sensor's historical data. The fuzzy output gives the self-confidence of the sensor. The

median output of the data is the sensor data output of the self-validation.

2.4 Adaptive controllers

Controllers are designed based on the model of the plant. Earlier control

designers assumed exact knowledge of the plant and that the plant is modeled accurately.

These controllers demanded accurate measurement of the state variables that are used for

controlling the performance of the plant. It was soon realized that meeting these

requirements is not possible in all situations and people tried to design controllers that are

robust. Many robust control design techniques were developed and these controllers

were able to tolerate the variation in the model, system parameters, and state variable

estimations. But, these controllers achieved them at the cost of performance [15].

Adaptive controllers provide an answer to the problem. Adaptive controllers are

basically a controller whose control law adapts its own behavior as it learns about the

process it is designed to control or as the process changes with its environment. The field

of adaptive control is a very wide and what is presented in this section is a brief

introduction to adaptive control. It is not intended to be a thorough literature review.

Adaptive control methods are classified into two broad categories [15]:

46

1) Indirect or explicit control. - The basic requirement in this method is the availability

of a design model, but the parameters of the model are not known. The plant

parameters are estimated explicitly on-line and the control parameters are then

adjusted based on these estimations. Indirect control methods utilize separate

parameter identification and control schemes.

2) Direct or implicit control. - This method does not assume the availability of the

design model. The controller parameters are adjusted directly, only using plant input

and output signals. The identification and control functions are merged into one

scheme.

Many adaptive control approaches have been developed. Gain scheduling, self-

tuning of the controller, model reference adaptive control, and variable structure adaptive

control are some of the most commonly used approaches. All of these approaches fall in

one of the two categories mentioned above [16]. Few approaches that involve both the

direct and indirect method have also been developed.

Gain scheduling is the simplest type of the adaptive control. In this approach, the

controller gains are made dependent on the parameters that can be measured or inferred

from other measurements. This approach is very conservative and poses many problems

if the dependent parameter has high rate of variation [15].

Parameter estimation forms the base for self-tuning. The required parameter is

modeled and an observer is implemented to estimate the parameter. The controller is

designed as a dependent on the estimated parameter. This method requires all the state

47

variables for parameter estimation, which is not possible in all systems [16]. Using state

estimator may help, but it results in a complex system.

Model reference adaptive control is based on a reference model for the plant. The

error between the actual output and the output from the reference model is used to change

the controller parameters. This approach introduces a lot of nonlinearity through

multipliers and additional error processing. Hence, determining the stability of the

system is very difficult [16].

Variable structure adaptive control from input and output variables has been

discussed in the paper [17]. Variable structure is similar to model reference adaptive

control but instead of using parameter estimation, it uses signal synreport. A

discontinuous switching control function is designed to generate the sliding surface for

the variable structure adaptive control. The paper derives the stability of the adaptive

control. The disadvantage of the variable structure control is that it requires the

knowledge of all state variables. State estimator may be used, but it results in a complex

system.

In [18] Burdet and Codourey compares most of these adaptive control algorithms

and have tested experimentally two of the best algorithms. It was shown that the

Adaptive FeedForward Controller (AFFC) is well suited for learning the parameters of

the dynamic equation. The resulting control performance is compared with the measured

parameters for any trajectory in the workspace and was said to give better results. The

48

paper also introduces an adaptive look-up-table memory and was shown to be simpler

and better for tasks that requires repeating the same trajectory.

In [19], another type of adaptive control based on switching the controllers is

developed. In this paper the output of the plant with unknown parameters were made to

track the reference signal through switched nonlinear feedback control strategy. Many

controllers were designed and the controllers are selected online through a performance

evaluation procedure that uses the output prediction error. The paper also discusses

sufficient conditions under which the closed loop control system is exponentially stable.

This approach achieved asymptotically stable control and the results of this approach

were illustrated with three examples.

Automatic synthesizing of controllers other than gain scheduling was used in [20].

The paper describes a method that automatically derives controllers. The controllers

were derived for timed discrete-event systems with non-terminating behavior modeled by

timed transition graphs. The specifications of control requirements were expressed by

metric temporal logic (MTL) formulas. The syntheses of the controllers were performed

by using, a forward-chaining search and a control-directed backtracking. The synreport

process does not require explicit storage of an entire transition structure. This feature of

automatic synthesizing of the controllers for the above procedure of switching controllers

may compliment each other for obtaining superior performance from an adaptive

controller.

49

Adaptive controllers give better performance even when the system parameters or

the environment changes. Adaptive controllers have gained importance with rigorous

proofs for stability. Their tolerance to large parameter variations has made them more

suitable for many industrial applications.

2.5 Conclusions

Most of the literatures in multiple sensor fusion exist for detection purposes and

are developed for target or enemy detection in military-based research. Few literatures

are available on fusing redundant sensors for non-military applications. These are

commonly based on averaging the redundant data. Kalman and Bayesian methods are

based on probability density function (PDF). Kalman filtering technique, however, needs

a good model of the system, which is not always available. The Bayesian method

considers two data points at a time for a confidence measure and also involves lot of

matrix manipulations. The approximate agreement approach explains the advantages of

finding agreement between the sensors. One other factor that is required is the degree of

agreement between the sensors on the estimate value. There was no literature discussing

an algorithm to find such a measure.

Adaptive control methods are available to improve performance. The controller

parameters are adapted based on the system parameter variation, environment changes

and even with performance. However, not much of research exists in the area of adapting

the controllers based upon the sensor reliability.

50

This chapter discussed some of the self-validation techniques, multiple sensor

fusion algorithms and adaptive control approaches. The problem of improving the

performance of the system even under the failure of sensors is solved using adaptive

control approach. The self-validation technique and multiple sensor fusion algorithm is

used to decide upon the adaptation of the controller. The self-validation technique

developed in Year 1 of the project was reviewed in section 2.4. In Chapter 3, the

developed methodology for redundant as well as multi-modal sensor fusion is presented.

51

52

Chapter 3

3 MULTIPLE SENSOR FUSION

In Chapter 2, several multiple sensor fusion algorithms were discussed. Sensor

fusion is used to reduce the effect of a sensor failure over the operation of the system

considered. The signals from sensors are fused to get a better estimate of the measurand

value. Thus, sensor fusion helps in improving the reliability of the measurements that

primarily affects the performance of a system. This is especially true in the case of

feedback control systems.

Among the multiple sensor fusion algorithms discussed in Chapter 2, many

techniques build on averaging the redundant sensors' readings. However, averaging the

sensors' data would still mean that a failed sensor would affect the estimate value. So,

the factor that should be considered in the sensor fusion is the confidence in the data

obtained from each sensor. This is the concept that was introduced in section 2.2 as the

self-confidence. A multiple sensor fusion algorithm incorporating this self-confidence

will be less affected by a sensor failure.

Some of the algorithms that were studied in Chapter 2, produces an estimate that

represents the value that most sensors agree. But, these techniques do not specify the

degree of agreement on the estimate by the sensors. Hence, a multiple sensor fusion

algorithm that reflects the degree of agreement among sensors will be more appropriate.

53

In this chapter, a multiple sensor fusion algorithm that produces a measure of the

confidence in the estimated value of the measurand is developed. The confidence

measure reflects the degree of agreement among the sensors.

First, the discussion on redundant sensor fusion algorithm and how a measure of

confidence in the estimate is produced, are presented. Next, the integration of the self-

confidence into the multiple sensor fusion algorithms to mitigate the effect of sensor

failure are presented. The multiple sensor fusion algorithm is tested using data from an

experimental run of a cupola furnace. A comparison of the results with that of the

averaging method is also discussed. A unified framework for multi-modal sensor fusion

is also presented in this chapter of the report.

3.1 Parzen-like Methodology for Redundant Sensor Fusion

3.1.1 Description of Parzen Estimator

The Parzen estimator is a nonparametric method for estimating probability density

functions without making any assumptions about the nature of the distribution [21].

Given a set of sensor data, the Parzen estimator utilizes parametric functions such as

Gaussian functions that are centered at each of the sensors’ readings. The functions are

then added up and normalized. The resulting Probability Density Function (PDF) reflects

the distribution of the sensors’ data. The PDF energy is more concentrated where more

data points exist. This is illustrated in Figure 3-1.

54

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Sensor Value
Cumulative PDF
Individual Gaussian Fn.

Figure 3-1 Individual Gaussian Functions and the Cumulative PDF

For this research a Gaussian function (GF) is selected as the parametric function.

The mean value of the GF is equal to the sensor reading and the standard deviation is

estimated from the noise level in the sensor [14]. The PDF is given by

∑
=

−
−=

N

k k

k

k

xx
N

xPDF
1

2

2

)
2

)(
exp(

2
11)(

σσπ
 …(3.1)

where N is the number of sensors, xk is the kth sensor data, and σκ is the standard

deviation. The parameter σκ is estimated based on the standard deviation of the noise

associated with each of the sensors considered.

3.1.2 Estimation of Measurand Value from PDF

The estimate value of the measurand is calculated from the PDF obtained as

explained in previous section. There are several ways to get an estimate of the

55

measurand value similar to defuzzification methods such as average, centroid, maximum,

and sum of the maximum [22]. In this research an algorithm was developed for

estimating the measurand value. The algorithm is an integration of the peak and centroid

methods.

1. Find the range X which contains 95% of the PDF energy.

2. Find the centroid of the PDF using:

∫

∫
=

X

X

PDFdx

PDFdxx
Centroid

.
.

3. Find the area on each side of the centroid.

4. The estimate is found as the value of measurand that corresponds to the supremum of

the PDF on that side of the centroid that has the higher area, thus

5. Measurand Estimate = arg(Sup(PDF))). …(3.2)

The function arg corresponds to finding the x co-ordinate at which the maximum

value occurs in the PDF. This procedure is illustrated in Error! Reference source not

found..

56

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2
Centroid

Estimate

Figure 3-2 Estimation of the Measurand Value

This particular method of finding the estimate is found to be more advantageous

than other methods as explained in this section. The estimate of the multiple sensor

fusion algorithm should be the value on which most of sensors agree, and at the same

time the estimate should not be adversely affected by invalid sensors. Other methods for

estimating the measured value from the PDF such as centroid and peak allow faulty

sensors to have an effect on the estimate or may not give the most probable value on

which the sensors agree. Figure 3-3 shows how the estimate, if chosen, using the

centroid would be affected by the faulty sensor. Figure 3-4 shows that the peak value

does not always correspond to the value on which most sensors agree, at all cases.

57

6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

Centroid
Developed
Algorithm

Good
Sensors

Faulty
Sensor

Figure 3-3 Comparison of Estimate with the Centroid

4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

Peak Developed
Algorithm

Figure 3-4 Comparison of Estimate with Peak Values

3.1.3 Confidence in Estimate

The estimate value from the previous procedure takes into account the agreement

between the sensor data. However, the estimated value does not explicitly reflect the

58

degree of agreement between the sensors and hence the confidence in the estimated

value. The agreement between the sensors is reflected in the width of the PDF function

estimated according to the process previously described. Thus, the confidence is

calculated using the area of the PDF that is enclosed within three standard deviations on

each side of the estimated measurand value. In the ideal case, where all the sensors agree

exactly, this will be approximately equal to one. As the agreement between the sensors'

decrease, this area will decrease as well. This is illustrated in Figure 3-5 and Figure 3-6.

The confidence is related to the PDF function width according to the relation:

∫
+

−

=
σ

σ

3

3

)(
Estimate

Estimate

dxxPDFConfidence …(3.3)

where σ is the maximum standard deviation of the parametric functions used in

forming the PDF.

7 8 9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4
Integration Limits

PDF

Figure 3-5 Measurand Estimate with High Confidence

59

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4
Integration Limits

PDF

Figure 3-6 Measurand Estimate with Low Confidence

3.2 Considering Self-Confidence in Redundant Sensor Fusion

The self-confidence of a sensor data obtained from the self-validation technique

explained in section 2.2 is a measure of how much this data agrees with the expected

characteristics of the sensor as estimated from historical data. Thus, a change in the

sensor noise level or if the sensor data or its rate of change exceeds the expected limits,

the self-confidence value decreases. Integration of this self-confidence into the redundant

sensor fusion is necessary to decrease the effect of the failed sensors on the estimated

value.

In Section 3.1 the Parzen like procedure for estimating the PDF which was then

used to get a best estimate for the measurand value was presented. The function used in

Parzen estimation was a Gaussian function with a standard deviation that depends upon

the sensor noise. This Gaussian function can be thought of as a representation of the

60

probability in finding the true value of the measurand data around the sensor reading. As

the self-confidence decreases, the probability of finding the true value of the measurand

in the neighborhood of the sensor measurement decreases. In other words, the region in

which the true value could be with respect to the sensor reading becomes wider. This

could be reflected by scaling up the standard deviation of the Gaussian function, used in

building the PDF, using the self-confidences of the sensors. Thus, the PDF function

becomes

∑
=

−
−=

N

k k

k

k SC
xx

SCN
xPDF

1
2

2

)
)/(2

)(
exp(

)/(2
11)(

σσπ
 …(3.4)

where SC is the self-confidence of the sensor and the rest of the parameters are

defined as in (3.1). Figure 3-7 and Figure 3-8 illustrate the effect of the change in self-

confidence over the shape of the Gaussian functions and hence the PDF. It should be

noted that this change is not used in the standard deviation used for finding the

Confidence.

6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

Self Confidence = 1

PDF

Figure 3-7 Estimation of Measurand without Considering Self-Confidence

61

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

Self Confidence = 0.5

PDF

Figure 3-8 Estimation of Measurand Considering Self-Confidence

Self -
Validation

Self -
Validation

Self -
Validation

Center GF
Std. Dev

Center GF
Std. Dev

Center GF
Std. Dev

R
e
d
u
n
d
a
n
t

D
a
t
a

Overall PDF
(Cumulative

and
Normalized)

Median Sensor
Data

Confidence

Estimate

Self-Confidence

Median Sensor
Data

Self-Confidence

Figure 3-9 Block Diagram of Multiple Sensor Fusion

62

A block Diagram of the Multiple Sensor Fusion Algorithm Developed including

the integration of self-confidence is shown in Figure 3-9.

3.3 Application and Testing

In the following section the testing results are presented for the redundant sensor

fusion methodologies presented in sections 3.1 and 3.2. The testing was performed using

data from an experimental cupola iron-melting furnace in Albany, Oregon. The system

uses three temperature sensors that measure the temperature of the iron melt produced

from the furnace. These sensors were quasi-redundant as explained in [23]. The sensors'

data of two of the temperature sensors were translated using a linear regression relation to

give an estimate of the third sensor. The resulting data were then treated as if the sensors

were redundant sensors.

3.3.1 Results of the Sensor Fusion Methodology without Considering Self-

Confidence

The results of testing the methodology of integrating redundant sensors presented

in Section 3.1 are presented first. Figure 3-10 shows the results of the test. The data from

one of the sensors (TC5) were artificially perturbed by injecting sudden disturbance at t =

10 minutes and high noise level into the sensor in the range t=40 to 70 minutes. For

comparison purposes, an estimate of the measurand value using the average of the sensor

data is presented in Figure 3-11. The self-confidences of the three sensors are presented

in Figure 3-12. Figure 3-13 shows the total confidence in the estimate. It is clear from

63

Figure 3-11 that the average method results in the estimated value to be affected by the

sudden disturbances as well as by the noise introduced into one of the sensors. In

comparison Figure 3-10 shows that the effect of the disturbances were mitigated to some

extent. However, a close up of the data in Figure 3-10 shows that the estimated value of

the measurand is still affected by the readings of the sensor, which was artificially

injected with the high noise level. This close up is shown in Figure 3-14. It should be

noted, however, that the confidence in the estimates are lower in periods where the

agreement between the considered sensors decreases as shown in Figure 3-13.

0 10 20 30 40 50 60 70 80 90 100
650

700

750

800
TC3
TC4
TC5
Estimate

Figure 3-10 Estimated Value from PDF without Considering Self-Confidence

64

0 10 20 30 40 50 60 70 80 90 100
650

700

750

800
TC3
TC4
TC5
Estimate

Figure 3-11 Estimated Measurand Value Using Average Method

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1
ConfTC3
ConfTC4
ConfTC5

Figure 3-12 Self-Confidence of the Three Sensors

65

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

Figure 3-13 Confidence of the Estimate Value Using PDF

50 52 54 56 58 60 62 64
750

760

770

780

790
TC3
TC4
TC5
Estimate

Figure 3-14 A Closeup that Shows Effect of Not Considering Self-Confidence

3.3.2 Results of the Sensor Fusion Methodology Considering Self-Confidence

The test is repeated using the same data presented in Section 3.3.1. However, this

time the methodology presented in Section 3.2 is used. The self-confidences of the

sensors over the considered time period is shown in Figure 3-12. The estimates of the

66

measurand value are shown in Figure 3-15. A close up of Figure 3-15 is shown in Figure

3-16. A Comparison between Figure 3-14 and Figure 3-16 shows the advantages of

including the self-confidence in the sensor fusion methodology. When the high noise

level was injected the self-confidence of the sensor affected by the noise is reduced (See

Figure 3-12) and in turn its effect over the PDF function is reduced. This leads the

estimate of measurand value to depend more on the other two sensors with higher self-

confidence parameters. Moreover, the overall confidence of the estimate increases (See

Figure 3-17). This is because the energy around the third sensor is decreased by the

inclusion of the self-confidence.

0 10 20 30 40 50 60 70 80 90 100
650

700

750

800
TC3
TC4
TC5
Estimate

Figure 3-15 Estimated Value using PDF Considering Self-Confidence

67

52 54 56 58 60 62 64

750

760

770

780

790
TC3
TC4
TC5
Estimate

Figure 3-16 Close Up of Figure 3-15

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

Figure 3-17 Confidence of the Estimate from PDF including the Self-Confidence

Multiple sensor fusion helps the feedback controller by giving a better estimate to

the sensor's data, but there might be conditions where even this estimate may be poor. In

other words, multiple sensor fusion does not assure reliability at all conditions. At these

68

conditions, the feedback controller will fail, degrading the performance of the system. In

the algorithm developed, the reliability on the estimate is reflected by the confidence.

This measure of confidence can be used in a way to achieve a better performance of the

feedback controller even when the estimate from the sensor fusion fails.

3.4 A unified Framework for Multi-Modal Sensor Fusion

3.4.1 Trend Fusion

The independent sources of information for sensor fusion considered, in this

section, include the real sensors themselves and/or information regarding the trend of the

measurand as provided by other sources such as models or virtual sensors. Our goal, here,

is the development of a methodology wherein information regarding trend as is fused

with the absolute measurements from the sensors.

Motivation for developing this trend fusion algorithm stems from the fact that the

estimates of virtual sensors and models developed for the cupola furnace were found to

provide more accurate information on the measurand trend rather than on its value.

 This section is arranged as follows: a brief description of the previous

work on multiple sensor fusion is presented. This is followed by description of the

algorithm of fusion based on trend. Simulations that illustrate the algorithm and its

effectiveness are presented throughout the paper.

69

3.4.2 Multiple Sensor Fusion

The process of multiple sensor fusion (MSF) based on Parzen estimator, presented

in the previous sections [28], provides an algorithm for fusing data from multiple sensors.

In this methodology, no emphasis is given on the trend of the system.

Based on the measure provided by the sensor, the reading is fed to a fuzzy engine

[27]. The fuzzy engine looks at the median value, the rate-of-change, and the variance of

the parameter and assigns it a confidence measure. The fuzzy engine assigns each sensor

self-confidence value based on the agreement between current and historical behavior

[27]. In the MSF algorithm, a trapezoidal distribution is constructed around each sensor

measurement [30]. The spread of the distribution depends on the slef-confidence measure

of that sensor. Such a distribution is constructed for each of the sensors and these

distributions are added up and normalized. The reading corresponding to the peak on the

larger side of the centroid of the joint distribution is the fused measure. The confidence

in the fused value was considered as the area enclosed within three standard deviations on

either side of the fused value.

70

0 10 20 30 40 50 60 70
660

680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Multiple Sensor Fusion without Trend Information

Correct Sensor

Information from Trend Sensor

Erroneous Sensor

Fused Plot

Figure 3-18 Multiple Sensor Fusion without trend information

In the MSF algorithm, the major emphasis was on the absolute measurements of

the sensors and their self-confidence. There however, are cases where trend information,

if available, can provide useful information. Consider, for example, a sequence of sensor

measurements as shown in Figure 3.18. The fused value at points where all sensors meet

would be of very high confidence and the confidence values at all other points would be

low. This is illustrated in Figure 3.19.

Figure 3.20, shows the plots of Information regarding the trend. In this figure, we

assume that we have an additional source of information on the trend, but the algorithm

does not use this information for the fusion process. Examining this figure, it is clear that

the erroneous sensor is effecting the calculation of the fused value. The methodology

71

introduced in this section aims at handling such situations by using the available trend

information.

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1
Confidence plot of the Fused Reading

Instants of Time

C
on
fid
en
ce
 M
ea
su
re

Figure 3-19 Confidence Plot

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15

Instants of time

R
at
e
of
 C
ha
n
ge

Trend Informations

Trend of Correct Sensor
Trend from an Another Source
Trend of Erroneous Sensor

Figure 3-20 Sources of Trend Information

72

3.4.3 Fusion based on Trend

As explained earlier, the MSF algorithm presented in [27] considered only the

agreement between the sensor values rather than their trend. By examining Figure 3.18 it

is obvious that one of the used sensors is trending differently. Obviously this sensor is

erroneous and its value should not be allowed to affect the fused value. The trend fusion

algorithm introduced thereafter minimizes the influence of that erroneous sensor on the

fusion process by including the trend of the sensor as a source of information for the

fusion process.

The algorithm proposed in this section looks at the trend of the parameter along

with the measured value. Based on the trend information provided by each of the real

sensors, a fused value for the trend is calculated using the Parzen estimator algorithm

presented in [27]. Using this trend, and the previous distribution of the measurand at a

previous instant, an estimate of the current value of the measurand is estimated. This

estimated distribution is further used for the estimation of the final fused value of the

measurand.

The sequence of steps used in this algorithm is as follows:

• Determine the measure of self-confidence from the fuzzy engine [26].

• Estimate the fused trend from the individual sensors using the Parzen Estimator

Algorithm [27].

73

• Based on the parameter value at the previous instant and measure of trend, an

estimate of the parameter at this instant is calculated. The distribution for the

expected temperature is obtained from the distribution of the fused temperature at the

previous instant and the distribution of the fused trend at the current instance. The

distribution of the expected value is obtained from the formula

t
dt
dPPP

i
ii ∆

+= −1ˆ

Where,

iP̂ - Fuzzy distribution of the expected measurand value the ith instant.

Pi-1 – Fuzzy distribution of the measurand at the (i-1)th instant.

dP/dt – rate of change (trend).

∆t – change in time.

The above equation can be considered as a fuzzy arithmetic operation with the

result being the distribution for the expected temperature. The distribution obtained

for the expected measurand value is normalized.

• Using this measurand estimate and the distribution obtained from actual sensor

measurements the sensor fusion algorithm is performed to obtain the fused value and

a measure of confidence using the algorithms described in details in [27] and

summarized in previous section.

74

System Model

Trend of Real
Sensors

Real Sensors

Trend
Fusion

Measurand (not relaible)

Trend of Measurand (reliable)

Sensor Information on Trend

Multiple
Sensor
Fusion

Measurand
Estimator

Measurand at previous instant

Measurand at current instant

Fused Trend

Fused Value

Confidence

Ex
pe

ct
ed

 M
ea

su
re

Figure 3-21 General Methodology for Sensor Fusion using Trend

Figure 3-21 summarizes the sequence of steps proposed in the incorporation of

trend in sensor fusion.

Figure 3.22 shows the distribution of the trends of three sources of information at

one instant, namely 60. The distribution of the fused trend is shown and this distribution

is convoluted with the fused distribution of the temperature at the previous instant, which

is shown in Figure 3.23.

75

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
0

20

40

60

80

100

120

Rate of Change

Distributions on Individual Trends and Fused Trend

Correct Sensor
Additional Information on Trend
Erroneous Sensor
Fused Distribution

Figure 3-22 Distributions of Trends and Fused Trend

The final temperature distribution is shown in Figure 3.24. This information on

the expected temperature helps in deciding the correct value in the fusion process. Using

this estimated measure of the parameter along with the actual measure, it can be observed

that the effectiveness of the sensor fusion algorithm has improved. This is illustrated in

Figure 3.25. It can be seen that the fused value determined by the algorithm coincide to a

good extent with the correct sensor for several instances of time. However, the algorithm

still fails at multiple points.

680 700 720 740 760 780
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Temperature

Distibutions of Temperature at previous instant

Correct Sensor
Erroneous Sensor
Fused Distribution

76

Figure 3-23 Distribution of Temperatures at the previous instant

660 680 700 720 740 760 780
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Temperature

Final Distributions of Temperature

Expected Distribution
Distribution of Sensor Reading
Fused Distribution

Fused Value

Figure 3-24 Final Distribution of Temperature

It was observed that the failure of the algorithm is accountable mainly to the

effect the erroneous sensor has on the fused distribution. Since the erroneous sensor has a

very steady performance, the fuzzy engine assigns it a very high confidence. An

improvement to the previous algorithm would consider the degree of agreement among

the trend sensors. This agreement would be used to modify the self confidence of each

sensor. This is presented in the following section.

77

Figure 3-25 Multiple Sensor Fusion Considering Trend

3.4.4 Confidence based on agreement among the Sensors

A calculation is proposed wherein the self-confidence measure of each sensor is modified

based on the degree of agreement among the trends of the sensors. Using the Parzen

estimator, the fused distribution is estimated and the area enclosed by each of the sensor

within three standard deviation from the fused value is calculated. The self-confidence

measure of each sensor is modified using the formula

()

= 5.0,

*max
,minmax

TotalAreaArea
AreaSCconfidence

i
ii

Where,

SC – Self Confidence of the Sensor,

Areai – area enclosed by ith sensor in Fused Distribution.

0 10 20 30 40 50 60 70
660

680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Multiple Sensor Fusion considering Trend

Correct Sensor
Erroneous Sensor
Fused Temperature

Failur

78

Total Area – area enclosed in three standard deviation around the fused value. An

arbitrary minimum value of 0.5 was assigned to the sensor confidence.

In developing the normalized distribution of the fused data, the contribution of the

erroneous sensor is reduced when compared to the contribution made by other sensors.

This can be observed from Figure 3.26. It can be observed that the distribution of

erroneous sensor spreads further and its contribution to the final fused distribution is

reduced.

-0.1 -0.05 0 0.05 0.1
0

20

40

60

80

100

120

Rate of Change

Distributions on Individual Trends and Fused Trend

Correct Sensor
Additional Information on Trend
Erroneous Sensor
Fused Distribution

Figure 3-26 Distributions of Trend after accounting for agreement between sensor trends

Using the new confidence measure, the fusion distribution is recomputed. Since

the self-confidence of the each sensor is dependent on the degree of agreement between

all the sensors, the effect of the erroneous sensor is largely eliminated and there is a great

improvement in the performance of the sensor fusion algorithm. From the combined

79

distribution, the fused value is the argument of the peak of the distribution on the larger

side of the centroid of the distribution. The equations are as shown below:

∫

∫
=

X

X

dxxPDF

dxxxPDF
Centroid

)(

)(

Measurand Estimate = arg (Peak (PDF (x)))

Where, x is the parameter whose fused value is to be estimated PDF (x) is the

estimated density function of the parameter.

The developed fusion algorithm-incorporating trend was tested for various sets of data

and the results were in agreement to those expected. It was also observed that the

performance of the sensor fusion algorithm could be improved further by incorporating

the fused value at previous instants. This would be akin to low-pass filtering of the data

coming out of the sensor fusion module. Figure 3.27 shows the performance of the final

algorithm. It is clear that the algorithm has picked the correct sensor for all instances of

time.

0 10 20 30 40 50 60 70
660

680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Multiple Sensor Fusion

Correct Sensor
Erroneous Sensor
Fused Plot

Figure 3-27 Multiple Sensor Fusion after filtering

80

3.4.5 Measure of Fused Confidence

In this algorithm, it can be observed that we have different types of information

sources, namely trend sensors and value. Thus, in evaluating the measure of the fused

confidence, it is necessary, to weigh the confidence obtained from trend fusion and that

obtained from value fusion. The formula used to evaluate the overall confidence of the

measurement is given by:

VT

VVTT

NN
CNCN

denceFusedConfi
+
+

=
**

Where, NT = Number of Trend Sources, CT = Confidence of Fused Trend, NV =

Number of Sources of Value, CV = Confidence of Fused Value; Figure 3.28 illustrate the

calculated overall confidence for the previous example.

0 10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instants of time

C
on
fid
en
ce

Confidence Plot of the Fused Reading

Figure 3-28 Fused Confidence Plot

81

3.4.6 Summary

The section introduced the concept of incorporating trend in Sensor Fusion to deal with

cases where reliable trend information sources such as virtual sensors or model are

available. The algorithm was tested using data obtained under various circumstances and

the results are shown. The results clearly indicate that the algorithm performed correctly

under circumstances of sensors malfunctioning by incorporating trend information.

3.5 Fusion of Linguistic Sources

In this section, the algorithm for multi-modal sensor fusion is further strengthened

using expert systems as additional sources of information. An expert system provides

linguistic information on the parameter, which has to be converted to numerical form so

that the sensor fusion algorithm can fuse it along with information from the other sources.

We start by fusing linguistic information on the trend of the measurand and then

continue with fusing information on the value of the measurand itself.

3.5.1 Linguistic Information on Trend

Consider an expert system, may be an operator who can predict the trend of the

parameter. This source of information would be in linguistic form and would be quite

reliable. This source of information need not be available at every instant of time. It is

82

possible that the operator can intervene at certain instants of time when there is a sudden

change in the operating conditions.

This section proposes a methodology that acquires linguistic information from an

expert system and converts it to numerical form that can be fused along with the other

numerical information sources on trend.

Consider a parameter being monitored by a single sensor that gives information

about its value. Considering that the sensor fails at some particular instant as shown in

Figure 3.29. We assume an additional source of trend information. The result of the

sensor fusion presented earlier is shown in the same figure. It partially corrects the faulty

sensor readings, but the performance is still not satisfactory.

0 10 20 30 40 50 60 70
680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Failure of a Sensor

Acutal Value
Sensor Reading
Fused Value

Figure 3-29 Failure of a Sensor

83

Considering that we have a linguistic source of information on trend. Each

linguistic variable has a pre-defined range of measurand trend values. These ranges are

defined based on the behavior of measurand. An example of a set of ranges defined for

the trend of a measurand could be:

Sharply decreasing: [-0.1752 –0.0584]

Decreasing: [-0.1168 0]

Steady: [-0.0584 0.0584]

Increasing: [0 0.1168]

Sharply increasing: [0.0584 0.1752]

So the linguistic information provided by the operator or expert system is

converted to give the operating range of operation of the trend. A Triangular distribution

is constructed around this range with the peak at the center of each range. This

distribution is then combined with the distributions of the sensor data and normalized to

get the fused Distribution from which the centroid and the confidences are calculated as

discussed in earlier sections.

 Figure 3.30 shows the additional linguistic trend information. The effect of

incorporating the linguistic trend information in the sensor fusion algorithm is illustrated

in Figure 3.31 it can be observed that the performance of the fusion algorithm has

improved when compared to Figure 3.29.

84

0 10 20 30 40 50 60 70
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Instants of Time

R
at
e
of
 C
ha
n
ge

Fused Trend with Linguistic Source

Additional Source of Trend
Trend of Sensor Data
Fused Trend

Figure 3-30 Trends after considering Linguistic Source

This increase in reliability of the Fused Trend further improves the calculation of

the expected value of the parameter. This causes the Fused value to be more reliable.

0 10 20 30 40 50 60 70
660

680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Sensor Readings and Fused Reading

Sensor Value
Correct Value
Fused Value

Figure 3-31 Sensor Fusion with Linguistic Trend Information

3.5.2 Fusion of Linguistic Information on the Measurand Value

85

In this section, the effectiveness of having an expert system to enhance the fusion

process by considering the measurand value.

Consider a case of sensor failure as shown in Figure 3.32. In this case, the sensor

performs satisfactorily till a particular instant and from then on, it has a shift in its

readings. But, the sensor still continues to have the similar trend as indicated by the other

linguistic sources for trend. As a result of this, the algorithm tends to start following

erroneous reading provided by the sensor.

In this section, a similar methodology as that of the linguistic source on trend is

considered for the parameter value as well. The operator provides the algorithm with a

linguistic value, which as before has a predefined range. The ranges for the measurand

values could, for example be:

Very low: [667.5 692.5]

Low: [680 715]

Normal: [692.5 737.5]

High: [715 760]

Very high: [750.5 775]

These ranges are obtained from the historical data considering the behavior of the

parameter. Figure 3.33 shows that the performance of algorithm after considering

linguistic information on the parameter also.

86

0 10 20 30 40 50 60 70
680

700

720

740

760

780

800

Ins tan ts o f T im e

T e
m p
era
tu r
e

F a ilu re o f S ens o r

S ens o r R ead ing
F us ed R ead ing
A c tua l M eas ure

Figure 3-32 Another Case of Sensor Failure

0 10 20 30 40 50 60 70
680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Linguistic Information on Parameter Value

Sensor Reading
Fused Reading
Actual Measure

Figure 3-33 Multi-Modal Sensor Fusion with Linguistic Sources

87

It can be observed that the algorithm with this linguistic source of information on

the parameter value provides a very reliable fused value.

88

3.6 Wavelet-Based Sensor Fusion for Data having Different Sampling Rates

3.6.1 Introduction

Data obtained from numerous sensors can be used to provide more reliable evaluation

of physical data than a single sensor. In many industrial settings, several sources of data

regarding a certain parameter may be collected. However, information from these

sources may not always be available at the same points in time due to physical

limitations. In a cupola furnace, for example, the temperature of the molten iron is

measured both using a thermocouple and a pyrometer. The thermocouple (TC)

measurements are made on a physical sample extracted from the furnace output and thus

performed relatively infrequently as compared to the near-continuous collection of

pyrometer data. However, the pyrometer data is considered to be a less reliable measure

and is susceptible to gross corruption. Figure 1 shows a sample of cupola temperature

data obtained using a pyrometer (Pyro_Temp) and a thermocouple (Bath_Temp). For this

data, the sampling ratio between pyrometer and TC data is approximately 16:1.

Our objective in this fusion algorithm is to provide a generic methodology to fuse two

data sources with different time resolution as motivated by this previous example. In this

work, the pyrometer data is said to have high time resolution and the TC is said to have

as low time resolution sensor. The assumption made is that the reliability of low-rate

89

signal is higher than high-rate signal. Under this scenario, the fused data will be both

higher in accuracy and have higher time resolution than can be gleaned from either

source on its own.

1200

1240

1280

1320

1360

1400

1440

1480

1520

1560

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

Pyro_Temp
Bath_Temp

Figure 3-34: Cupola temperature data

Wavelet transforms can be used to project the data features into different levels of

time resolution. The fusion process is thus performed at the appropriate time-base of

resolution common to data from sensors having different sampling rates. By fusing the

data features of different levels, the sampling rate difference between two data sources

can be compensated. Figure 3-35, Figure 3-35 show an example of such situation in

which a multi-rate fusion algorithm would be needed. The high sampling rate signal is

corrupted while the low sampling rate signal is not. The result of a wavelet based fusion

algorithm is shown in Figure 3-36. The effectiveness of the developed algorithm is

90

further discussed in Table 3.1. The table shows the RMS error between the original

signal, the corrupted and fused signal. The details of the algorithm is given in [31].

0 20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
sampling difference
between low and high
sampling: 1:32

Figure 3-35 Low sampling rate signal][2 nX

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

sensor failure

sensor failure

sensor failure

Figure 3-36: Corrupted high sampling rate signal][1 nX

91

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

fused part

fused part

fused part

Figure 3-37: Fused signal

Table 3.1: Mean square error of fusion methods

Method MSE

No Fusion (corrupted signal) 1.0856

Spline Interpolation 0.0273

Proposed Wavelet-based Method 0.0063

92

Chapter 4

4 INTEGRATION OF MULTIPLE SENSOR FUSION IN CONTROLLER

DESIGN

The main focus of this project is to reduce the risk of a catastrophic response of a

feedback control system when the feedback data from the sensors is not reliable, while

maintaining a reasonable performance of the control system. An algorithm for multiple

sensor fusion was presented in Chapter 3. Sensor fusion helps in improving the

reliability of the measurement. It does not, however, address the control problem when

the data are known to be unreliable. In certain conditions, even multiple sensor fusion

could produce an incorrect estimate. So, the problem still exists even if multiple sensor

fusion is used.

This chapter starts with the study of a case where the multiple sensor fusion

algorithm that was developed in Chapter 3 produces a bad estimate. Then, a

methodology for the controller design to improve the system performance in these

situations is developed. The stability of the closed loop system with the developed

controller is studied using Lyapunov stability theory in the final sections of the chapter.

A linear plant model is considered while studying the stability of the system with the

controller.

93

4.1 Motivation

The multiple sensor fusion algorithm is developed, based on the fact that the

correct estimate lies at the highest probability value as determined using the sensors' data.

6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

Confidence = 0.5840
Actual
Value

Estimate

Figure 4-1 Wrong Estimate from the Multiple Sensor Fusion

In the case shown in Figure 4-1, two sensors read the correct value (near 10)

while the other two read the wrong value (near 14). The estimate from the sensor fusion

can be seen to be closer to the wrong value, just because the readings from the two

sensors that have failed are closer to each other than those of the correct sensors.

Although the estimate from the sensor fusion algorithm was wrong, it can be seen

from the figure that the corresponding confidence is low. This confidence can thus be

used as an important parameter that can be integrated into the controller so as to improve

the performance of the system when the multiple sensor fusion fails.

94

4.2 Controller Design

The controller, designed with the assumption that the estimate from the sensor

fusion is reliable, may drive the system fast into the wrong direction if the estimate was

wrong. On the other hand, if the controller is designed considering the worst case

scenario, it will result in sluggish response. One method that can be used to improve the

performance of the system is to design the controller such that it has fast response when

the confidence is high and a slow response when the confidence is low. Hence the

controller should be able to adapt itself and produce a controller that adapts its response

depending upon the confidence in the estimate.

 The required performance of the controller after the integration of the

confidence can be summarized as

1. When the confidence is high: the feedback signal is reliable. So, the controller should

be fast enough to track the reference value.

2. When the confidence is low: the feedback signal is not reliable, which implies that

even if the controller has tracked the value fed to it, the state that the system has

reached may not be the correct reference value. So, the controller should not try to

reach the reference value very fast.

One way to achieve this requirement on the controller is by designing two

controllers, a fast controller that will be active when the confidence is high and a slow

controller, which will be used when the confidence is low. The controller is then

95

implemented by changing its parameters between those of fast controller and slow

controller using the confidence as the weighting parameter between the two controllers.

A schematic diagram of the system with the controller designed is shown in Figure 4-2.

The resulting expression for the controller parameter, with the confidence as the

weighing parameter, is given below.

lh KKK)1(αα −+= ...(4. 1)

and

α = f(confidence) ...(4. 2)

where,

K - State feedback matrix of dimension m x n, m is the number of output

variables and n is the number of state variables.

Plant

Redundant
Sensors

Self - Validation
(On each sensor

Data)

Multiple
Sensor
Fusion

Input -+ Error

Control
Input

Output

Redundant
Data
Self

Confidence

ConfidenceEstimate

Kh

Kl

WA

Controller

WA - Weighted Avg.
Kh and Kl - Controller

Defined Before

Figure 4-2 Schematic Diagram of the System with Sensor Fusion Integrated with the Controller

96

f - Nonlinear piecewise continuous function operating on the minimum of the

confidence on each state variable estimate from multiple sensor fusion.

Kh - State feedback matrix corresponding to fast controller (m x n)

Kl - State feedback matrix corresponding to slow controller (m x n)

The conditions that the nonlinear function, f, should satisfy to meet the controller

requirements specified above are

 α = 1 when confidence is 1 ,

 α = 0 when confidence is 0, ...(4. 3)

and 0 < α < 1, for all other confidence between 0 and 1.

4.3 Stability Analysis

The controller designed as discussed above will be helpful only if the closed loop

system with the controller is stable. This application is developed for a cupola furnace

plant in Albany research center, which has a linear model. Hence a linear model is

considered in the stability analysis. The stability conditions for the closed loop system

are not trivial since the system is time variant as the controller parameters change with

the time. A theorem is stated and proved in this section. The application of the theorem

discusses the conditions on the stability of the closed loop system.

97

Theorem 4.1

 Consider a linear time varying system

)()(
)()()(

)()()(

txty
tytKtu

tButAxtx

=
−=

+=&

 ...(4. 4)

where, kmn RuRyRx ∈∈∈ ,, are the state, output, and input variables,

respectively. A, B, and K are the matrices of appropriate dimensions. The system will be

asymptotically stable, if

1. The controller parameter K is given by expression (4.1).

2. There exists a Lyapunov function of the form given in (4.5) where P is a positive

definite matrix that proves the stability of the system for both matrices Kh and Kl.

PxxV T= ...(4. 5)

Proof: The system equation after combining all the expressions is

xtBKAx))((−=& .

 It is given that the closed loop system with the time invariant controller

parameters Kh and Kl, are asymptotically stable with the same Lyapunov function in

(4.5). Hence the Lyapunov equations for these systems will be satisfied.

Equations (4.6) and (4.7) gives the respective Lyapunov equation.

() 1)(QBKAPPBKA h
T

h −=−+− ...(4. 6)

98

() 2)(QBKAPPBKA l
T

l −=−+− ...(4. 7)

where, Q1 and Q2 are positive definite matrices.

 For the controller K given by Equation (4.1), the derivative of the

Lyapunov function is

xBKAPPBKAxV TT)]()[(−+−−=&(4. 8)

Substituting (4.1) in (4.8), gives

() xKKBAPPKKBAxV lh
T

lh
T)))1((())1((αααα −+−+−+−=& .

Writing A = αA + (1-α) A and separating the Kh and Kl terms, gives

xBKAPPBKABKAPPBKAxV l
T

lh
T

h
T)]}())[(1()]()[({ −+−−+−+−= αα& ...(4. 9)

which, by (4.6) and (4.7), gives

Q3 = αQ1 + (1-α) Q2(4. 10)

The derivative of the Lyapunov function is hence,

xQxxQxxQxV TTT
321)1(−=−−−= αα&(4. 11)

In expression (4.11), both the terms in RHS are negative since 10 ≤≤ α . Hence

V& is always negative. Q.E.D

The closed loop system with the controller designed in section (4.2) can be proved

asymptotically stable by the direct application of the above theorem. As the confidence in

the estimate changes, the controller K changes with time. But, the controller parameters

99

are bounded by Kh - for high speed and Kl - for low speed and the intermediate value

varies between these bounds. Finding a single positive definite matrix P for the

Lyapunov function in (4.5) that satisfies the Lyapunov criteria for both Kh and Kl is

sufficient to prove the stability of the closed loop system, where K is given by (4.1).

The above proof for stability is based on the assumptions that the state of the

system is known exactly. This is not always true in the closed loop system. Multiple

sensor fusion gives a good estimate for the measurand. However, there exists an

uncertainty in the state of the system as illustrated in Figure 4-3. The stability conditions

should incorporate this uncertainty in the state of the system. Theorem 4.1 is extended to

include the uncertainty in the states.

Theorem 4.2

Let us consider a linear time varying system given by the system equation

))()()(()(

)()()(
xgtxtKtu

tButAxtx
−−=

+=&
 ...(4. 12)

where g(x) is the uncertainty in the output. If the system satisfies

1. The conditions of Theorem 4.1.

2. The Lyapunov function PxxxV T=)(, satisfies

 2
2

2
1),(xkxtVxk ≤≤

100

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

Assume to be True Value
Estimate

δx

Figure 4-3 Uncertainty in the Estimate from Multiple Sensor Fusion

 0)(),(
23 >≥∀−≤

∂
∂

+
∂
∂ µxxWxtf

x
V

t
V

...(4. 13)

∀ t ≥ 0, ∀ x ∈ D, D = Rn, W3(x) is a positive definite function and µ is a positive

constant.

3. The uncertainty is piecewise continous and locally Lipschitz in x and satisfies the

following conditions,

2102

)(xxg δδ +< ...(4. 14)

where the bound on δ0 and δ1 is given by the expressions

2

1

2

123min
0 2

)2)((
k
k

PBK
PBKQ

r
δλ

δ
−

< ...(4. 15)

101

2

3min
1 2

)(
PBK

Qλ
δ < ...(4. 16)

where r is the radius of a Ball Br ⊂ D. Then, the state of the system is given by

100),,)(()(ttttttxtx o <≤∀−≤ β

 1 ,)(ttrtx >∀≤ ...(4. 17)

where β is a class KL function.

In other words the steady state of the system lies within the ball, Br shown in

Figure 4-4 for all time t > t1.

Proof:

 The system equation can be separated into the feedback-stabilized part and

the uncertain term as

)()(xBKgxBKAx +−=&(4. 18)

x
r

Br

Figure 4-4 Region of Stability

102

 The derivative of the Lyapunov function is

xxPBKgxPBKgxPxBKAxxBKAPxV TTTTT))(()()()(++−+−=& .

Since the last two terms are scalar, they can be combined and using the proof of

the Theorem 4.1, the derivative of the Lyapunov function is

)(23 xPBKgxxQxV TT +−=&(4. 19)

 Using Holder's Inequality, gives

2223)(2 xgPBKxxQxV T +−≤& .

 The uncertainty g(x) is given by the expression (4.14). Using this relation

in the expression gives

21220223 22 xPBKxPBKxxQxV T δδ ++−≤&

 022
2

212
2

23min 22)(δδλ PBKxxPBKxQV ++−≤& ...(4. 20)

}2)2)(({ 02123min22
δδλ PBKPBKQxxV −−−≤& .

The term 123min 2)(δλ PBKQ − is always positive as δ1 is bounded as given in

(4.16). This gives an expression for µ defined in (4.13)

)2)((

2

123min

02

δλ
δ

µ
PBKQ

PBK
−

= .

103

Substituting the bound on δ0, and δ1, µ satisfies the relation

2

1

k
k

r<µ .

The constants ki are: k1 = λmin(P), k2 = λmax(P).

This satisfies the condition in Theorem 5.1 of [24]

2

1
2

2 minmax xkxk
rxx =≤

<
µ

.

Thus all the conditions for the Theorem 5.1 in Error! Reference source not

found. are satisfied. Applying the theorem and corollary 5.3 in Error! Reference source

not found. completes the proof. Q.E.D

 This theorem can be applied to the closed loop system developed. As

mentioned before the system satisfies all the conditions of the Theorem 4.1. Thus, all the

conditions for the Theorem 4.2 are satisfied. The closed loop with the controller designed

as specified in Equation (4.1) is stable within the Ball Br. The asymptotic stability of the

closed loop system with respect to the origin cannot be specified.

 Thus, the confidence parameter from the multiple sensor fusion algorithm

presented in Chapter 3 is integrated into the controller design and the closed loop system

with such a controller is proved to be asymptotically stable though not to the origin, but

to a ball of radius r. The confidence from the multiple sensor fusion is integrated into the

controller to prevent the degradation of the system's performance when the multiple

104

sensor fusion fails. The next chapter deals with the implementation of this theory in a

multi-variable feedback control system and simulates the performance of the system.

4.4 Fuzzy Controller

In the previous sections a traditional controller was designed and a procedure for

integrating the sensor fusion in the controller design was presented. The stability of the

designed controller was rigorously proven. Traditional controllers, however, are more

suitable for linear systems with well-defined models. Although linear models in a

specified range of operation can describe cupola furnaces, they are in general nonlinear

systems with a lot of uncertainty in the inputs. In this section an alternative to the

previously designed traditional controller is given. The alternative design is based on

fuzzy control principles. Using the pairing of cupola inputs to outputs as CMR/%C,

O2/T, and BR/MR, three fuzzy controllers were designed. The fuzzy controller is

composed of a fuzzy inference system and an integrator. The fuzzy inference system

suggests changes to the inputs in order to achieve the desired changes in the outputs. The

integrator accumulates these changes and presents it to the cupola. The inputs to each

fuzzy inference system are: 1) the error which represents the difference between the

desired output and the current output and 2) the change in the error averaged over a

period of time. The outputs of the fuzzy inference system of each controller can take on

five values: large positive (LgPos), small positive (SmPos), zero, small negative

(SmNeg), or large negative (LgNeg). These values represent the required change in the

105

input to achieve the desired change in output. Each fuzzy inference system contains five

trapezoidal membership functions for each input: a large positive and negative, a small

positive and negative, and an zero range. Since there are two inputs (error and change in

error) with five membership functions each, there are twenty-five rules relating the inputs

and outputs of each fuzzy inference system used in this paper.

4.4.1 Controller design

In order to control the system properly, some knowledge of the desired response

for each output such as MR, T and %C and limitations on the ranges and possible rates of

change of the available inputs such as O2, BR and CMR is required. This is important

since the controller might request changes in those input parameters that might not be

achievable or might cause erroneous response of the cupola.

A normal settling time for a moderate change in melt rate was selected to be 5 minutes.

This means that small changes in MR could be achieved within 5 minutes. Changes in

molten metal temperature were also selected to be achieved in 5 minutes. For changes in

the %C, the long time delay associated with changes in the charge composition forces

changes in the %C to take a longer time period. The time selected to achieve changes in

%C is 50 minutes.

106

The process of designing the fuzzy controller is an iterative one. An initial guess

was made to the membership function parameters, the output values, and the rules so that

simulations could be performed. Plots of the fuzzy inputs and system outputs were then

used to tune the controller parameters. For example, an initial definition of a small

change in the error or a large change in error is readjusted after looking at the response of

the system during a simulation. A narrow value for the ideal range would cause the

system to be very sensitive to noise while a wide range for the ideal membership function

would allow the system to deviate considerably from the desired output. Using the

simulations, the fuzzy output parameters were chosen such that: the settling times were

close to 600 seconds, the system inputs would not change too quickly, and overshoots

were minimized. Figure 4-5 and Figure 4-6 are examples of the membership functions of

the two inputs for the melt rate fuzzy inference system. Figure 4-5 represents the error in

the MR while Figure 4-6 represents the change in error in the MR.

An iterative method for changing the rules from the initial guess is similarly

followed. These rules were updated based on examining plots generated through

simulations. The list of rules for the melt rate controller is shown in Appendix 4.A. The

rules for the other two outputs of interest in this paper, namely T and %C are very

similar. Examining a subset of these rules illustrates the main idea behind the fuzzy

controller. The error in an output is positive when the set point is higher than the actual

value and the rate of change in the error is negative if the error is decreasing and vice

versa. Consider a case when the MR is at steady state and an increase in the MR is

107

requested. The error in the MR is positive and change in the error is zero, then,

according to rule 23 in Appendix 4.A, the blast rate should be increased at its maximum

rate. Another example is if the error in MR is zero, but the output is heading toward an

overshoot because the rate of change in the error is a large positive value, then the change

in the BR should either be a small negative according to rule 15 in Appendix 4.A.

One of the main objectives of this research was to obtain a controller that could be

used for any cupola, not just the Albany Research Center's experimental cupola in

Albany, Oregon. Therefore, equations were developed to reconfigure the fuzzy

membership function and output parameters. These use the steady state parameters and

the limitations on the system inputs to achieve the reconfiguration of the parameters.

108

D
egree of m

em
bership

-dmrlg -dmrsmb
-dmrsma

-dmrss dmrss
dmrsma

dmrsmb dmrlg

D
egree of m

em
bership

-mrsmb -mrlg
-mrsma

-mrss mrss
mrsma

mrlg mrsmb

Figure 4-5 Membership functions of the error in melt rate (eMRate)

Figure 4-6 Membership functions of the change in error for the melt rate (deMRate)

109

4.4.2 Smith Predictor

Due to the nature of the cupola in loading the fuel at the top and burning at the

bottom, a long time delay exists between changing the CMR and that change affecting

the melting zone. In order to accommodate that time delay a predictive model based

strategy is utilized. This was suggested first by Smith (Smith, 1957) and thus the method

is referred to as a Smith predictor. The Smith predictor is utilized with the %C controller.

The schematic diagram of the system with the Smith predictor is shown in Figure 4-7.

As shown in this figure, an estimate of the input to the cupola is fed to a duplicate

transfer function relating the CMR to the %C. The signal from the duplicate transfer

function has a time delay applied to it and then is subtracted from the %C output signal.

The resulting signal is then added to the undelayed signal from the duplicate transfer

function. The final result is the feedback signal for the system. The time delay in the

Smith predictor is representative of the best-known or average delay measured.

Figure 4-7 Implementing a Smith predictor

Integrato
Plant
time
delay

Transfer
function 1
(varies)

Transfer
function 2
(varies)

Transfer
function 3
(varies)

Plant
time
delay

Transfer
function
1

To other
outputs

From
other
inputs

+ + +

- ++ +

Control
Signal

Feedback
Signal

110

4.4.3 Integration of Sensor Fusion in Controller Design

The harsh environment at the output of the cupola results in sensor drift and

failure. By using several sensors and the sensor fusion technique developed earlier a

confidence between zero and one can be determined that reflects the accuracy of the

output value. It is desirable to use the confidence level to adapt the speed of response of

the controller. This is achieved by scaling the output of the fuzzy inference in the fuzzy

controller by a function related to the confidence. In this paper, the confidence is raised to

a power and this is multiplied into the output of the fuzzy inference system. Assume for

example that the confidence level in a signal is 90%, it could be raised to the fifth power

which results in reducing the change in the input to 60% of the amount requested by the

fuzzy inference system. If the confidence is 50%, the change in input is reduced 3% of

the amount requested by the fuzzy engine. Thus, the effect of using the confidence in the

measurement to scale the fuzzy engine output is to adapt the speed of response of the

controller based on our confidence in the measurements. This can be effective in

mitigating the effects of failed sensor or external disturbances over the performance of

the closed loop system.

111

4.4.4 SIMULATOR DESIGN

The model was implemented in Simulink for the transfer matrix first order

responses and the time delay of the CMR. The model requires loading the data of the

steady state variables, time constants, CMR time delay, operating point, and input

boundaries.

4.4.5 BASIC LAYOUT

The simulation is to represent a change in the outputs and inputs from a normal

operating point. The output of the controller reflects the desired rate of change of the

system inputs. The controller output is integrated to reflect the total change in the system

input. The value of the integrator is bounded to prevent integral windup. Each integrator

output then passes its value to three transfer functions obtained from the transfer function

matrix. Each system output receives three values, one from each integrator after passing

through a transfer function. These values are added to give the total change in the output.

Error signals, which represent deviation of the actual signal from the desired output, are

one of the inputs that get fed to the controllers. The change in the error signal is averaged

over a period of time and is sent to the controller as a second input. Figure 4-8 illustrates

the layout.

112

Figure 4-8 Simulation layout

4.4.6 NOISE, DISTURBANCES, AND VARYING PARAMETERS

The actual system is non-linear and has been approximated by a linear system

with constant parameters in the transfer matrix. Sensors that measure the system outputs

are subject to noise and the system inputs may not perform exactly as the controller

demands. The simulation must take these factors into consideration.

Noise

Gaussian noise was added to the system outputs before sampling for feedback.

This represents the fact that the sensors do not measure the outputs perfectly. For such a

harsh environment as a cupola, this noise could be considerable.

Input
boundaries

Operating
point

Desired
change

Delay

 -
+

+
 -

Fuzzy
controller

Integrator

Transfer
function 1

Transfer
function 2

Transfer
function 3 + + +

To other
outputs

From
other
inputs

error

∆ error
X

Confidence^α

113

Disturbances

Disturbances in the form of a square wave were added to each of the integrator

signals. This represents not knowing exactly the system inputs. An example would be

setting the blast to increase and not knowing one of the fans were down or the feed of

metal into the cupola could have different densities and could be difficult for the human

loaders to approximate its weight.

Varying Parameters

There was no research done on finding how the parameters changed non-linearly.

In order to test for all possible cases, a sine wave with an offset close to one was

multiplied to the transfer functions, except for the duplicate transfer function of the Smith

predictor. For each of the transfer functions, the sine wave was at a different initial phase

and all were at different frequencies. With all at different frequencies, the simulation

could be run long enough so that all combinations of the parameters within a range could

be studied.

4.4.7 RESULTS

The controller was tested under ideal conditions, output noise, input disturbance,

sensor fusion noise, by varying the model parameters over a wide range, and actual CMR

time delay being different than that used in the Smith predictor. The tests of the

controller's robustness and dependability are described below with generated plots of the

results.

114

IDEAL CONDITIONS

The model was tested without noise and with step inputs that would reflect a

change in the operation of the cupola. The temperature was requested to undergo a

change of 50o C at 3000 seconds, the melt rate to change by 0.1(tons/hr) at the same time.

A change of 0.1% in %C was requested at 100 seconds. The reason the changes in

temperature and melt rate were requested at a much later time was that the CMR has a

much longer settling time due to the long time delay of the charge. With these change

times, the three outputs changed and settled at close to the same time. Figure 4-9 shows

the plots of the outputs, inputs, error, and the change in error. Most of the fuzzy

parameters were fine-tuned using these plots.

Figure 4-9 shows that the settling time is very close to 600 seconds for the melt

rate and temperature. The carbon has a settling time of 2000 seconds, after a pure time

delay of 1800 seconds. This long settling time is necessary for the Smith predictor to

work properly.

OUTPUT NOISE

Gaussian noise was added to the output signal. This represents the fact that the

sensors are subject to extreme noise because of the nature of the cupola. Even when

averaging several sensors measuring the same output, there is noise. Figure 4-10 is the

plots generated with noise. Notice the error plot is basically the noise after the outputs

reach steady state. The change in error reflects a noisy output, which had to be taken into

115

consideration when choosing the membership function parameters. An example is that if

the output noise caused the change in error signal to enter the large change in error range

in the fuzzy system, then the inputs may change significantly to correct for it. It then

leads to an oscillating input and output.

As can be seen in Figure 4-10, the controller rejects output noise efficiently. The

inputs move seldom under the noise conditions introduced, increasing the life of the

actuators.

INPUT DISTURBANCE

Input disturbances can be common in the cupola environment. The scrap iron is

typically lifted with a human operated front-end loader. Since the scrap iron will have

varying densities, there will be a disturbance at the input. The blast rate can be affected

by its ability to penetrate the charge in the cupola. The configuration of the charge is

constantly changing in the cupola causing a disturbance. Mechanical problems in

producing the blast can cause disturbances. The oxygen enrichment will be disturbed if

the blast is disturbed because it is a percentage increase of oxygen in the blast air.

Mechanical problems in the oxygen delivery can also cause disturbances.

Figure 4-11 shows plots of the inputs and outputs with the inputs disturbed. The

disturbances are in the form of a square wave. This gives periodic negative and positive

disturbances to the inputs. Figure 4-11 reflects the ability of the controller to adapt to

disturbances. The frequencies of the square waves were taken to be 6000 seconds for the

116

O2, 9000 seconds for the BR, and 30000 seconds for the CMR. The controller reacts to,

and corrects for, these disturbances. The outputs show a 20% error due to the time it takes

to correct for the instantaneous changes in the inputs. The plot shows a long history

because the frequencies of the square waves were all different, allowing worst possible

cases to arise.

117

Figure 4-9 Step response under ideal conditions

dT (___), 1000*dMR (_ _), 1000*dC (__

1000*dO2(___), 100*dBlast(_ _), dCMR(__

eT(___), 1000*eMR(_ _), 1000*eC(__

deT(___), 1000*deMR(_ _), 1000*deC(__

Change in output

Error

Rate of change
 in error

Change in input

%C

T

O2

BR

CMR

MR

%C

MR

T

%C MR

T

dT (), 1000*dMR (), 1000*dC (

ti

1000*dO2(), 100*dBlast(), dCMR(

ti

eT(), 1000*eMR(), 1000*eC(

ti

deT(), 1000*deMR(), 1000*deC(

ti

Change in output

Error

Rate of change
 in error

Change in input

T

MR

%C %C
MR

T

O2

CMR

BR

T

MR %C

118

dT (___), 1000*dMR (_ _), 1000*dC (1000*dO2(___), 100*dBlast(_ _), dCMR(

BR

O2

CMR

%C

T

MR

Figure 4-10 Step response with noisy outputs

Figure 4-11 Step response with input disturbances generated with square waves

4.4.8 Integration of Sensor Fusion In Controller Design

The sensor fusion technique provides the controller with a confidence level in the

measurements of the output values. As explained earlier, the confidence level reflects

how trustworthy the measurements are. If the confidence is close to zero, then the

response should be slow. If the confidence is close to one, the response should be normal.

To test the integration of the sensor fusion in the controller design, a relatively large

disturbance is applied to the output with the cupola at steady state. This disturbance

represents a failure in the sensors rather than an actual disturbance. Figure 4-12 and

119

Figure 4-13 are plots of the inputs and outputs of the melt rate for the confidence levels

of 0.9 and 0.5 respectively during the disturbance. The confidence is taken to the fifth

power and multiplied to the controller's rate of change for the blast rate.

The change in the melt rate due to the disturbance in the measurement at a 90%

confidence is 0.038 (tons/hr) and responds much like it would without sensor fusion. The

change in the melt rate for a 50% confidence was only 0.0038. The figures show that the

reduced confidence slows the controller down so that the output changes are 10% of

those at a confidence of 90%. It does not stop the changes and if the sensors that cause

the confidence to go down are not replaced or corrected, the output could eventually

reach an erroneous value. With sensor fusion, it is shown that the cupola's operators will

have much more time to fix bad sensors before lowering the quality of the product. The

controller can be easily adjusted by changing the power that the confidence is taken to.

120

dT (___), 1000*dMR (_ _), 1000*dC (__ 1000*dO2(___), 100*dBlast(_ _), dCMR(__

BR

MR

dT (___), 1000*dMR (_ _), 1000*dC (1000*dO2(___), 100*dBlast(_ _), dCMR(

MR

BR

Figure 4-12 Response for melt rate confidence of 0.9 and –0.1 pulse for 600 seconds

 Figure 4-13 Response for melt rate confidence of 0.5 and –0.1 pulse for 600 seconds

121

4.4.9 VARYING MODEL PARAMETERS

A linear model has approximated the non-linearity of the cupola furnace. The

experimental data shows that the model is good only for a narrow operating range. This

problem could be solved by designing many controllers and then use a look-up table to

choose the best controller for a certain operating point. It would be better if one controller

would work under all the normal operating ranges. This is one reason for using fuzzy

logic control, that is, it is robust. In Figure 4-14, a sine wave disturbance, with an offset

of 1.125 and amplitude of 0.375 is multiplied to each of the nine transfer functions at

different frequencies. This varies the steady state transfer function response from 75% to

150% of the original value. Since they are varied at different frequencies, a worst-case

combination will align if the simulation runs long enough.

The non-linearities in the actual cupola are not a problem for the fuzzy controller.

Figure 4.14 shows the results of a widely varying model. Applying a sinusoidal varying

gain to the nine individual transfer functions varies the model. The frequencies are all

different in order to study the worst case scenario. The controller performs excellent in

this test. The one case at 12000 seconds indicates the melt rate cannot be controlled. At

this point the input plot shows the blast rate is at its maximum level, therefore the desired

operating point cannot be reached.

122

dT (___), 1000*dMR (_ _), 1000*dC (1000*dO2(___), 100*dBlast(_ _), dCMR(

MR
%C

T

BR

CMR

O2

Figure 4-14 The results of varying the model parameters

4.4.10 Varying Pure Time Delay of the CMR

The Smith predictor depends on previous knowledge of the time it takes for the

charge to burn down to the output level. It can be an average for the range of the cupola's

operation or it could be a function of the inputs and outputs. Even if it were given by a

function, the penetrability of the charge by the blast cannot be absolutely known,

clumping of charge materials in the cupola, and coke consistency can all lead to

inaccuracy in the calculation. Therefore results with the cupola given a 2400 second time

delay with the Smith predictor given an 1800 second time delay is given in Figure 4-15.

123

dT (___), 1000*dMR (_ _), 1000*dO2(___), 100*dBlast(_ _),

MR

T

BR

CMR

O2

%C

Figure 4-16 is the results of a pure time delay of 1200 seconds in the cupola and 1800

seconds in the Smith predictor.

Figure 4-15 Smith predictor with a +600 second time delay plant offset

Observing Figure 4-15, a 25% overshoot can be seen due to the 600-second

difference between the cupola’s and the Smith predictor's time delay. Figure 4-16 shows

the controller's reaction to a –600 second in the same difference, which increases the

settling time by 100%. These results are good since the %C remained within 25% of the

required change in set point after a 2000 second settling time. A 600 second difference in

the time delays would indicate a serious problem and would probably not occur in the

actual cupola. Therefore, this controller is acceptable for an average time delay given for

the Smith predictor.

124

dT (___), 1000*dMR (_ _), 1000*dO2(___), 100*dBlast(_ _),

%C

MR

T

BR

CMR

O2

Figure 4-16 Smith predictor with a -600 second plant time delay offset

If a function is available for calculating and updating the Smith predictor's time

delay, then this controller is conservative and should be adjusted to lower the settling

time.

4.4.11 COMBINING ALL NOISES AND DISTURBANCES

Figure 4-17 is a plot of all the above noises and disturbances added in. This represents the

cupola in a worst case scenario where many disturbances are simultaneously taking place.

The Smith predictor's time delay is 200 seconds more than the cupola's and the sensor

fusion confidence is 50%. The figure shows the result of applying all the noises,

125

dT (___), 1000*dMR (_ _), 1000*dC (1000*dO2(___), 100*dBlast(_ _), dCMR(

%C

MR

T

BR

CMR

O2

disturbances, and varying parameters to the system. The controller works satisfactorily

under these extreme conditions.

Figure 4-17 System Performance Under Effect of All Disturbances

126

Appendix 4.A

1. If (eMRate is LgNegMR) and (deMRate is LgNegdMR) then (ChangeBlast is LgNegBR)
2. If (eMRate is LgNegMR) and (deMRate is SmNegdMR) then (ChangeBlast is LgNegBR)
3. If (eMRate is LgNegMR) and (deMRate is ZerodMR) then (ChangeBlast is LgNegBR)
4. If (eMRate is LgNegMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmNegBR)
5. If (eMRate is LgNegMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR)
6. If (eMRate is SmNegMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmNegBR)
7. If (eMRate is SmNegMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmNegBR)
8. If (eMRate is SmNegMR) and (deMRate is ZerodMR) then (ChangeBlast is SmNegBR)
9. If (eMRate is SmNegMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmNegBR)
10. If (eMRate is SmNegMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR)
11. If (eMRate is IdealMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR)
12. If (eMRate is IdealMR) and (deMRate is SmNegdMR) then (ChangeBlast is ZeroBR)
13. If (eMRate is IdealMR) and (deMRate is ZerodMR) then (ChangeBlast is ZeroBR)
14. If (eMRate is IdealMR) and (deMRate is SmPosdMR) then (ChangeBlast is ZeroBR)
15. If (eMRate is IdealMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR)
16. If (eMRate is SmPosMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR)
17. If (eMRate is SmPosMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmPosBR)
18. If (eMRate is SmPosMR) and (deMRate is ZerodMR) then (ChangeBlast is SmPosBR)
19. If (eMRate is SmPosMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmPosBR)
20. If (eMRate is SmPosMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmPosBR)
21. If (eMRate is LgPosMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR)
22. If (eMRate is LgPosMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmPosBR)
23. If (eMRate is LgPosMR) and (deMRate is ZerodMR) then (ChangeBlast is LgPosBR)
24. If (eMRate is LgPosMR) and (deMRate is SmPosdMR) then (ChangeBlast is LgPosBR)
25. If (eMRate is LgPosMR) and (deMRate is LgPosdMR) then (ChangeBlast is LgPosBR)

The fuzzy inputs are eMRate for the error in the melt rate and deMRate for the

rate of change in the error. The membership function names are LgNegMR and

SmNegMR for large and small negative melt rates, LgPosMR and SmPosMR for large and

small positive melt rates, LgNegdMR and SmNegdMR for large and small negative rate of

change in the melt rates, LgPosdMR and SmPosdMR for large and small positive rate of

change in the melt rates, IdealMR is about a zero error, ZerodMR is about a zero rate of

127

change in the error of the melt rate. The outputs are constants for large or small, negative

or positive, and zero changes in the blast rate.

128

129

Chapter 5

5 Demonstration Plans

5.1 Introduction

The demonstration plans aimed at illustrating the functionality of I3PSC

technology as it is applied to cupola iron melting furnaces. The plans were carried out as

proposed at a research facility operated by the US DOE in Albany Oregon (ALRC).

ALRC operates an 18” research Cupola furnace equipped with state of the art

instrumentation for measurement of various cupola parameters. Moreover, in order to

carry out the I3PSC demo plans, several new instrumentations such as a continuous

immersion thermocouple and an ultrasonic radar were installed and tested on the furnace

as promising technologies that could be recommended for use in the cupola foundries.

The parameters of importance to the current demonstration plans were:

1- Iron Temperature,

2- Melt Rate,

3- Carbon content of molten iron,

4- Off gas temperature and composition

5- Cupola back pressure

6- Blast rate

130

7- Oxygen enrichment

8- Metal stream composition (SCR)

9- Coke to metal ratio (CMR)

Instrumentation used for measurement of the above parameters included: dip

thermocouples, continuous immersion thermocouple and optical Pyrometers for

measurement of molten iron temperature, ultrasonic radar for measurement of molten

iron level, electronic scale for measurement of molten iron weight, thermal arrest

equipment for quick measurement of carbon, silicon and carbon equivalent of the molten

iron. Moreover, other parameters such as CMR and SCR were manually monitored and

calculated.

The demonstration plans aimed at addressing the following questions:

1- Can I3PSC system be successfully interfaced and integrated into an existing

cupola with its own instrumentation and data acquisition system with minimal

effort?

2- Can the I3PSC system provide reliable information regarding the cupola

parameters and state of operation?

3- Can I3PSC system be used to integrate sensing and control algorithms in order to

provide an automatic control system that can successfully operate cupola

furnaces in order to avoid some of the problems that currently occur in cupola

foundries?

131

The last question is the most important one as its success automatically indicates a

positive answer to the first two questions.

The I3PSC system was interfaced through an Ethernet network connection to the

existing Data Acquisition Computer at Albany Research Center (ALRCDAQ). A special

software module was written to specifically exchange the important cupola parameters

between the I3PSC computer and the ALRCDAQ. This software module is what needs to

be customized if the I3PSC system is to be used at a different facility. This arrangement

ensured that no changes to the ALRCDAQ were required and that any changes to the

number of parameters monitored can be done quickly. This arrangement is illustrated in

Figure 5-1.

132

Figure 5-1 Configuration for Interfacing I3PSC with ALRC DAQ for Demo Runs

Three of the demonstration runs were focused on illustrating the integration of

sensing and control of cupola parameters.

5.2 Setup of I3PSC for Demonstration Runs

I3PSC system was configured with the following modalities:

a) Data Acquisition Modality: A modality whose function is to collect and send raw

data and I3PSC control parameters from and to the ALRCDAQ.

133

b) Virtual Sensor Modality: A modality using models to predict values of important

cupola parameters. Two virtual sensors were configured. One for molten iron

temperature and the other for the iron melt rate.

c) Sensor Fusion Modality: For fusion of data collected from the cupola. Three

parameters were of interest in the demo runs, namely, iron temperature, melt rate,

and Carbon content of the molten metal.

d) Monitoring modality: This modality monitors trend of important variables and

displays the current trend of such variables such as increasing, decreasing,

constant, etc. This modality can also be setup to monitor for conditions such as

bridging that would be reflected in changes in operational parameters such as

cupola back pressure and exit temperature. An example of such situation is

shown later in this chapter.

e) Planner modality: This is the modality which specifies the run plan in terms of

the requirements on the variables of importance. This was limited during the

demo runs to the three variables specified earlier, , namely, iron temperature, melt

rate, and Carbon content of the molten metal.

f) Controller Modality: This modality uses information from the sensor fusion

modality as well as planner modality to decide adjustments to the control

parameters of the cupola. These parameters included: blast rate, oxygen

enrichment, coke to metal ratio (CMR) and steel to cast ratio (SCR).

134

5.3 Results and Analysis of Demo Runs

One of the runs was aimed at ensuring that the cupola instrumentation were

working properly and the interface between the I3 PSC and the data acquisition

system as well as the integrated system at ALRC are working properly. It was also

used to test the effect of changing the CMR on the cupola operating conditions. The

subsequent runs aimed at demonstrating the ability of I3PSC to control the carbon

content of the molten iron by adjusting the composition of the iron stream, the melt

rate and temperature of the molten iron within an appropriate range.

The first of these runs illustrates the ability to change the carbon content of the

molten iron from 2.8% Carbon to 3% while maintaining the metal temperature and

the melt rate constant. It also illustrates the ability of the I3PSC controller to reject

disturbances in the form of unknown metal stream that is being introduced into the

cupola. Partial results of the first of these runs are shown in Figure 5-2 through

Figure 5-7.

135

0

10

20

30

40

50

60

70

80

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

cast

steel

pig iron

Figure 5-2 Control of Carbon Content, Run #2

Figure 5-3 Metal Stream Changes suggested by I3PSC for control of %C for Run #1

%Carbon

2.00

2.20

2.40

2.60

2.80

3.00

3.20

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

%C Set

S

136

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

32
5

34
3

36
1

37
9

39
7

41
5

43
3

45
1

46
9

48
7

50
5

MR2 rv
MR rv
Fused MR v
ManualMR rv

1 Melt Rate

Fused MR Confidence

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

33
1

34
1

35
1

36
1

37
1

38
1

39
1

40
1

41
1

42
1

43
1

44
1

45
1

46
1

47
1

48
1

49
1

50
1

51
1

Figure 5-4 Individual Measurements and Fused Melt Rate for Run #1

Figure 5-5 Confidence of Fused MR

137

Temperature Fused Confidence

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

33
1

34
1

35
1

36
1

37
1

38
1

39
1

40
1

41
1

42
1

43
1

44
1

45
1

46
1

47
1

48
1

49
1

50
1

51
1

2500.00

2550.00

2600.00

2650.00

2700.00

2750.00

2800.00

2850.00

2900.00

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

Spout rv
Datacast rv
Pyro2 rv
Pyro rv
Fused T v

1.1 Iron Temperature

Figure 5-6 Individual Measurements and Fused Temperature

Figure 5-7 Confidence of Fused Temperature

138

Oxygen

0

5

10

15

20

25

30

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

46
0

47
7

49
4

51
1

52
8

54
5

56
2

57
9

59
6

61
3

63
0

64
7

Figure 5-8 Oxygen Enrichment for Temperature Control for Run #1

Figure 5-9 Blast Rate for Melt Rate Control for Run #1

Figure 5-2 illustrates the change in the carbon content between the current carbon content and

the desired content of 3%. It should be noted that a stream of pig iron was added to the metal

stream, as a disturbance, in place of part of the steel in the charge, as illustrated in

Blast rate

200

220

240

260

280

300

320

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5

51
4

53
3

55
2

57
1

59
0

60
9

62
8

64
7

139

% Carbon

2

2.2

2.4

2.6

2.8

3

3.2

3.4

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

%C Set
%C Set

Figure 5-3. The controller corrects for the disturbance by increasing the amount of steel in the

charge. Adjustments in oxygen enrichment and blast rate to maintain the temperature and melt

rate are illustrated in Figures 5.8 and 9. The temperature and melt rate obtained from individual

measurements are shown in Figure 5-4 and Figure 5-6. Changes in the confidence in the fused

values reflecting agreement between the different measurements are shown in Figure 5-5 and

Figure 5-7.

Figure 5-10 Control of %C during Run #2

140

1000

1500

2000

2500

3000

3500

4000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

40
1

41
7

43
3

44
9

46
5

MR rv Fused MR v Manual MR rv

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

2900

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

32
5

34
3

36
1

37
9

39
7

41
5

43
3

45
1

Spout rv Datacast rv Pyro2 rv Pyro rv Fused T v

Figure 5-11 Changes in MR during Run #2

Figure 5-12 Changes in MR during Run #2

141

The second run aimed at showing the ability to quickly change the carbon content of the iron.

Two set points for the carbon were desired. The first set point was 3% and the second set point

was 2.8%. It should be noted that the first set point took longer to achieve than the second set

point, as the cupola did not reach steady state when the controller was initially turned on. The

change in the Carbon content is shown in Figure 5-10. The change in set points was also

accompanied by a requested change in the melt rate as shown in

Figure 5-11.

Figure 5-12 shows the change in the temperature of the molten iron during the

run. Figure 5-13 shows the change in the metal stream going into the cupola as

suggested by I3PSC along with a disturbance in the form of pig iron stream replacing

part of the cast iron.

The last run demonstrated the ability to drastically reduce the melt rate while

maintaining the carbon content and the iron temperature within appropriate ranges.

This was achieved by a change in the CMR prior to the reduction in the blast rate.

The change in the CMR was accompanied by a change in the metal stream to

compensate for the expected effect of the increase of CMR on the carbon content.

The main reduction in the melt rate was produced by a drastic cut in the blast rate and

oxygen enrichment. It should be noted that the forward change in the CMR reduce

the required decrease in the blast rate and keeps the metal temperature within the

142

desired range after such drastic cut in the blast rate and oxygen enrichment. These

changes are illustrated in Figure 5-14 to Figure 5-20. Figure 5-14 shows the change

in CMR in anticipation of the request for a change in the MR and the corresponding

adjustments in the metal streams to compensate for that change. Figure 5-16 and

Figure 5-17 show the change in the blast rate and oxygen enrichment to achieve the

desired MR.

0

10

20

30

40

50

60

70

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

cast steel pig iron

Figure 5-13 Metal Stream Changes control of %C for Run #2

143

Coke

10

10.5

11

11.5

12

12.5

13

13.5

14

Coke

30

35

40

45

50

55

60

65

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320

Cast
Steel

Figure 5-14 Forward Change in CMR to Achieve Large Change in MR (Run #3)

Figure 5-15 Changes in Metal Stream to compensate for Change in CMR

144

B la s t R a te

2 0 0

2 2 0

2 4 0

2 6 0

2 8 0

3 0 0

3 2 0

3 4 0

3 6 0

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

B la s t R a te

Change to

d

Oxygen Enrichment

0

5

10

15

20

25

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

Oxygen Enrichment

Figure 5-16 Changes in Oxygen Enrichment (SCFM) during Run #3

Figure 5-17 Changes in Blast Rate (SCFM) during Run #3

145

Figure 5-18 Control of Melt Rate during Run #3

Figure 16: Changes in Molten Iron Temperature during Run #3

Figure 5-19 Changes in Iron Temperature deg F during Run #3

2300

2400

2500

2600

2700

2800

2900

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

Spout rv
Datacast rv
pyro2 rv
Pyro rv
Fused T v

Desire

Molten Iron

1000

1500

2000

2500

3000

3500

4000

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

MR 2 V alue

MR rv

Fus ed MR v

Manual MR rv

146

%Carbon

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

Figure 5-20 Changes in % Carbon during Run #3

Figure 5-21 and Figure 5-22 illustrate a different capability of the I3PSC. As we

mentioned earlier one of the modalities of I3PSC is a monitoring modality that can be

directed to monitor the trends of specific variables. This modality can also be

directed to monitor for a set conditions on multiple variables including specified

trends and absolute values. In the case illustrated here, the monitoring modality

detects the occurrence of a bridging condition in the cupola through the monitoring of

two parameters, namely the cupola exit temperature and the cupola back pressure.

These variables are easily measured and continuously monitored. The two variables,

as shown in Figure 5-21 and Figure 5-22, show a simultaneous increase during the

marked window. The simultaneous increase of both variables is a good indicator of

147

Insert

Exit Temperature

0

200

400

600

800

1000

1200

1400

1600

1800

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

Bridging

the occurrence of bridging in the cupola. The operator could, thus, be alerted for the

bridging and an action to alleviate the problem.

Figure 5-21: Detection of Bridging in the Cupola-Changes in Exit Temperature

148

Cupola_Press.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

Bridging

Figure 5-22: Detection of Bridging in the Cupola-Changes in Cupola Pressure

149

Appendix 5.A

Figure 5-23: Opening the Tap-hole at ALRC Cupola

Figure 5-24: Cupola Always Provides Operational Challenges

150

Figure 5-25: An Overview of the ALRC Research Cupola

151

Figure 5-26: Manual Sampling and Quick Analysis of Molten Iron

Figure 5-27: Manual Measurement of Temperature of Molten Iron

Figure 5-28: Optical Pyrometers for Continuous Measurements of Iron

Temperature

152

Figure 5-29: A Dip Thermocouple for Continuous Temperature Measurement

Figure 5-30: Charging Deck of the Cupola at ALRC

153

Figure 5-31: Measurement of Melt rate, Chemical Composition, and Temperature

Figure 5-32: Remote Monitoring and Control of the Cupola during Demo Runs

154

155

Chapter 6

6.1 Summary and Conclusions

Section 1 of this report has reviewed major highlights of the project including the

management activities, development of algorithms for multiple sensor fusion and

integration of sensing and control, and demonstration runs on a cupola iron-melting

furnace in Albany research center. The project involved in addition to the algorithms

development, the creation of a flexible software package based on object-oriented

methodology that integrates the different components of the developed system. The

software package includes algorithms for offline analysis as well as online operation.

Details regarding the use of software package are provided in Appendix A.

The technical achievements of the project can be highlighted through the refereed

journal and conference publications to interested professionals in the field of sensors and

control as well as professionals within the metal casting industry. Up to this point

fourteen papers and seven theses, that were supported by the project, have been

published. The lists of papers and theses are provided in Appendices 1.A and 1.B. Some

of the technical details were not included in this report to protect the intellectual property

of the participants.

156

The developed system (I3PSC) was tested in a series of demonstration runs.

These runs have demonstrated the ability of the system to:

1- be easily interfaced into an existing cupola foundry with its own data

acquisition equipment, sensors and networks,

2- be adapted to incorporate the available sensors and modalities,

3- fuse the available information sources and provide a best estimate as well

as a confidence measure on the estimate,

4- monitor trends of individual variables as well as combination of variables

and provide early warning on potential problems such as bridging that

might be developing in the cupola,

5- integrate sensing and control algorithms to provide a closed loop

automatic control system that can aid in maintaining the important

operational cupola parameters such as carbon content, melt rate and iron

temperature with specified boundaries at various conditions of operation

requirements. Specific examples that were illustrated included the ability

of the system to change the carbon content quickly during a run while

maintaining the temperature and varying the melt rate. Another example

showed the ability of the system to plan a large reduction in the melt rate

while maintaining the carbon content and the temperature within

acceptable ranges, and

157

6- reduce the transition period to steady state operation by changing the

initial charge setup in the cupola.

The demonstration runs, the publications and the developed software package

illustrate that the project have achieved the proposed objectives. Full

utilization of the developed algorithms, software and hardware within the scope

of the industries of the future depends on other factors that are technical and

economical. The next section discusses these issues in more details.

158

6.2 Future Recommendations

As we have mentioned earlier, the I3PSC system has achieved the technical

objectives set at the start of the project. The system was tested using a state of the art

research cupola furnace. It has not yet been adopted and tested by a commercial facility.

Cupola foundries are in general conservative in adopting new technology especially

under current economic conditions. Certain issues need to be considered towards

achieving acceptance of the system in cupola foundries. Although the I3PSC system was

designed to be generic, certain modalities such as virtual sensors and the automatic

controller need to be setup to address the specific needs of a foundry and thus would

require the investment of time and resources. Sensors for monitoring of key parameters in

a foundry such as temperature and chemical composition have to be installed and

operated, if not already available. A training period for personnel in the foundry would

be necessary. The investigators have used and continue to use professional meeting and

personal contacts to increase awareness of the cupola foundries to the benefits of the

I3PSC and the possible economic and environmental impact of its utilization. Avenues for

support of the first industrial implementation of I3PSC in a cupola foundry using private

as well as government funds are currently being explored.

From a different perspective, I3PSC was intended to be generic and applicable to

other applications that require the integration of sensing and control. Thus, another

159

avenue to pursue is to seek funding for the adaptation of the developed system in other

applications within the scope of the industries of the future.

160

161

REFERENCES

[1] Nagrath, I.J and Gopal, M, Control Systems Engineering, Second Edition, New Age

International (P) Ltd., Publishers, 1995.

[2] Maciejowski,J.M, Multivariable Feedback Design, Addison-Wesley Publishers Ltd.,

1990.

[3] Richard R.Brooks and S.S.Iyengar, Multi-Sensor Fusion - Fundamentals and

Applications with Software, Prentice Hall, Inc., New Jersey, 1998.

[4] Ren C.Luo and Michael G Kay, "Multiple Integration and Fusion in Intelligent

Systems," IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,

September 1989.

[5] R.C.Luo, M.Lin, and R.S.Scherp, "Dynamic multi-sensor data fusion system for

intelligent robots," IEEE Journal Robotics and Automation, vol. RA-4, no. 4, pp. 385-

396, 1988.

[6] Keith E. Holbert, A.Sharif Heger and Nahrul K. Alang-Rashid, "Redundant Sensor

Validation by Using Fuzzy Logic," Nuclear Science and Engineering, vol. 118, pp.

54-64, 1994.

[7] Asok Ray and Rogelio Luck, "An Introduction to sensor Signal Validation in

Redundant Measurement Systems," IEEE Control Systems Magazine, vol. 11, no. 2,

pp. 43, Feb 01, 1991.

162

[8] Marcello R Napolitano, Charles Neppach, Van Casdorph , Steve Naylor, Mario

Innocenti and Giovanni Silvestri, "Neural Network Based Scheme for Sensor Failure

Detection, Identification and Accomodation," Journal of Guidance, Control and

Dynamics, vol. 18, no. 6, Dec 1995.

[9] Mohamed Abdelrahman and Senthil Subramaniam, "An Intelligent Signal Validation

System for Cupola Furnace - Part 1 and Part 2," American Control Conference, San

Diego, 1999.

[10] Janice C, Yang and David Clarke, "A Self-Validating Thermocouple," IEEE

Transactions on Control Systems Technology, vol. 5 no. 2 March 1997.

[11] M.P.Henry and D.W.Clarke, "The Self-Validating sensor: Rationale definitions,

and examples," Control Eng. Practice, vol. 1, no. 4, pp. 585-610, 1993.

[12] T.M.Tsai and H.P.Chou, "Sensor fault detection with the single sensor parity

relation", Nuclear Science and Engineering," vol. 114, pp. 141 1993

[13] Mathieu Mercadal, "Sensor Failure detection using Generalized Parity relations

for Flexible Structures," Journal of Guidance, Control and Dynamics, vol. 12, no. 1,

Feb 1989.

[14] Jeff Frolik, C.V.PhaniShankar and Steve Orth, "Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure," In Proceedings of American

Control Conference, June 2000.

[15] Bernard Friedland, Advanced Control System Design, Prentice Hall, Inc., New

Jersey, 1996.

163

[16] K.J.Astrom and B.Wittenmark, Adaptive Control, Addison-Wesley Publishing

Co., Reading, MA 1989.

[17] Liu Hsu; Aldayr D. de Araujo; Ramon R. Costa, "Analysis and design of I/O

based variable structure adaptive control. (input-output variable structure model

reference adaptive control systems)," IEEE Transactions on Automatic Control, vol.

39, no.1, pp. 4, Jan 1994.

[18] E. Burdet, A. Codourey, "Evaluation of parametric and nonparametric nonlinear

adaptive controllers (Nonlinear controllers)," Robotica, vol. 16, no. 1, 1998.

[19] Judith Hocherman-Frommer; Sanjeev R. Kulkarni; Peter J. Ramadge, "Controller

switching based on output prediction errors," IEEE Transactions on Automatic

Control, vol. 43, no. 5, pp. 596, May 1998

[20] Michel Barbeau; Froduald Kabanza; Richard St.-Denis, "A method for the

synreport of controllers to handle safety, liveness, and real-time constraints," IEEE

Transactions on Automatic Control, vol. 43, no. 11, pp. 1543, November 1998.

[21] Specht, D.F., "Probabilistic Neural Networks," Neural Networks, November

1990.

[22] Ronald R. Yager and Dimitar P. Filev, Essentials of Fuzzy Modeling and Control,

John Wiley & Sons, 1994.

164

[23] Jeff Frolik and Mohamed Abdelrahman, "Synreport of Quasi-Redundant sensor

Data: A Probabilistic Approach," In Proceedings of American Control Conference,

2000.

[24] Hassan K. Khalil, Nonlinear Systems, Second edition, Prentice Hall Inc., 1996

[25] Mohamed Abdelrahman, Kevin Moore, Eric Larsen, Denis Clark and Paul King,

"Experimental Control of a Cupola Furnace," In Proceedings of American Control

Conference, 1998.

[26] Pascal Gahinet, Arkadi Nemiroviski, Alan Laub, and Mahmoud Chilali, "LMI

Control toolbox 1.0," The Math Works Inc.

[27] Jeff Frolik, C.V.Phanishankar and Steve Orth, “Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure”, Proc. of American Control

Conference, 2000, pp. 2912-2916.

[28] Mohamed Abdelrahman, Parameshwaran Kandasamy and Jeff Frolik, “A

Methodology for the Fusion of Redundant Sensors”, Proc. of American Control

Conference, 2000, pp. 2917-2922.

[29] Jeff Frolik and Mohamed Abdelrahman, “Synthesis of Quasi-Redundant sensor

Data: Probabilistic Approach”, Proc. Of American Control Conference, 2000, pp.

2922-2926.

[30] Vipin Vijayakumar, Mohamed Abdelrahman, Jeff Frolik, "A Convenient

Methodology for the hardware implementation of fusion of Quasi-Redundant

165

Sensors", Proc. Of 32nd South-Eastern Symposium on System Theory, Florida, Mar

2000, pp. 349-353.

[31] Mohamed Abdelrahman, Min Luo, and Jeff Frolik, ”Wavelet-Based Sensor

Fusion for Data with Different Sampling Rates,” in Proceedings of American Control

Conference, Washington D.C., June 2001.

[32] Mohamed Abdelrahman et al. Integrated Intelligent Industrial Process Sensing

and Control: Applied to and Demonstrated on Cupola Furnaces. Progress Report,

Year 1, DOE contract DE-FC02-99CH10975, March 2000.

[33] Mohamed Abdelrahman et al. Integrated Intelligent Industrial Process Sensing

and Control: Applied to and Demonstrated on Cupola Furnaces. Progress Report,

Year 2, DOE contract DE-FC02-99CH10975, March 2001.

[34] Mohamed Abdelrahman et al. Integrated Intelligent Industrial Process Sensing

and Control: Applied to and Demonstrated on Cupola Furnaces. Progress Report,

Year 3, DOE contract DE-FC02-99CH10975, March 2002.

APPENDIX A

I3PSC CUPOLA INTERFACE APPLICATION

USER MANUAL

Version 2.1

January 4, 2003

167

167

Table of Content

APPENDIX A -- 166

A.1 I3PSC ONLINE SYSTEM USER MANUAL -- 169
A.1.1 Setup Application -- 174

A.1.1.1 Define Standard Grammar ---175
A.1.1.2 Create/Modality Standard Grammar--177
A.1.1.3 Select Modalities & Variable & Interface ---178
A.1.1.4 Select Variable Properties--179
A.1.1.5 Save Setup Information --180
A.1.1.6 Modality Setup --180

A.1.1.6.1 Declare Model Setup File--181
A.1.1.6.2 Run Setup VI --181

A.1.1.7 Done Setting Up---198
A.1.2 I3PSC Running --- 199

A.1.2.1 Cupola Operation Monitor ---200
A.1.2.2 Change the Control Option Here--203

A.2 I3PSC OFFLINE SYSTEM USER MANUAL --- 208
A.2.1 Single Run -- 208
A.2.2 Single Variable Correlation-- 209
A.2.3 Multi-Variable Correlation--- 210
A.2.4 Nominal-Multiple Correlation --- 211
A.2.5 View Single Variable Graphs -- 212
A.2.6 View Multi-Variable Graphs --- 213
A.2.7 View N/M Correlation Graphs--- 214

A.3 ONLINE ANALYSIS--- 216
A.3.1 Online Setup-- 216
A.3.2 Simulate Data Collection --- 217
A.3.3 Analyze Collected Data --- 218
A.3.4 View Results -- 219

A.4 MODEL INTERFACES -- 220
A.4.1 AFS Model Interface -- 220

A.4.1.1 AFS Setup--221

168

168

A.4.1.1.1 Define AFS File Paths--221
A.4.1.1.2 Charge Selection --222

A.4.1.2 Metal Selection Option Menu ---223
A.4.1.2.1 Create Material Property Files --223
A.4.1.2.2 Material Selection---224
A.4.1.2.3 Set Metal Mass --225

A.4.2 AFS Preprocessor --- 225
A.5 REAL SENSORS INTERFACE--- 226

169

169

A.1 I3PSC Online System User Manual

The user can start I3PSC (Intelligent, Integrated, Industrial Process Sensing and

Control) online system by running Cupola Interface.vi. The path is

C:\I3psc\Application\Cupola Interface.vi. This VI’s front panel is as shown in Figure A-1.

Figure A-1 I3PSC Online System Top-Level Menu

Three options are listed in this menu, namely Set up application, Run and Quit. If you

need to run I3PSC for a new application, you should double click on “Set up application”.

The dialog as shown in Figure A-6 is popped up. The procedure of setting up an

application will be introduced in section 2. If the user wants to run an existing

application, double click on “Run”. The dialog (Figure A-44) is popped up. The running

of the system will be introduced in section 3. Double clicking on “Quit” will exit the

I3PSC system. The complete flow chart of using I3PSC is given in Figure A-3. Figure A-4

shows the procedure of setting up a new application and Figure A-5 shows the procedure

for setting up a modality. The modalities that represent different system functions such as

data acquisition, data fusions, controller, etc. are the components to build the system. As

shown in Figure A-2, each modality contains a set of variables and each variable has an

associated set of properties that get calculated by the application. This data structure is a

170

170

3-D parallepoid with modalities, variable, and properties representing of the axis. The

time represents the 4th axis.

Properties

Modalities

Variables

Time=t0 Time=t(n-1) Time=tn
Properties Properties

Variables

Modalities Modalities

Figure A-2 Data Strucuture Model

171

171

Start

Run
Cupola Interface.vi

What to do?

Run

Quit

Set up a new
Cupola applicaiton

Quit this run

What to do?

Start Stop with Write
Data to File

Stop without Write
Data to FileUpdate

Set Up
Application

Run the application which
has already been setup

Start this run
Update the

modality setup
while running

Write data to
file then stop

Stop without
saving data

*Shaded part is the
predefined procedure

Y1 Data
(Setup the variables to
display on the graph)

Select
Parameters (for

diagnostics)

Figure A-3 Top-level Procedure

172

172

Need a new
Standard G ram m ar?

Define Stardard
G ram m ar

Need new
m odalities &
variab les?

Select M odalities &
Variable & Interface

Need to setup new
variable properties?

Select Variable
Properties

Save new setup?

Save Setup
Inform ation

M odify the
m odality’s setup?

Done Setting Up

Create/M odify
Standard G ram m ar

M odality
Setup

* M odality Setup is a
predefined procedure to

setup a m odality. The flow
chart of it is show in the

next page.

Figure A-4 Procedure of Setting Up Application

F in is h s e tu p ?

N e e d d e c la re
n e w s e tu p f i le ?

R e tu r n to M e n u

D e c la r e M o d e l
S e tu p F ile s

R u n S e tu p V I

M o d a lity G r o u p s
S e n s o r

P a r a m e te r s
S e tu p

T r e n d M o n ito r
S e tu p P la n n e r s e tu pC h a r g e S e tu p

Q u it
D e le te /
U p d a te

M o d a lity

D e f in e
M o d a lity

P a r a m e te r s

A d d
V a r ia b le s

(in a g ro u p)

A d d G r o u p

Q u it M o d ify
M o d a lity

D e le te
m o d a lity

D o n e
C h a n g e
V a r ia b le

L is t

C h a n g e
P a r a m e te r s

S e lf -
c o n f id e n c e

M e a s u r e

S ta n d a r d
D e v ia t io n
M e a s u r e

E x it w ith o u t
s a v in g

S a v e a n d
E x it

Figure A-5 Procedure of Modality Setup

A.1.1 Setup Application

The main purpose of setting up an application is to setup the modalities to build a

I3PSC system. I3PSC contains a generic interface in order to include different modalities

required by the application. Planner, Controller, Plant, Virtual Sensor, Fusion, Monitor,

and Expert are eight modalities that have already been given. A system can be built with

these modalities. Every modality has several groups. Each group has input variables,

output variables, and an execution engine. The information inside the system is organized

as a data structure. Node is the basic component in the data structure. Modality, variable,

and property are three elements of a node. All the nodes with the time form the four-

dimension data structure. Therefore, to build a system for a new application, the user

needs setup the modalities, the variables in the modality, and the property of the

variables. The user can setup these in the dialog shown in Figure A-6.

Figure A-6 Application Setup Menu

The main procedure of setting up a new application is followed:

1. Define Standard Grammar (refer to section A.1.1.1)

2. Create/Modify Standard Grammar (refer to section A.1.1.2)

3. Select Modalities & Variable & Interface (refer to section A.1.1.3)

4. Select Variable Properties (refer to section A.1.1.4)

5. Save Setup Information (refer to section A.1.1.5)

6. Modality Setup (refer to section A.1.1.6)

7. Done Setting Up (refer to section A.1.1.7)

175

175

A.1.1.1 Define Standard Grammar

Standard Grammar is the basic reference to describe the structure of the data structure

of the system. The structure of a standard grammar file is shown in Figure A-8. The

following rules must be followed in order to run the system properly.

1. The first row bears a descriptive name of the column or of the modality. The

first six columns are fixed. They contain different information. Starting from

column seven, the modalities appear. In the example shown in Figure A-8, the

modalities are Planner, Controller, Plant, Virtual Sensor, Fusion, Monitor, and

Expert. The order of the modalities in the standard grammar presents the

execution order of the modalities in the system. So the modalities should be in

a specified order. Up to eight modalities can be included in the system.

2. The second row has “INPUT” which is a flag value to determine the start of

the input variable in each modality. At the end of the list of input variables,

there is a blank row and a row with “OUTPUT” which is a flag to determine

the beginning of the output variable in each modality.

3. The name in the first column is a globe name representing a variable,

however, each modality can have a local variable name that corresponds to the

variable in the first column of the standard grammar. This local variable name

is used in the current implementation to interface the system to the DAQ.

To define an existing standard grammar file, double click on “Define Standard

Grammar” in Setup Menu (Figure A-6). The dialog in Figure A-7 will be opened.

Figure A-7 Set Standard Grammar File

 If the standard grammar file is stored in the default path shown in the file path

controller, click “Read File” button will load the file into your setup. Otherwise, you

need click “Let Me Find It” button to search and load the file.

standard gramdescription default metric default metric default British default British Planner Controller Plant Virtual Senso Fusion Monitor Expert
INPUTS
coke in chargeweight of coke 4.672 kg 10.3 lbm -- -- -- -- -- -- --
coke ratio weight of coke 10 % 10 % coke ratio coke ratio CMR SP -- -- -- coke ratio
cupola diametdiameter of th 0.559 m 22 in -- -- -- -- -- -- --
cupola well di diameter of th 0.457 m 18 in -- -- -- -- -- -- --
blast rate volume of air 0.1339 m^3/s at 0C 300 scfm at 60F blast rate blast rate Blast Rate RP-- -- -- blast rate
Blower Freq. volume of air 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Blower Freq. -- -- -- --
pressure droppressure drop 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Blast Rate -- -- -- --
oxygen additiovolume of axy 0.003125 m^3/s at 0C 7 scfm at 60F O2_Enrich -- O2 Enrich -- -- -- --
O2 Flow Rate volume of axy 0.003125 m^3/s at 0C 7 scfm at 60F -- -- O2 Flow Rate -- -- -- --
blast tempera temperature o 699.82 K 800 F -- -- Blast Temp -- -- -- --
blast fraction fraction of bla 90 % 90 % -- -- -- -- -- -- --
actual BR actual volume 0.1339 m^3/s at 0C 300 scfm at 60F -- -- actual BR actual BR -- actual BR --
total oxygen inpercent oxyge 22.7 % 22.7 % -- oxygen additioO2 RP -- -- -- --
Time time correspo 7:00:38 AM 7:00:38 AM -- -- Time -- -- -- --

OUTPUTS
Offgas CO amount of car 12.746 mole% 12.746 mole% -- -- CO% -- -- Offgas C0 --
combustion efamount of CO 52.8 % 52.8 % -- combustion ef%CE -- -- %CE --
melt rate amount of iron 19.541 tonne/hr 21.4951 ton/hr melt rate melt rate Melt Rate Melt Rate Melt Rate melt rate melt rate
Kalman MR amount of iron 19.541 tonne/hr 21.4951 ton/hr -- -- -- Kalman MR -- -- --
Pyrometer Te metal tempera 2019.907 K 3177.8326 C Pyro._Temp tap temp Pyro._Temp Pyro._Temp Pyro._Temp tap temp metal tempera
Kalman PT metal tempera 2019.907 K 3177.8326 C -- -- -- Kalman PT -- --
2nd Pyrometemetal tempera 2019.907 K 3177.8326 C 2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete
Datacast Temmetal tempera 2020.907 K 3179.6326 F Bath Temp -- Bath Temp Bath Temp -- Bath Temp --
Spout Tempe metal tempera 2019.907 K 3177.8326 C Spout Temp. Spout Temp. Spout Temp. -- Spout Temp. Spout Temp. Spout Temp.
Final Carbon amount of car 3.69 % 3.69 % %C %C %C %C -- %C Final Carbon
Melt Rate 2 amount of iron 19.541 tonne/hr 21.4951 ton/hr -- Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2
metal temperametal tempera 2019.907 K 3177.8326 C -- tap temp Pyro._Temp Pyro._Temp Pyro._Temp tap temp metal tempera
Final Carbon 2amount of car 3.69 % 3.69 % -- %C %C %C %C %C Final Carbon
radar level level 6 Foot radar -- radar radar radar radar radar radar
Cupola Exit metal tempera 2019.907 K 3177.8326 C -- -- Cupola Exit -- -- Cupola Exit --
Cupola Press pressure drop 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Cupola Press -- -- Cupola Press --
Manual Melt Ramount of iron 19.541 tonne/hr 21.4951 ton/hr u24:Melt rate Manual Melt RManual Melt RManual Melt RManual Melt RManual Melt RManual Melt R

Figure A-8 Example of Standard Grammar

A.1.1.2 Create/Modality Standard Grammar

The Standard Grammar can be created or modified using this function. Double click

on “Create/Modality Standard Grammar” in Setup Menu (Figure A-6) will open the

dialog shown in Figure A-9 clicking on button “Create New” will open the dialog

(Figure A-10) to create a new standard grammar. Clicking on button “Modify Existing”

will open the dialog in Figure A-11 to modify the existing standard grammar.

Figure A-9 Create/Modify Standard Grammar

Figure A-10 Create New Standard Grammar

178

178

Figure A-11 Modify Existing Standard Grammar

There are three same tabs on these two dialogs. On the “Modality Options” tab, the

user can create a new modality or delete an existing modality. On the “Variables

Options” tab, the user can create a new variable or delete an existing variable in a

modality. On the “Save Options” the user can exit this function with or without saving

the new or modified standard grammar.

A.1.1.3 Select Modalities & Variable & Interface

 In this option, the user can select the modalities that need to be included in the

I3PSC system. Also the variable and the interface related to the modalities can be

selected. The interface of Select Modalities & Variable & Interface is in Figure A-12. All

modalities appearing in the Standard Grammar File appear in the Modalities window.

Once the modalities are selected, they become available for the creation of modality

groups. The variables in the modality can also be selected. If that variable exists in other

modalities, they are also automatically selected. For each modality, the modality interface

VI path is also selected. This interface VI associated with that modality will be called

when I3PSC starts running. Click “Continue” button to close the window after selecting

the modalities, variables and interfaces.

179

179

Figure A-12 Modalities, Variables and Interfaces Selection

A.1.1.4 Select Variable Properties

 The user can select variable properties in the dialog shown in Figure 5. Highlight

the properties in the parameter list to be added to the data, and then click on “Add to

List” button. The “Return to Menu” button will close this dialog.

Figure A-13 Select Variable Properties

180

180

A.1.1.5 Save Setup Information

 After you select the modalities, variables and interface for this system in Figure

A-12, you should save the setup. These setup information will be used in the following

Modality Setup discussed here later. Just double click on the Save Setup Information on

Setup Menu (Figure A-6) to save the setup information..

A.1.1.6 Modality Setup

 Once all the modalities needed for system are selected, the Modality Setup option

(Figure A-6.) allows you to set up various properties of these modalities like defining

groups of the modality (e.g. multiple fusion groups), defining properties of variables in

the modality, etc. The Modality Setup window is shown in Figure A-14.

Figure A-14 Modality Specific Setup

 In this window, the “Modalities" indicator shows all the modalities which you’ve

already selected previously.

 The following steps are taken to setup the modalities:

1. Click on “Define” button to Declare Model Setup File (section A.1.1.6.1)

181

181

2. Select the modality setup VI and then click “Run Setup VI” (section A.1.1.6.2)

to run the modality setup VI. For each modality several setup VIs need to be run.

Table 1 shows the Setup VIs that need to be run for each modality.

3. The “Return to Menu” button will exit modality setup and close the dialog in

Figure A-14.

Table 1. Setup VI s of Modalities

Setup VIs Planner
Modality

Controller
Modality

Plant
Modality

Virtual
Sensor

Fusion
Modality

Monitor
Modality

Modality groups.vi r r r r r r
SensorParameters.vi r r r
Planner setup.vi r
Monitor setup.vi r
Charge setup.vi r
Controller setup.vi r

A.1.1.6.1 Declare Model Setup File

 Click “Declare Model Setup File” button on the Modality Specific Setup dialog

(Figure A-14) will open the dialog shown in Figure A-15. The VIs that perform the

modality setup are defined here. The setup VIs required by every modality are list in

Table 1. Each VI's are selected by clicking the "Look Up" button. The names of these

VI's will be appeared in the pull-down menu in the Modality Specific Setup dialog

(Figure A-14).

Figure A-15 Declare Model Setup File

A.1.1.6.2 Run Setup VI

 Click “Run Setup VI” button on the Modality Specific Setup dialog (Figure A-14)

will run the modality setup VI selected in the list box.

182

182

 As shown in Table 1, Modality Groups VI and Sensor Parameters VI are two main

modality setup VIs that are required by most of the modalities. Modality Groups.vi is

used to define groups in a modality and to delete or update the groups in the modality.

Sensor Parameters.vi is used to setup the parameters of the sensors. These two setup

procedures will be introduced in the following section A.1.1.6.2.1 and section

A.1.1.6.2.2. The rest setup VIs will also be introduced in section A.1.1.6.2.3.

A.1.1.6.2.1. Modality Groups

 The dialog of Modality Groups.vi is shown in Figure A-16.

Figure A-16 Modality Groups Main Menu.

 Two functions are offered in this dialog, namely Define Modality Parameters and

Delete/Update Modalities. Define Modality Parameters can define a new group in the

modality and Delete/Update Modalities can modify the existing group in a modality.

A.1.1.6.2.1.1 Define Modality Parameters

Double clicking the "Define Modality Parameters" option opens an dialog shown in

Figure A-17. This dialog allows the user to add variables that form the inputs and outputs

of the modality and add them as a group and also to create multiple such groups. The user

has to select the variable, its associated modality and property and then click the "Add

Variable" button to add that "node" to the modality. Once all the input and output

variables are added, this set is classified as a "Modality Group".

183

183

Figure A-17 Select Variables in Group

Clicking on the "Add Group" button in Figure A-17 dialog will open another dialog

as shown in Figure A-18. This interface allows the user to split all the variables selected

in the modality into input and output variables.

Figure A-18 Split Variables into Input and Output Variables.

NOTE:
 Whenever you add a node with “value” property, a node which has “trend”

property is added automatically. If you only need “value” property node you can delete

the “trend” property node. The procedure of deleting a node is double clicking “Delete /

Update Modalities” in dialog shown in Figure A-16. Then click the button on each

popped up dialogs in the following order: "Modify Modality" (as shown in Figure

A-22), "Change Variable List" (as shown in Figure A-23). Double clicking on the

variable, you can “Delete” it on the dialog in Figure A-24.

184

184

 Once "Done", a dialog to name the created group appears. This dialog also allows

the parameters of the group to be added and the path of the engine VI to be defined. This

dialog is as shown in Figure A-19.

Figure A-19 Add Group Parameters

In this dialog, the user can name a group, define the path of the engine VI, and

give the variables associated with that group. The detail explanations are as follows:

1. While defining the group name for a fusion modality group, a suffix is attached to

indicate what kind of Standard Deviation (STD) value will be used estimating the

fusion value. The format is “GroupName@max”. “@max” means using the

maxim STD value. “@min” means minimum STD value and “@mean” means the

average STD value. The default mode is “mean”.

2. Each modality can be executed on different computer. The computer is identified

by IP address. In the “Path & IP of VI that executes this group” control, you

can enter the IP address of the computer and the path of that engine VI on that

computer. The format is Path::IP. For example, if the engine VI is on machine

149.149.0.1 and its path is C:\I3PSC\Fusion\Modality\Fusion\MultipelSensor

Fusion.vi, the path will be C:\I3PSC\Fusion Modality\Fusion\MultipelSensor

Fusion.vi::149.149.0.1.

185

185

3. While defining the group in this modality, the variables associated with this group

will be given. These variables are Threshold, Trend Influence Factors, Weight of

Expected Value, and Weight of Previous Fused Confidence. Threshold means the

number of points to ignore at the beginning of run. Trend Influence Factor is a

number of 0-1 that determines how much the trend effects the confidence

calculation. Weight of Expected Value is a weight factor that determines the

effect of expected value calculated using previous fused value and trend on the

fused results. Weight of Previous Fused Confidence is a factor from 0 to 1 that

determines the effect of previous fused confidence over the current confidence.

Once all the parameters are added, click on "OK" button to add this group to the

modality. The dialog in Figure A-17 will show back for adding more groups.

A.1.1.6.2.1.2 Delete/Update Modalities

 Click "Delete / Update Modalities" in Figure A-16. The dialog as shown in Figure

A-20 is popped up to delete or update the details in the existing modality groups.

Figure A-20 Delete / Modify Modality

 The "Groups of Modality" list box on the left of the screen lists all the groups of

the modality created earlier. Selecting one of them, displays the details of that modality

group in the "Modality Details" indicator. The user is provided with an option of either

deleting the group as such ("Delete Modality") or modifying the contents of the group

("Modify Modality"). If click "Delete Modality" an alert confirmation dialog is popped

186

186

up to request the user to confirm whether he wants to delete the group. The alert dialog is

as shown in Figure A-21.

Figure A-21 Delete Confirmation Alert

 “Modify Modality” option allows the user to change the details of the modality

groups. The dialog of “Update Group” is as shown in Figure A-22.

Figure A-22 Update Modality Group Details

 The "Change Variable List" option allows the user to change the variable list of

the group. The interface is shown in Figure A-23. Double clicking on any of the variables

in the list opens an interface as shown in Figure A-24 which allows the user to change the

variable.

Figure A-23 Change Variable List

187

187

Figure A-24 Change Variable

 In case the user wants to add more variables to either the input or the output of the

modality, then the user clicks the "Add more input variables" or "Add more output

variables" button in Figure A-23. The dialog in Figure A-17 is shown again to add the

input/output variables.

 When the user selects the "Change Parameters" option in Figure A-22., an

interface as shown in Figure A-25 appears. This interface allows the user to change the

parameters associated with the Modality Group. The contents in this dialog are same as

the contents in Figure A-19.

Figure A-25 Change Parameters of Modality Group

188

188

A.1.1.6.2.2. Sensor Parameters Setup

 Sensors monitoring the plant are subjected to self-validation tests to ensure the

reliability of the data being read by them. These self-validation tests require the creation

of fuzzy FIS files. Also other sensor parameters such as Standard Deviation, etc need to

be defined for each sensor. The "Sensor Parameters.vi" is programmed for assigning such

sensor parameters. The dialog for setting up sensor parameters is as shown in Figure

A-26.

Figure A-26 Sensor Parameters Setup

 The "Variables in Modality" list box shows the list of sensors in the modality. To

setup the parameters, double clicking on any of the variables. This opens a dialog as

shown in Figure A-27.

Figure A-27 Sensor Parameters Interface

 Clicking on the “Self-Confidence Measure", a dialog shown in Figure A-28

allows the user to set up self-validation by creating FIS file or by assigning self-

189

189

confidence. If the user chooses to create a FIS file a dialog as shown in Figure A-29

appears. The user can create the FIS file.

Figure A-28 Sensor self-confidence menu

Figure A-29 Create Self-validation Fuzzy FIS File

 Double-clicking the "Standard Deviation Measure" in Figure A-27, a dialog, as

shown in Figure A-30, is opened to calculate the standard deviation values from history

data or to assign the standard deviation value.

190

190

Figure A-30 Standard Deviation Option Menu

 If the user selects to calculate the Standard Deviation from historical data, a dialog

as shown in Figure A-31 appears for calculating the standard deviation.

Figure A-31 Standard Deviation Calculation

A.1.1.6.2.3. Other Specific Setup

191

191

There are three more modality setup VIs, namely trend monitor setup, charge setup,

and planer setup which are used to setup the specific modalities.

A.1.1.6.2.3.1 Trend Monitor Setup

 The Trend Monitor engine requires some parameters for its operation. The "Trend

Monitor setup.vi" is programmed for assigning such parameters needed for calculating

the trend. The dialog of Trend Monitor Setup VI is as shown in Figure A-32.

Figure A-32 Interface for setting up trend monitor parameters

 The interface shows the list of all groups and the variables in a group of the trend

monitor modality. All groups of this modality are listed in the menu ring "Monitor

Modality Names". When a particular group is selected all variables in that group get

listed in the list box below the menu ring. Double-clicking on any one of the variables,

the dialog in Figure A-33 is shown. The user can setup parameters of the trend monitor

engine. The window length indicates the number of sample points to be used to calculate

the trend. Slow changing variables can be assigned a longer window length. The Trend

Monitor also provides with an option wherein it throws an alert when certain trends are

encountered. The "Available Cases" list box lists all the possible trend cases and allows

the user to add cases to be watched out by using the "Add" and "Remove" button. The

added cases appear in the "Cases to be watched out for". The "Preview" shows the trend

of the variable for the case selected.

192

192

Figure A-33 Assign Parameters for trend monitor

 The "Assign Defaults" button in the Figure A-32 dialog allows the user to setup

the default parameters. The interface is exactly the same as shown in Figure A-33.

A.1.1.6.2.3.2 Charge setup

Figure A-34 Setup Charges

193

193

This VI is designed to setup the number of charges that were in the furnace. The

dialog is as shown in Figure A-34. The the user can define the number of charges,

average time between charges, CMR, SCR, and Expected %C SP in this dialog.

A.1.1.6.2.3.3 Planner setup

Figure A-35 Planner Setup

The planner setup VI produces the dialog in Figure A-35 to setup the planner.

Highlight on Create New Heat Plan then click on Run to create a new plan. The dialog in

Figure A-36 is used to add a new plan. User can add the start and stop time, the start up

time, the steary burn period, the transition and the shutdowm by highlight the menu and

clicking Run.

194

194

Figure A-36. Add new plan

In the dialog shown in Figure A-37, user setups the start and stop data and time. The

startup points can be setup in the dialog in Figure A-38.

Figure A-37 Setup the start and stop time of a plan

195

195

Figure A-38 Add startup routine

 The steady burn period is setup in the dialog showm in Figure A-39. Figure A-40

is the dialog to setup the transition. In Figure A-41 user can setup the shut down time.

Figure A-39. Set up steady burn routine

196

196

Figure A-40. Add transition

Figure A-41. Add shutdown time

A.1.1.6.2.3.4 Controller setup

Controller setup is used to setup the parameters of the controller variables which are

listed in the menu box in Figure A-42. Highlight the controller variable then click on OK.

The parameters setup dialog will popped up as shown in Figure A-43.

197

197

Figure A-42. Controller setup

Figure A-43. Setup the cotrollel parameters

198

198

A.1.1.7 Done Setting Up

After setting up all the modalities for the new application, double click Done Setting

Up will save all the modality setup and close the application setup window (Figure A-6).

The system returns back to the top-level menu (Figure A-1).

A.1.2 I3PSC Running

After setting up the new application, double click “Run” on the panel shown in

Figure A-1. The dialog of I3PSC Running (Figure A-44) is popped up.

Figure A-44 I3PSC Running

In this dialog,

1. “Desired Sample Interval” is the sample interval of the system. The default value is

60 seconds.

2. “Start” will active the run of all modalities.

3. If you want to monitor the system on another computer, you can type that machine’s

IP address in the “GUI Machine Name”.

4. Press “Write Data to File” will record all the running data into an Excel file and this

file will be opened after you “Stop” the running.

5. In the “Modality File Name” box, the user can check all the setup modalities that are

executing.

6. While the system is running, the user can setup the modality using the procedure

mentioned in section A.1.1.6 and then press “Update” button to update the modality

setup. For example, using “Update”, the user can add a new variable into a fusion

group even the system is still running.

200

200

7. The user can select the variables to be written in the Excel file using the VI whose

path is C:\i3psc\Datastructure\classes\Data Structure Export to Excel-New.vi. The

variables in the Selected Parameters array will be written.

Figure A-45 Excel File Setup

While running I3PSC’s, the Cupola Operation Monitor window will be popped up.

The user can monitor the real running situation of the controlled cupola furnace by this

monitor. At the same time, several other dialogs will be popped up depending on the

modalities you set. For example, the Controller Options dialog is popped up if you set

controller modality in the system.

A.1.2.1 Cupola Operation Monitor

 At the beginning of I3PSC’s running, Cupola Operation Monitor is popped up. You

can monitor the real time running situation of the controlled cupola furnace by this

interface. The front panel of the monitor is shown in Figure A-46.

Figure A-46 Cupola Operation Monitor

201

201

 There are two tabs for variable monitor and one tab for trend monitor. On each

variable monitor tab, four variable waveform windows are arranged. You can select

multiple variables in one window to monitor. Select the X axis node first. All the

waveform on the same window must use the same X axis node. Pull down the menu in

X1 Data list box to select X axis node. The default X axis node is Time-Plant-Raw value

node. Then, Click on the blue “Y1 Data” button. A YI data setup window will popped

up. This window is shown in Figure A-47.

Figure A-47 Setup Variable to Monitor

 Select the Y nodes in the Y data list box. Then click on “ADD” button to add it

into the selected variables list. If you want to delete the selected variables, please select

the variable in the selected variables list box then click on “REMOVE” button. After

you select variables need to be monitored for this window, click on OK button to return

back the Cupola Operation Monitor.

 Use the same procedure to select the variables you want to monitor in other

windows. There are three display modes, namely whole data, shifting window and fixed

segment. Whole data is the default mode that will display the complete data of the

running. Shifting window only displays the latest data with the data length defined in

Window L1. Fixed segment display the fixed length data statically. The length of the

fixed segment is defined by the start point and window length. The Start Point controller

only displayed while the fixed segment display mode is selected.

202

202

Figure A-48 Trend Monitor

On the trend monitor tab (Figure A-48) you can select the variable, whose trend will

be monitored. At most four trend monitor windows are arranged on the right side of the

window.

Also, two situation diagnostics can be set up in the same tab. Click on the blue Select

Parameters button. The dialog to setup the diagnostics in Figure A-49 is shown. The

results of the diagnostics will be displayed by the LED on the Cupola Monitor window.

The bright LED indicates the alert situation is happening. On this window you select the

diagnostic input nodes using “ADD”. “REMOVE” can delete the parameter you’ve

selected. In the Name box you can name your diagnostic. This name will be display on

the upper right corner of the Cupola Operation Monitor with the diagnostic alarm led.

203

203

 Figure A-49 Setup Diagnostic Parameters

A.1.2.2 Change the Control Option Here

 If a controller is set in the system, the dialog of Change the Control Operation Here

is popped up during the running and it will stay on the desktop. So you can change the

control operation at any time. There are four tabs on the Change the Control Option Here

dialog.

Figure A-50 Change Controller Option – Outputs of Controller

204

204

The first tab is as shown in Figure A-50. It displays information regarding the

controller output. It also allows the user to override the controller suggestions by

choosing to operate in the manual mode. To change the setting from Manual to

Automatic or the reverse. The user presses the Change button, then selects the desired

setting, then press the update button. If the value of the controller output is to be changed,

the user enters the desired value at the appropriate control. The check box charge is used

to indicate that a charge is added to the furnace. The charge number and time is displayed

in the two indicators as marked on top of the indicator. The two controls CMR and SCR

are used to manually enter the actual coke to metal ratio and steel to cast ration that went

in the latest charge added to the furnace. The T/MR Importance Scalar values determines

is used by the controller to determine how to adjust the BR and Oxygen since the desired

values for both parameters might not be achievable simultaneously. A higher value would

favor one parameter over the other. The indicators at the bottom of the screen display

important parameters regarding the charges. The control #Charges to Fill Cupola

indicates the average number of charges that can fill the cupola.

The second Tab (Figure A-51) displays a set of parameters used by the controller

including the desired set points or temperature, melt rate and the future SP values for the

same parameters as well as Carbon. This is important for parameters that require

adjustment of charges to avoid the delay resulting from the melting time through the

furnace. The delay time is estimated approximately as the time it takes to melt the

number of charges inside the furnace. The set of controls marked with Nominal indicate

the starting steady state operation values. The controls marked with scalar are adjustable

parameters that can be changed if the response of the controller is not satisfactory. The

user is given the option of overriding the confidence values calculated by the senor fusion

and supplying a constant value. The is done using the switch marker "Assign. Conf./Calc.

Conf.". Finally the user can override reading coming from the fusion modality and pass

to the controller another set of readings by using the Manual Readings selector.

205

205

Figure A-51 Change Control Option – Set Points

The third Tab (Figure 3-9) , is used by the user to set minimum and maximum values

for different parameters in the system. The array marked with K is used to supply the

expected steady state gain matrix of the cupola. This is calculated experimentally or using

the AFS model. The vector array marked Tau supplies the time constant that can be used

with the matrix K to form a dynamic linear model for predicting cupola response. The

controls marked with update are used to indicated how often the controller updates the

corresponding parameter. The number supplied is given in terms of the number of

samples. The Confidence Effect Control set of parameters are used to increase sensitivity

to the confidence values within a certain range. The power control is a parameter that

determines how fast the confidence effect over the controller rolls off as the confidence

deviates from the high level.

206

206

Figure A-52. Change Controller Option – Other Parameters

The fourth tab (Figure 3-10) displays a history of the charge that has been added to

the furnace including the charge number, time, the coke to metal ratio, steel to cast ratio

as well as the set point for Carbon that was desired at the time the charge was added, the

predicted value of carbon when this charge reaches the melting zone and the actual value

of Caron measure when this charge reaches the melting zone.

207

207

Figure A-53. Change Controller Options – Charge Setup

208

208

A.2 I3PSC Offline System User Manual

Offline Analysis is concerned with producing Neural Network data sets, doing

correlation studies, and interrogating models offline. It consists of tools to setup and

process the data sets, and other tools to view the results in graphical format.

Figure A.54 Offline Analysis Menu Screen – Offline GUI.vi

A.2.1 Single Run

 This application allows the users to set a single set of inputs, pick a model to

process those inputs with, and view the outputs. The model is run only once, with one set

of inputs. This is useful for seeing quick numerical results, and testing to see that a

model is reporting results correctly. The values for the inputs can be changed at this

point. Pressing “Return to Main Menu” closes the window and returns control to the

offline menu for this and all the other VIs described here.

209

209

Figure A.55 Single Run – Single Run Interface.vi

A.2.2 Single Variable Correlation

 This application is used to vary a single parameter, while holding all other

parameters constant. It is useful for making a large number of iterations on a single

variable. The other applications can be configured to accomplish much the same tasks,

but it seems to be useful nonetheless. The varied parameter is selected from the list, the

default value and unit are displayed for reference, so the user knows an approximate

value. The slider in this and the other correlation applications are set to display 1/3 the

default value as the lower bound, and 3 times the default as the upper bound. That does

not mean that values outside of those bounds can not be set. It also does not guarantee

that the bounds make any physical sense. For example, in figure 7, the upper bound for

the blast fraction is set at 270%, which does not make sense because the blast fraction

cannot surpass 100%. Care should be made to insure appropriate data ranges.

210

210

Figure A.56 Single Variable Correlation – Correlation.vi

A.2.3 Multi-Variable Correlation

 The Multi-Variable Correlation application queries the selected numerical model

for every possible combination within the input range. As a result, the number of model

runs increases exponentially as variables are added and iterations per variable are

increased. The number of runs necessary (n) for a complete set is given by the number of

variables selected (v), and the number of iterations per variable (i), n = iv. In figure 8, six

variables are selected and set to run six times each, resulting in 46,656 model runs. On

an average computer this would take about one month. Keeping the total number of

iterations below approximately 10,000 allows for completion in about a week.

211

211

Figure A.57 Multi-Variable Correlation – Multi Variable Correlation.vi

A.2.4 Nominal-Multiple Correlation

 A nominal valued, multiple variable correlation refers to the variation of one

parameter while all other parameters are held at their default value. A correlation in this

manner allows the user to see the results of a change in one variable as all the others are

held constant. There is also a cost advantage to this manner of correlation in that more

variables can be selected and the number of iterations per variable can be increased

without the exponential relationship. The number of runs is simply the product of the

number of variables and the number of iterations.

212

212

Figure A.58 Nominal Multiple Correlation – Nominal Multi Correlation.vi

A.2.5 View Single Variable Graphs

 All of the correlation applications create tab-delimited spreadsheet files. They are

assigned the file extension .xls for easy importation to Microsoft Excel. A list of these

files in the output directory path (declared at setup) is displayed in the list box. To view

the contents of a file select the file and press “Read New File.” To view a single variable

correlation, you must use the “View Single Graphs” option, otherwise, the data is not in

the correct format. The file will still be read, but it won’t make any sense.

For the single variable correlation, the input variable is displayed, and the available

outputs are shown in the list box. When a variable is selected, the graph is displayed.

When done press “Close Window” and the application will close.

213

213

Figure A.59 View Single Variable Correlation Graph – View Output Graphs.vi

A.2.6 View Multi-Variable Graphs

 A multi-variable correlation has a vast amount of information in its database.

This graph viewer is designed to cut small slices out of the data and display it on the

graph. There are two graphs. The input variable is displayed above the graph and the

output variable is displayed to the left. Any combination of inputs and outputs can be

selected from the ring boxes. All of the input variables are shown to the right of the

graphs, along with the values for each variable that were used in the correlation. This

allows the user to “tinker” with the various inputs and view what happens to the variable

being graphed.

214

214

Figure A.60 View Multi-Variable Corr. Graphs – View Multi Graph.vi

A.2.7 View N/M Correlation Graphs

 The nominal-value multi-variable correlation creates a spreadsheet file that shows

the relationships between varying a large number of inputs and outputs. The graph

application is set up like a matrix. The columns of graphs are all associated with the

input parameter shown at the top of the column. The rows are associated with the outputs

shown on the left side of the row. This configuration creates a four-by-four matrix of

graphs, showing the user the trends of many variables at once. File selection is the same

as before.

215

215

Figure A.61 View N/M Correlation Graphs – View Nominal Graphs.vi

216

216

A.3 Online Analysis

Figure A.62 Online Analysis Menu – Online Menu.vi

The online menu is used to interrogate the models in a real time situation. The 4-D

array data structure is setup and populated by the online analysis functions. The 4-D

array is stored in a data file that any of the applications (data collection, sensor fusion,

controller, interrogator, etc.) on the cupola network will be able to access. A setup file is

also created that defines what information is stored, and its location in the data structure.

A third file is maintained that keeps count of how many data points have been collected

and how many have been processed. This is done so that each separate application can

access the information it needs regardless of where the application is running.

A.3.1 Online Setup

 The online setup menu requires the user to input the current run name. Setup then

creates the three files discussed in the previous section with the run name as the file

217

217

name. The extensions are .dsc for the data structure file, .dsv for the data structure

variable list, and .dsi for the data structure counter file.

 The data <run name>.dsv file is initialized with the setup data that was chosen

during setup, this file should not be modified by any other applications. The <run

name>.dsc file is initialized with zeroes in the proper dimension sizes according to how

many modalities, variables, and variable properties were selected. The time dimension is

initialized to five, and expanded dynamically as the data points are collected. The

counter file is initialized to zero.

Figure A.63 Online Setup – Online Setup.vi

A.3.2 Simulate Data Collection

If the data is being collected from an existing data file, this option is selected. The

current data file is displayed in the path field. If that needs to be changed, press the

“Declare Data File” button and declare the text file with the sensor information and data.

The selected modalities are shown in a listbox, select the modality that holds the sensor

information that will map the text file data into the standard grammar. Next press the

“Declare Run Name” button. Select the run name that was created for the current run.

Once this is done the “Collect Data” button becomes enabled, press it and the data is read

from the text file into the data structure and written to the data structure file. The counter

file is also updated to indicate how many rows of data were collected. While data is

being collected, all the buttons are disabled. Once the process is complete, they are

218

218

enabled. You can collect data from another file or return to the previous menu at this

point.

Figure A.64 Simulate Data Collection – Simulate Online Data Collection.vi

A.3.3 Analyze Collected Data

 This function interrogates the models with the data that has been collected. The

data comes either from a text file as described in the previous section, or it is being

collected from a cupola in real time. Once again, be sure the correct modality is selected

and declare the run name first. To start interrogating the models, press the “Run Model

Analysis” button. The VI keeps track of how many data sets it has processed, and

compares that number to the counter in the counter file. If there are data sets that have

not been processed, the VI reads the next data set into the standard grammar and runs it

through the models. When a data set has been analyzed, the analysis VI increments a

counter. If there is no additional data to analyze, the VI waits and checks again a little

later. When there is no more data to collect, either the cupola run is over or there is no

more data from the text file, press Return to Menu to end the analysis and close the VI.

219

219

Figure A.65 Figure 24 – Analyze Collected Data – Online Analysis Computations.vi

A.3.4 View Results

 The results of the analysis are viewed with this VI. Declare the run name as

before, then press “View Data.” The data is read in to the arrays and the variables and

modalities are displayed in the ring boxes above the graph. Any combination of inputs,

outputs, parameters, and modalities can be selected. Up to three lines of data can be

placed on the graph. If you want to select a different run, for instance if you want to see

how a previous run looked, press the “Reset Data” button, and declare a new run name

and continue as before.

220

220

Figure A.66 View Results – View Data Structure.vi

A.4 Model Interfaces

A.4.1 AFS Model Interface

 The AFS Model is currently the most important model available, much of the

previous work was designed with the AFS model in mind, although the interrogator

should be easily applied to any model. If used properly, the AFS model interface

requires no user intervention in order to run. This is because of the potentially large

number of model runs involved in a correlation analysis.

221

221

Figure A.67 AFS Model Interface Screen – AfsModel.vi

When the model runs, a DOS window opens and displays some error information

about the numerical approximation. The DOS window should be set to close upon

execution, this is done by opening a DOS window, selecting the properties button, and

checking the box marked “close on exit.” This is to avoid having 400 DOS windows

open at the end of a correlation.

A.4.1.1 AFS Setup

 There are a few parameters that must be defined at setup in order for the AFS

model to work. This is done using the “Additional Model Specific Setup” option on the

Setup menu.

A.4.1.1.1 Define AFS File Paths

222

222

Figure A.68 Define AFS File Paths – Define Afs File Paths.vi

The Fortran executable file needs to be fully declared at this point. The fortran file is

called from the DOS prompt, therefore the file path needs to be compatible with DOS

rules. The path to the executable should not have any spaces in it, DOS does not handle

directory names with spaces in them.

The AFS model creates a large number of data files, the second field defines where

they will be written. This may or may not be the same directory where the other data

files were placed (the Excel files and data structure files). You may want to choose a

different directory to keep the files organized.

 There will be combinations of inputs that cause the numerical model to be non-

convergent. The AFS Model interface waits for the numerical model to finish writing the

output files before reading the values, if the model hangs so will the interface. To avoid

this situation, the interface times out after a set time limit. That time limit is set here, and

is dependent on the machine processor speed. A little experimentation should be done in

order to determine the best setting for each individual computer. For a 300 MHz PC,

150-200 seconds seemed necessary, for an 800 MHz PC, 100 seconds is sufficient.

A.4.1.1.2 Charge Selection

The AFS model can accept up to 10 charge materials. There are numerous conditions

that these materials must meet in order for the model to run correctly. The following

223

223

procedure is the best that I can come up with for allowing the user to vary the charge

material.

 The first step is to use the original model interface (the AFS interface) to define

the charges to be used (See the documentation with that program for information on how

to do this). Run the AFS model using the new charge makeup, then print the cin.264 file

that is created. The file that our interface creates must exactly match the other.

A.4.1.2 Metal Selection Option Menu

Figure A.69 Material Selection Options – Metal Data GUI.vi

A.4.1.2.1 Create Material Property Files

Select the first option to open a screen that creates a new metal. This screen has

fields for all the variable names that the AFS model needs. Use the cin.264 file to fill in

the data for one charge material at a time. It is easiest to copy and paste the data from

another application so that the spacing remains correct. Be sure to double check that all

the numbers are correct for the metal that is being declared. When all the data is correct

for the material, press the green “Save File” button. If there are more metals to declare,

fill in the fields as before, otherwise press “Done.”

224

224

Figure A.70 Material Property File Creation – Create Metal Properties.vi

A.4.1.2.2 Material Selection

 Once all the metals are created, the second option allows the user to select the

metals that will be used. At the upper left of the screen there is a field that says “Search

Pattern.” If you use a common parameter when declaring your metal names (such as

ALRC for the Albany Research Cupola), you can use that key to filter out the material

files that you won’t be using. Select the materials from the lists in the same order that

they appear in the cin.264 file or else the AFS model won’t execute properly.

225

225

Figure A.71 Material Selection – Metal Selection.vi

A.4.1.2.3 Set Metal Mass

The one parameter that can be varied from the original cin.264 file is the metal mass.

Use this option to change the mass of each material.

Figure A.72 Set Metal Mass – Set Metal Mass.vi

A.4.2 AFS Preprocessor

The AFS model has some interesting input parameters that do not correspond directly

to commonly used industry terms. A preprocessor was written that converts the common

industry terms (a list is included below) to the eccentric terms required by the AFS

226

226

model. If both variables are chosen for inclusion in the database, or in a correlation, the

user is asked to choose which variable to use as the input value. If this proves to be a

hindrance, perhaps a more elegant solution can be reached. The figure shows the option

screen, pressing the button by the desired variable selects that variable and the

corresponding value is passed along as an input.

Figure A.73 Conflicting Variable Resolution – Fix Variable Conflicts.vi

The list of conflicting variables is:
AFS Model Variable Common Industry Variable
normalized mass of air in blast blast rate
normalized oxygen addition in blast oxygen addition rate
coke in charge coke ratio
amount of moisture in air relative humidity

The AFS Model creates a large list of output files, most of them are not relevant to

the model interrogator so the majority are deleted at the end of the run.

A.5 Real Sensors Interface

 The Real Sensors modality does not have a set interface. It is intended to be used

during online analysis to “map” data in the sensor text file produced at the Albany cupola

to the correct location within the standard grammar. The standard grammar is then sent

to both the AFS model, and soon to the Neural Net model.

227

227

Unfortunately, most of the values in the sensor data file are expressed in British units;

the AFS model requires metric units. The conversions are made by referring to the

“Default British Unit” field in the standard grammar. Sub-VIs are called to make the

conversion based on the name of the unit. For example if the British unit is F, for degrees

Fahrenheit, the function F.vi is called. This function converts from degrees Fahrenheit to

Kelvin, the default metric unit. That is why the unit field must always be filled, if it is

empty <blank>.vi is called, and that file can not exist. The conversion VIs are in fact

quite simple to create, so if a new variable (with a new unit) is added to the standard

grammar, a sub-VI by that name should be created to handle the conversion. All the unit

conversion VIs are stored in DataAnalysis\Online Analysis\Unit Convert directory.

Figure A.74 An example unit conversion – F.vi

Figure A.75 An example unit conversion diagram – F.vi

228

228

Section 2

Hardware Implementation

 2

1 YEAR 1 ACCOMPLISHMENTS ... 5

1.1 Overview .. 5

1.2 Literature Search .. 8

1.3 Hardware Component Acquisitions.. 10
1.3.1 CPU Board .. 10
1.3.2 DAQ Board ... 11
1.3.3 FPGA Boards .. 12

1.4 Analysis and Validation of Algorithms... 13
1.4.1 Self-Validation Fuzzy Logic... 13
1.4.2 Self-Validation Preprocessing .. 15
1.4.3 Self-Validation Execution Timing.. 16

1.4.3.1 Determination of Timing with Hardware Timer............................ 16
1.4.3.2 Determination of Theoretical Timing .. 17

1.5 Self-Validation Software Implementation .. 18
1.5.1 Self-Validation Fuzzy Logic Code ... 18
1.5.2 Self-Validation Preprocessing Code ... 20

1.6 Communication Software Development – the CPU-to-Host Interface
 21

1.7 Summary.. 22

2 YEAR 2 ACCOMPLISHMENTS ... 23

2.1 Overview .. 23

2.2 Communication Protocols .. 24
2.2.1 Develop low-level communication protocol... 24
2.2.2 Write and test the low-level communication code for initialization,

transmit and receive .. 24
2.2.3 Define specifications for high-level communication protocol details for

MS-SV program for User Interface .. 25
2.2.4 Outline method for modification of SV code 25

2.3 Develop a Library of Basic Fixed-Point Arithmetic Functions 25

2.4 Implementation of the SV Preprocessing Algorithm........................... 26

2.5 Develop Architecture of SV Signal Processor Hardware.................... 27

 3

2.5.1 Select SV procedures for the hardware implementation....................... 27
2.5.2 Separate constants from true Variables... 27
2.5.3 Simplify the fuzzy logic procedures ... 27
2.5.4 Create Block Diagrams ... 28
2.5.5 Define Data Structure and Organization... 28
2.5.6 Define finite state machine controllers ... 28

2.6 Develop Hardware Design of SV Signal processor 29
2.6.1 Code Hardware Blocks in VHDL... 29
2.6.2 Simulate Each Entity Code Separately ... 29
2.6.3 Design of the system interfaces .. 29
2.6.4 Design of the FSM.. 30
2.6.5 Add All Blocks to Top-Level VHDL Entity... 30
2.6.6 Download, Test, and Debug Top-Level SV Signal Processor.............. 30

2.7 Develop Multi-sensor SV Algorithm ... 31

2.8 Develop Multi-Sensor Fusion Algorithm.. 31

2.9 MSF C Code Optimization... 33

2.10 Develop the MSF fixed-point code... 34

2.11 Hardware implementation of the MSF code .. 35

2.12 Summary.. 35

3 YEAR 3 ACCOMPLISHMENTS ... 36

3.1 Overview .. 36

3.2 SV Implementation ... 36

3.3 SV Speedup.. 37

3.4 MSF Implementation.. 37

3.5 MSF Block diagrams .. 44

3.6 Virtex FPGA Board (APS V240) ... 45

3.7 CPU Board... 46

3.8 Communication... 47

3.9 Host PC Application ... 47

3.10 Summary.. 47

 4

3.10.1 Work Completed... 47
3.10.2 Future Recommendations ... 49

REFERENCES .. 50

APPENDICES ... 503

 5

1Year 1 Accomplishments

1.1 Overview

During the year 1999, the I3PSC Hardware Team completed much of the

background work needed to begin the implementation of the Signal Processing System

Hardware portion of the project. We first examined the literature available that was

pertinent to our work, which included learning the software tools we needed and the

signal processing methods and hardware implementation techniques available. We also

researched the possible system organizations, communication requirements, and

commercial boards available for the embedded microcomputer (CPU), data acquisition

interface (DAQ), and programmable logic (FPGA – Field Programmable Gate Array)

needed for computationally intensive tasks.

After making decisions about our functional and cost requirements, we then

selected and purchased the appropriate commercial boards: one CPU, one DAQ, and four

FPGA boards. Basic testing and familiarization work was done on the CPU and FPGA

boards, while the DAQ board has not yet been tested.

At this time, the overall system consists of two algorithms, Self-Validation and

Sensor Fusion. The Self-Validation algorithm, whose hardware implementation is now in

progress, inputs the raw time-temperature measurements from sensors, derives some

characteristic quantities and filtered outputs, and then applies fuzzy logic to determine a

self-confidence value for each sensor. The Sensor Fusion algorithm, whose hardware

 6

implementation work has not yet begun, combines the filtered inputs and self-confidence

values from several sensors into one robust value.

As the first step toward hardware implementation, we analyzed, validated, and

refined the Self-Validation algorithms that were supplied by the Intelligent Algorithms

Team. The algorithms were divided into two sections for our convenience, specifically

referred to as the fuzzy logic and preprocessing portions. Work is proceeding on

evaluating the execution timing of the Self-Validation algorithms to assist us in choosing

the optimal functions for hardware implementation versus software implementation.

The Self-Validation algorithms were supplied to the Hardware Team in the form

of high level Matlab and Excel code. We decided to first implement them in faster,

lower-level C-language code, mostly using fixed point arithmetic, and then convert

portions to even faster fixed-point hardware implementations in programmable logic on

the FPGA boards. After some optimizations and debugging effort, the C-coded versions

of the fuzzy logic and preprocessing portions were successfully verified against the

original Matlab and Excel results.

The CPU board will eventually have to communicate in three ways:

1. To the host computer for the user's interface to the system,

2. To the DAQ board for data acquisition from the sensors, and

3. To the FPGA boards for signal processing computations.

The CPU-to-Host interface consists of an error detecting/correcting serial

communication protocol and its implementation as C code executing on the CPU board

and on the host computer. The protocol has been specified and a limited version of the C

code has been written and verified. Work on the other two communication interfaces has

 7

not yet begun. The following figure shows the Signal Processing System Hardware and

its interfaces.

Over the next two years, the Hardware Team will complete the project's hardware

implementation. The Self-Validation algorithm will be implemented and tested in

programmable logic. The Sensor Fusion algorithm will be analyzed, re-written, and

implemented in programmable logic. The communication interfaces to the FPGA board

Host
PC

Cupola
Sensors &
Controllers

Processor

Prog. Logic

Signal Processing System Hardware

DAQ

Commands
&
Status

Sensor Data
& Controls

 8

and DAQ board will be designed and tested, thus completing the entire

hardware/software system.

1.2 Literature Search

The Hardware Team conducted a lengthy literature search in different software

and hardware areas. The I3PSC project requires knowledge in many software and

hardware areas, some of which are outside the Hardware Team areas of expertise.

In order to prepare us for the hardware implementation of the software

algorithms, the hardware group members needed to educate themselves about fuzzy

logic, neural networks, and data acquisition. This educational process included studying

and understanding the basic definitions, terminology, and some of the theories and

algorithms in the fuzzy logic, and neural networks areas. The features of the two basic

types of fuzzy logic, Mamdani and Sugeno, were studied. The advantages and

disadvantages of various neural networks implementation techniques, their learning

processes, and their operation were also studied. The group members used all available

resources in obtaining information. These resources included published papers, books,

and the World Wide Web.

The group members studied and acquired experience in using some of the

software commonly used in the fuzzy logic and the neural networks areas such

MATLAB, the fuzzy logic toolbox using MATLAB, and the neural network toolbox

using MATLAB. The group also studied the use of LabView software, which is often

used with Data Acquisition Cards (DAQs).

On the hardware side, the group searched the published literature about hardware

implementations of fuzzy logic and neural networks, especially those implementations

 9

using reconfigurable logic. The methods and techniques used in some of these

implementations were studied and summarized for future use. The group also studied the

data books of programmable logic devices with concentration on the logic families

produced by Xilinx and Altera. The study educated the group, especially the graduate

students, about the state of the art families of field programmable logic arrays (FPGAs) in

terms of their logic capacities, features, structure, interconnection, and speed. The

programmable logic device study was complemented by another search of commercially

available FPGA boards. These boards were evaluated based on their logic capacity,

speed, external RAM availability, the width of their interface busses, and cost.

The Hardware Team also searched the published literatures about serial and

parallel communication protocols. The study helped the group understanding the features,

requirements, capabilities, and limitations of various communication protocols. Based on

this study, a serial communication protocol was designed to control the traffic between

two computers.

We researched the commercially available microprocessor boards. These boards

were evaluated based on the type and speed of the microprocessor, the size of RAM

available on board, the type and size of their external buses, the software used in

downloading programs onto the board, and their cost.

We also researched commercially available DAQ cards. These cards were

evaluated based on their sampling rate, number of input channels, number of output

channels, programmability, and cost.

The studies about FPGA boards, microprocessor boards, and DAQ boards helped

the Hardware Team in preparing the specification list for purchasing these devices.

 10

1.3 Hardware Component Acquisitions

We selected, purchased, and tested an appropriate CPU board, DAQ board, and

four FPGA boards for this project. Following are their descriptions.

1.3.1 CPU Board

We wanted a compact, inexpensive, and fully PC-compatible (which eases

software development) CPU board based on the common PC/104 bus. After considerable

research, we decided to purchase a microprocessor board, the SBC2586-166 with options

2586OPT30-8, 2586OPT25, BO/BC3.1 from Micro/Sys, with these primary features:

PC/104 8-bit and 16-bit bus compatible

Pentium 166MHz processor

2 serial ports

1 EPP/ECP parallel printer port

512 KB flash ROM

8 MB dynamic RAM

8 MB flash disk

DOS-compatible BIOS

MS-DOS 5.0 software

Borland C++ 3.1 software and book

 11

After receiving the board, we studied its documentation and performed a basic

operational test on the unit by connecting its monitor port to a PC and downloading some

small programs for execution. It passed all the tests and is working well at this time.

1.3.2 DAQ Board

We wanted a compact, reliable, 12-bit accuracy DAQ board for interfacing to the

analog sensors and controllers of the cupola. After searching through numerous sources,

we decided to purchase a data acquisition system, the DaqBook/112 with optional

DBK11A from IOtech, Inc., with these principle features:

Link to PC via standard or enhanced (EPP) parallel port

12-bit analog resolution

100 KHz sample rate

8 differential or 16 single-ended analog inputs

Expandable to 256 inputs

2 analog outputs

Programmable gain of 1, 2, 4, or 8 per input channel

4 digital inputs and outputs

Operate on 10 to 20 VDC power source

AC adapter

Packaged in suitable stand-alone enclosure

Screw terminal card with 40 terminal blocks for analog I/O

Drivers for Windows and DOS using C or C++

Driver for Labview

 12

DaqView and PostView data acquisition software

We received this board, but it has not yet been tested or interfaced to the rest of

the system.

1.3.3 FPGA Boards

We purchased four X240 FPGA boards from Associated Professional Systems

(APS). Each of these boards is equipped with one Xilinx XLA4085 FPGA chip that has a

logic capacity of 180K gates. On each of these boards, there are two 128Kx8 SRAM

(Static Random Access Memory) chips. The boards are PC/104 16-bit compatible. The

FPGA on each board can be configured from a PC/104 bus, an EPROM, or a parallel port

using a Xilinx Xchecker cable. Each board also has a socket for standard clock oscillator.

The documentation that came with these boards included an application example program

in C and example FPGA configuration data. The example code allows the user to

download the configuration data onto the FPGA chip mounted on the board and to test

the on-board SRAM.

Using modified versions of the example code, each of the four boards was tested.

An ISA (Industry Standard Architecture) carrier board was used to connect the X240

board to the ISA bus of a PC. Three FPGA boards passed the initial test. The failed

FPGA board was sent back to the manufacturer where it was repaired. Upon its return,

the board was tested successfully.

The four FPGA boards were then mounted on top of each other, using the PC/104

bus, to create the FPGA system. The provided example code was modified to allow the

user to communicate with all the FPGA boards. The new program allows the user to

 13

specify any of these boards as the target for downloading and also to specify which test to

perform. The program was used successfully to test the FPGA system.

1.4 Analysis and Validation of Algorithms

The algorithms for self-validation of sensor data were obtained from the

Intelligent Algorithm Group in the form of Matlab and Excel files. A sample set of

Matlab files are shown in the Appendices. The algorithms were then analyzed and

validated for the purpose of successful implementation in hardware. The following

sections discuss more in detail about the self-validation fuzzy logic and preprocessing

algorithms applied to the sensor data.

1.4.1 Self-Validation Fuzzy Logic

Fuzzy logic is a convenient way of mapping an input space to an output space.

Fuzzy inference is the process of formulating the mapping from a given input to an

output using fuzzy logic. The Matlab Fuzzy Logic Tool Box supports five parts of the

fuzzy inference process that includes

• Fuzzification of the input variable

• Application of the fuzzy operator

• Performing the implication operation

• Aggregation of outputs

• Defuzzification

 14

Fuzzy logic is used for self-validation of the sensor data. A FIS file (text file)

specifies the inputs and outputs of the fuzzy logic system, the type of fuzzy logic, the

range and shape of membership functions, and every other detail about the fuzzy logic

system (see Appendix). Self-validation using fuzzy logic on sensor data is used to

determine the confidence level of the input signals.

The following paragraphs discuss changes and enhancements we made to the

algorithm: fixed-point considerations, changes made to membership functions, and

changes in the choice of the aggregation method.

The raw input signal values (see Appendix) are currently represented as floating

point numbers in a data file (later they will be input one-at-a-time from the DAQ as

fixed-point numbers). This representation is simplest for the Intelligent Algorithm Team

in formulating algorithms and implementing them using Matlab, as Matlab supports

floating-point arithmetic for maximum accuracy. However, as far as hardware

implementation is concerned, these numbers have to be converted into fixed-point

numbers, as ultimately the output from the DAQ Board is in fixed-point. Using fixed-

point numbers also reduces the number of calculations to be carried out in the FPGAs,

thereby making it less complicated and less expensive.

Some of the membership functions provided by the Intelligent Algorithm Team

exhibited very sharp rising and falling edges. As small variations in floating-point

numbers cannot be represented adequately in fixed-point, such sharp transitions in inputs

might produce large errors. So the transitions were widened to represent changes in input

more accurately using fixed-point numbers.

 15

The fuzzy logic method adopted for aggregation was the Sugeno method. This

method was chosen over the Mamdani method, as it is much less complicated and easier

to compute. Specifically, the Sugeno ‘constant’ method was adopted for processing over

the ‘linear’ method, as it requires fewer parameters to be specified in the FIS file and it is

also much easier to compute with no loss in accuracy.

1.4.2 Self-Validation Preprocessing

The fuzzy logic code was written to accept preprocessed inputs, consisting of

median-filtered temperature, variance of temperature, and rate of change of temperature.

However the raw data that is available to us consists of values of time and temperature

measured from the sensors. Initially, the Intelligent Algorithms Team did the

preprocessing in an Excel spreadsheet. It was then converted to Matlab code (see

Appendix for an example Matlab M file), which we had to convert to C code. The

paragraphs below discuss our changes and enhancements to the preprocessing algorithm:

fixed-point considerations and changes made in the algorithm to simplify it.

For reasons previously specified, the code was changed to use only fixed-point

numbers. The input signal values, which are floating point numbers at this time, are

converted into fixed-point numbers before the preprocessing is carried out.

The preprocessed values derived from the raw input data (time and temperature)

are the median-filtered temperature, rate of change of temperature, and the variance of

the temperature. These values are determined using the following formulae:

 16

Median-filtered temperature),,,,(4321 −−−−= iiiiii TTTTTmedianµ where T is the

measured temperature.

Temperature Rate-of-change
1

1

−

−

−
−

=
∆
∆

=
ii

ii

ttt
Tr

µµ
, where t is the measured time.

Variance ()∑
=

− −=
4

0

22

5
1

j
ijii T µσ .

Originally, one of the preprocessed results was standard deviation (instead of

variance). However, it was changed to variance, since it is relatively complicated and

expensive to evaluate the square root of a number (needed for standard deviation) in a

hardware implementation.

1.4.3 Self-Validation Execution Timing

The processing time of the Self-Validation (SV) code can be reduced if a part of

the code is implemented on FPGAs. Parts of the code that have longer processing times

are being identified. The following two methods are being used to determine the

processing time for the code, namely hardware-based timing measurement and theoretical

timing analysis.

1.4.3.1 Determination of Timing with Hardware Timer

First, we tried to calculate the processing time using a standard hardware timer

chip called a Programmable Interval Timer (PIT). C code was written to configure the

operating modes of the PIT. We achieved partial success in this method. However it had

several problems. First, the processing time measurements need a resolution of a few

microseconds. The PIT could not measure with such fine resolution. Second, the code

 17

was running in the Microsoft WINDOWS environment. Background processes and

parallel processing are an integral part of this operating system. The relatively random

time periods consumed by these processes could not be separated from the actual code

timing. The final timing results from multiple runs had a variation of up to 70% of the

average value.

A time consuming solution would have to be developed to eliminate these

problems. We decided that the complexity of the solution was not worthwhile. So the

Hardware Team decided to drop this hardware-timing method, and try the following

theoretical timing method instead.

1.4.3.2 Determination of Theoretical Timing

Theoretical timing, which measures the number of clock cycles required by the

system to process the given code, is determined by looking up every instruction’s

execution time in the microprocessor data book. The main goal of performing this

theoretical timing analysis is to compute the average time required (in clock cycles) for

processing the SV code.

In order to do this, the code was split into three types of blocks that perform

computations. This would help in calculating the average number of clock cycles

required for processing the code for a given set of inputs. So the code was divided into

straight-line blocks, conditional blocks, or procedure blocks.

A straight-line block consists of statements through which the control flows

without any branching to other blocks. For instance, assignment statements, equations,

and initializations form part of straight-line blocks.

 18

A conditional block includes conditional branches and multiple execution paths.

Based upon the results of the decisions made in these conditions, program control flows

through different paths of execution. As the average execution time is required, a certain

weight was associated with each of these blocks. The weight associated depends on the

probability that a particular path of execution is followed. Generally, we assumed all

branches had equal probability and equal weight.

A procedure block, either a subroutine or a function, is called by other statements

elsewhere in the code. The number of clock cycles taken for a call and return from the

procedure block was included in the calculations.

An assembly language file of the SV C code was generated. This was the

equivalent assembly language code for every line in the C code. The number of clock

cycles required by the instructions was then found from the instruction set description in

the Pentium Microprocessor data book.

An MS Excel file was created to document the results (see Appendix). It shows

the number of clocks consumed for the execution of every block defined in the code. The

total processing time for the code is the sum of the individual block clock cycle counts.

It was found that each input to the Mamdani-style fuzzy logic code required

55,000 clock cycles and each input to the Sugeno-style fuzzy logic code required 15,000

clock cycles.

1.5 Self-Validation Software Implementation

1.5.1 Self-Validation Fuzzy Logic Code

An introduction to the concept of fuzzy logic was presented earlier in this report.

The design and implementation of the fuzzy logic code for Self-Validation began with

 19

the literature search for fuzzy logic theory and implementations, and with the study of the

Matlab Fuzzy Logic Toolbox. Matlab provides a very good, general purpose C-code

implementation of fuzzy logic that closely resembles their Fuzzy Logic Toolbox. Our

initial version was derived from the Matlab C code, corrected and simplified for our

needs, keeping only a subset of the membership, implication, aggregation, and

defuzzification functions. Some of the original code that applied only to its use within

Matlab was also eliminated, greatly simplifying the code and increasing its speed and

reliability.

Next, the floating-point code was replaced with fixed-point code, which is more

suitable for hardware implementation in FPGAs. The fixed-point code uses only the four

basic arithmetic functions on fixed-point data words of 8, 16, 24, and 32 bits.

Both the Mamdani and Sugeno methods were implemented, even though the

project teams have since decided to use only the Sugeno method. We have determined

that the less computationally intensive Sugeno method is quite adequate for our

application, and thus we intend to only use this method in the future.

At this point, the results from both the floating-point and fixed-point versions of

our code were compared to the original Matlab results. We found that the floating-point

code produced exactly the same results as Matlab, while the fixed-point code gave results

within 1% of the Matlab results. This accuracy is both reasonable and acceptable for our

needs.

Finally, the fuzzy logic source code was reorganized by splitting it into two files,

called setup.c and exec.c. The setup file performs the entire house keeping activity. All

activities that are performed only once, like reading the input data file and FIS file, and

 20

printing the results, were grouped into setup.c. The exec file consists of functions that

perform the mathematical operations on the input data. This code will be repeatedly

executed during normal system operation. Functions in the exec file are most likely to be

implemented in FPGAs, while all of the functions in the setup file will continue to be

executed as code on the CPU board.

The current version of the code was tested using our preprocessed input data

(discussed in the next section). The output of the fuzzy logic code (see Appendix) was

compared with that of the Matlab Fuzzy Logic Tool Box (see Appendix). It was

observed that most of the results were compatible with < 2% error, but some input

sequences resulted in errors as high as 40%. The cause of the small errors is due to the

usage of fixed-point numbers instead of the floating-point numbers used in Matlab. This

error is acceptable for our purposes. But the large errors are due to problems in the fuzzy

logic membership function definitions and how they relate to the fixed-point arithmetic,

which are currently being reconsidered. We fully expect to fix the problems causing these

large errors.

1.5.2 Self-Validation Preprocessing Code

The algorithm devised by the Intelligent Algorithm team for processing the raw

input values to determine the preprocessed input values was coded. The raw input values

represented using floating point numbers were converted into fixed-point numbers. The

preprocessing was then carried out on these values to generate fixed point preprocessed

input values.

 21

The code was successfully implemented using fixed-point arithmetic using a

floating point scaling factor. Scaling factors are constants determined from the range of

the floating-point numbers. These factors are used to determine the fixed point

equivalent for the floating-point number. A new method has been devised for

implementing fixed-point arithmetic using a fixed-point scaling factor. The

implementation of the above method is now in progress.

The Matlab floating-point output results (see Appendix) were compared with the

ones generated by the fixed-point code (see Appendix). The results were found to be

compatible with < 2% error, which is within expected error bounds.

1.6 Communication Software Development – the CPU-to-Host Interface

The CPU-to-host interface consists of a serial communication line connecting the

CPU board to the host PC, and the associated communication software. Using standard

PC-type RS232 serial ports, it is intended to run at the maximum standard speed of

115200 bits per second. The host PC is the user’s interface to this entire signal processing

system. The purpose of the CPU-to-host interface is to transfer control commands from

the host PC to the CPU board for execution, and to transfer status and computed results

back from the CPU board to the host PC. To make this interface robust, a special error

detecting/correcting communication protocol was designed, based on a combination of

pre-defined message blocks, character counts, checksums, handshaking, and

retransmission requests.

 22

A preliminary version of this communication software has been written. The C

code was written initially to implement the complete communication protocol. But then

changes were made in the code to enable the receiver to wait for the sender or vice versa

for an infinite length of time without timing out. The purpose of including this change

was to temporarily avoid error reports due to certain error conditions. The testing was

carried out first between 2 PCs, and then between a PC and the CPU board. Only limited

success could be achieved regarding the implementation of the protocol. It was observed

that the code properly supported serial communication only up to a bit rate of 9600 bits

per second. The expected bit rate of 115200 could not be achieved. More work will be

done to improve this code to reach full speed using the complete protocol.

1.7 Summary

The Hardware Team has successfully begun development of the I3PSC Signal

Processing System. We completed the literature search, developed the system

architecture, and purchased a CPU board, DAQ board, and multiple FPGA boards to

build the system. We analyzed and refined the first of the system algorithms created by

the Intelligent Algorithms Team to enhance its suitability for hardware implementation.

This Self-Validation algorithm, consisting of two major functions (preprocessing and

fuzzy logic) was first implemented entirely in C code and then tested successfully for

compatibility with the original Matlab version. The effort to measure the code’s

execution time is almost complete at this time. This is needed to determine which

functions are most computationally intensive and thus need to be executed on the FPGA

 23

hardware. Finally, a preliminary version of the CPU-to-Host interface has been designed

and tested.

During the first few months of 2000 (contract year 2), the Hardware Team plans

to complete the remaining details of the software implementation and timing analysis of

the Self-Validation algorithm, and begin its implementation on the FPGA boards. By the

end of 2000, we plan to perform similar algorithm analysis, software implementation,

timing analysis, and FPGA hardware implementation of the Sensor Fusion algorithm.

The remaining interfaces, CPU-to-FPGA and CPU-to-DAQ, will also be developed and

tested during this year. The effort in 2001 (contract year 3) will be centered on refining

the signal processing system and demonstrating its operation within a working cupola

environment.

As discussed earlier, there have been some failures encountered and numerous

bugs have been fixed. Most of the development has taken longer than expected, due to

unexpected problems and complications that have arisen. But we are confident in our

ability to overcome the problems and feel that we are definitely on the road to successful

completion of this project.

2Year 2 Accomplishments

2.1 Overview

During the year 2000, the I3PSC Hardware Team completed the hardware design

and testing of the self-validation algorithm and began working on both the hardware

implementation of the multi-sensor fusion algorithm and the communication protocols of

 24

the ultimate form of the hardware system. In the next few sections we will present the

details of all tasks performed by the hardware group in the second year (2000).

2.2 Communication Protocols

As stated earlier, the final project will have three different communication

protocols. Currently the group is working on the user PC and the FPGA board

communication protocol. The work done can be summarized as follows.

2.2.1 Develop low-level communication protocol

A low-level communication protocol that controls the communication between

the User PC and the CPU Board has been designed. According to this communication

protocol all information passes between the User PC and the signal processor in the form

of messages. For generality and versatility, a single message consists of 0 or more bytes

of information/data preceded and followed by certain message control bytes. Byte #1

usually represents the function code, which defines the message class and meaning of

data. Byte #2 and #3 specify the length of the data block, which could be 1-255 or 1-

65535. The information following these bytes in finally followed by the error detection

byte, which is the checksum of all other bytes.

2.2.2 Write and test the low-level communication code for initialization, transmit

and receive

The developed low-level communication code was written in C and was tested

between two CPUs. The system was initialized to operate at a particular baud rate and

then it was used to transmit and receive a string of data. The system was tested

successfully for various baud rates including the operation baud rate of 115200bps.

 25

2.2.3 Define specifications for high-level communication protocol details for MS-

SV program for User Interface

Following the low-level communication protocol, a high-level communication

protocol was designed. This protocol specifies the format of the messages that are

exchanged between the user PC and the CPU board. The sequence of the messages has

also been decided upon. The protocol has been appended with a time-out facility to

restart the system or continue from the point just before failure. This task is 100%

complete.

2.2.4 Outline method for modification of SV code

The outline for modifying the SV code to include the CPU end of the high-level

communication protocol has been completed. The new routines that have to be now

included in the C program are being written. This task will be completed soon.

2.3 Develop a Library of Basic Fixed-Point Arithmetic Functions

As previously stated, the code uses the four basic arithmetic functions on fixed-

point data words of 8, 16, 24, and 32 bits. To meet these computational requirements of

the hardware implementation, a VHDL library of the four basic operations was

developed. This library includes adders/subtractors, multipliers, and dividers. These

operations were designed as functions so that they can be utilized through function calls.

Different designing techniques of these arithmetic units were utilized. The following

types were developed for adder/subtractors:

 26

Ripple carry adders

Carry-Look ahead adders

Look-up table adders

All of these designs were developed for 8,16,32-bit ranges. Pipelined version of

each of these types was also implemented. Different designs of the dividers units were

also developed. These designs include:

Divider using Shift/subtract algorithm

Divider using single register algorithm

These two designs were developed for 24-bit/16-bit, 16-bit/8-bit. In addition, the

following techniques of multipliers designs were implemented.

Array multiplier

Pipelined array multiplier

Dadda-Wallace multiplier

Pipelined Dadda-Wallace multiplier

The multipliers were developed for 8-bit by 8-bit inputs.

All the designs in the VHDL library were coded, simulated, and synthesized.

These designed were optimized for the hardware implementation of the SV algorithm on

the XC4085XLA FPGA chip. A bit maps for the best designs were then generated,

downloaded onto the FPGA chip, and successfully tested.

2.4 Implementation of the SV Preprocessing Algorithm

The modified preprocessing algorithm was written with fixed-point code. The

code was successfully tested and evaluated with data from the Intelligent Algorithms

group. The code was then reorganized and split between the setup and execution file

 27

codes. A new input files were created for the signal-Validation code. After fixing

numerous implementation problems, the code was successfully tested and its results were

validated. Finally, the process was completed after inserting appropriate documentation

to the code.

2.5 Develop Architecture of SV Signal Processor Hardware

2.5.1 Select SV procedures for the hardware implementation

We decided to implement in the FPGA hardware all the procedure in the

execution code that performs computations on the outputs from the preprocessing stage.

These procedures include FisEvaluate(), FisComputeInputMFValue(), FisTrapezoidMF(),

FisComputeFiringStrength(), FisArrayOperation(), FisMin(), and

FisComputeTSKRuleOutput(). These procedures compute the membership functions of

the input parameters; i.e. convert crisp inputs to fuzzy inputs, apply the inputs to the

fuzzy rule set, aggregate the outputs of each rule, and compute the outputs. The output of

each preprocessed set represents the computed confidence in the corresponding sensor

measurement.

2.5.2 Separate constants from true Variables

An analysis study of all the code's variables showed that some of the variables are

calculated or defined in the setup part and their values do not change during the execution

part. Hence they will be implemented once in the setup, not during the execution in

hardware.

2.5.3 Simplify the fuzzy logic procedures

To simplify the fuzzy logic code for the hardware implementation, variables that

do not change during the execution were converted into constants. In addition, all error

 28

checking and Mamdani code has been removed from the fuzzy logic code. The error

checking code was not needed if the Fuzzy Inference Structure (FIS) file, which is the

input file to the setup part, is correct. The Mamdani code was not needed since we choose

to implement Sugeno type code. After the verification of the code revision, it was tested

successfully.

2.5.4 Create Block Diagrams

A block diagram for each function was created. They are used to determine the

requirements for sequence of events during execution. They are also help to determine

how to group functions into hardware blocks, and which sequential functions are

reusable. These block diagrams for the hardware-implemented functions are shown in the

Appendix.

2.5.5 Define Data Structure and Organization

The data structure of the FIS parameters for all sensors that are calculated during

the set up phase, and the intermediate results need to stored on the on the FPGA board's

SRAM. The data structure and their organization within the SRAM have been defined. A

register file was also designed to store the commands

2.5.6 Define finite state machine controllers

The different states of a Finite State Machine (FSM) controller were defined. The

FSM is used to control all the timing details for the operation of the entire design. The

defining ASM chart is shown in the Appendix.

 29

2.6 Develop Hardware Design of SV Signal processor

2.6.1 Code Hardware Blocks in VHDL

Each block of code was coded in VHDL using the data flow graphs to help guide

the sequencing of operations. All arithmetic operation was done through function calls to

the entities of the arithmetic functions library. The coding was done in a way that allows

pipelining and parallelism of operations.

2.6.2 Simulate Each Entity Code Separately

Each code was simulated separately to ensure its proper functionality. Special

debugging codes were inserted to allow monitoring of internal signals during simulation.

After fixing all the code problems, the blocks were synthesized to check the amount of

logic blocks needed for their implementations. The number of clock cycles needed for

each block was recorded. The arithmetic functions were modified to the exact number of

bits needed in the implementation.

2.6.3 Design of the system interfaces

The system interfaces include a bus interface, a memory interface and a register

file. The FPGA-bus interface represents the connection between the PC and the FPGA

boards connected to the PC/104 bus. Different signals are used to select one of the FPGA

boards and to communicate (read from or write to) with either the processes on the FPGA

boards or with the on-board memory. The memory interface connects the on-board

memory with the FPGA processes or the host machine.

 30

2.6.4 Design of the FSM

The design of an efficient FSM requires intimate knowledge of the sequence of

operations and the number of clock cycles needed for each operation. It coordinates the

use of both the address and data buses and memories by the FPGA processes and the host

machine and controls all the system’s activities. The controller also issues various load,

store and Read/Write enable signals.

2.6.5 Add All Blocks to Top-Level VHDL Entity

After successfully testing all the signal validation system components, they were

integrated with the top-level VHDL entity. The top-level entity acts as the main function

in a C code. The entire hardware code was simulated and synthesized successfully. A bit

map file representing the hardware design was then generated.

2.6.6 Download, Test, and Debug Top-Level SV Signal Processor

The C code was modified clean up the preprocessing steps and to include

functions that download the hardware design onto the FPGA, to load the system

parameters onto memories on the FPGA boards, to read from the on-board memories, to

send data to the FPGA processes and read their results. Some of the signal validation

code was replaced with FPGA communication tasks. These tasks include send data, send

command, and get result Self Confidence. The modifications were done in many stages.

In the early stages, A C code was developed to allow testing the on-board memories by

writing data onto them and then reading their contents. Currently, the system uses 64

 31

bytes of on-board memory per sensor and requires about 50 cycles to process each

preprocessed set of inputs.

2.7 Develop Multi-sensor SV Algorithm

The Self-validation system was originally tested for data acquired from a single

sensor. However, in the Cupola system, more than a single sensor’s data would be

actually fed into the self-validation system. So the single sensor self-validation system

was expanded to be a multi-sensor self-validation system. For the testing purpose, the

multi-sensor self-validation system accepts the input values of several sensors as a single

file where the various sensors’ data points are presented as separate columns of

temperature and time values. The self-validation system operates on one set of data for

one sensor and determines the self-confidence value for that sensor. It then reads the next

set of data for the next sensor and determines the self-confidence for that sensor. The

output of this system is a set of self-confidence values for the different input data of the

various sensors. The system was tested successfully and it can now handle up to 50

sensors. The code will be modified to accept data directly from the sensors instead of a

data file.

2.8 Develop Multi-Sensor Fusion Algorithm

The Hardware Group Team received the Multi-sensor fusion (MSF) algorithm

from the Intelligent Algorithms group in the form of three of MATLAB files and 4 Excel

files. The MATLAB files represent MSF code. These files are:

feeddata.m - Serves as the front end file that reads the data from a txt file and

feeds it point by point to the sensor fusion function

 32

ValueConf.m - This is the function that does the multiple sensor fusion. It takes

data at every instant from feeddata.m file and returns the Fused Value and its confidence

at that instant.

checkindex.m - this function is called by ValueConf.m and it checks whether the

maximum value returned by the max function is indeed at the center the trapezoid. Max

function in Matlab returns the maximum value and the index of its first occurrence.

The Excel files are data files. These files are::

TestInput1.txt and TestOutput1.txt - One set of Inputs and Expected Outputs

TestInput2.txt and TestOutput2.txt - Another set of Inputs and Expected Outputs

TestInput3.txt and TestOutput3.txt - Another set of Inputs and Expected Outputs

The *.wk1 files can be used to test the m files as the *.m files read the *.wk1 files

The Hardware Group studied, analyzed, and validated the MATLAB code for the

purpose of understanding its functionality and the enable the development of the

hardware implementation code. The algorithm is simple and generic for 'n' sensors. It

reflects the degree of agreement among sensors, measure the reliability of the measured

estimate, and hence minimizes the effect of failed sensors. A sensor's median reading that

a deviate sharply from the centroid of the 'n' membership functions of the sensors

readings is assigned a lower confidence. For sampling period, the algorithm reads the

median filtered temperature and the corresponding confidence of each of the n sensors

(from the outputs of the self-validation algorithm). Using the sensor reading, the system

uses also the historical variance measure of the sensors. For each sensor, the algorithm

calculates the four parameters of a trapezoid membership function such that the area of

 33

each of the trapezoid is the same (one unit). The trapezoids are symmetrical around the

sensor reading. The heights of all trapezoids are added together and the position of the

maximum height is computed. The value of the normalized area within 3± standard

deviations is considered as the overall confidence. On the mean time, the algorithm group

converted the MATLAB files into a floating-point C code. All sections of code that apply

only to the MATLAB implementation, including redundant error checking, were

removed from the floating-point C code. The C code was tested successfully and

produces comparable results to that of the MATLAB code.

2.9 MSF C Code Optimization

Careful examination of the MSF code revealed that the many of the computations

performed by the MSF algorithm were not ultimately required. For example, The code

calculated the areas before and after the maximum height of the overall graph resulted

from adding the trapezoids of all sensors by dividing the total range of the trapezoids into

a fixed number of steps and calculating the areas between each step. A large saving in

the computational requirements could be achieved by computing the areas as the sum of

triangles and rectangles. The areas of trapezoids triangles and rectangles were calculated

using basic algebra laws. In addition to be faster and less demanding in terms of

computational resources, the new method was more accurate also; it avoided many of the

round off errors.

Three versions of The MSF C code were developed to optimize and adapt the

floating-point code for the hardware implementation. In the first version, the code was

enhanced through the following modifications:

 34

The calculation of the height sensors’ trapezoids has been optimized. This version

assumed that the number of fused sensors data is three (constant).

All the static values like number of sensors, number of samples, std_deviation,

were made as dynamic values that are read from an input file. The entire code has been

optimized by removing redundant calculations. All needed value were calculated once at

the beginning of the code execution, and used as many times as needed.

The third version was enhancements included replacing all data structures to

arrays (for faster computations). The code for three sensors was also modified to limit the

number of points considered to 13 (4 * n + 1) instead of the original 86 points. This has

resulted in a significant saving of the computational requirements of the code.

Each of these versions was coded, and tested. The results obtained form the last

version have a maximum error of 2%, which is acceptable for our application.

2.10 Develop the MSF fixed-point code

As explained before, the floating-point code is not suitable for the hardware

implementation. In the final MSF version, the code was implemented as a fixed-point

code of 8, 16, 24, and 32 bit resolutions. The code was also optimized such that the

calculation of any variable is done only once. However, to reduce the accumulation of

round off errors, some intermediate variables were calculates every time it is needed. In

addition, the number of sensors considered was coded as a dynamic variable whose value

is read at the beginning of the execution cycle. The code was also modified to handle a

maximum of 10 sensors. The fixed-point code was tested successfully and produced

results within the acceptable margin of error.

 35

2.11 Hardware implementation of the MSF code

The reorganized and optimized sensor Multi-sensor fusion was partitioned into

modules and a data flow graphs of all these modules were created. Currently, we are

working on measuring the execution time for each block and to translate these data flow

graphs into VHDL code.

2.12 Summary

During the year 2000, the Hardware Team completed the FOGA implementation

of the signal validation code. Currently the group is working on the hardware

implementation of the multi-sensor fusion algorithm. The group is also working on

designing the communication protocols of the final system so that the FPGA system can

be connected to the microprocessor board. The group is confident that they will

accomplish all the project goals in a timely fashion.

 36

3Year 3 Accomplishments

3.1 Overview

During the final year, extended from 2001 through the first half of 2002, the

I3PSC Hardware Team completed most of the project hardware and software as it was

initially envisioned.

The multi-sensor Self-Validation (SV) algorithm was designed, simulated, and

fully implemented in the FPGA hardware, with significant speedup over a standard

microprocessor implementation. The Multi-Sensor Fusion (MSF) algorithm was designed

and simulated for the FPGA. A new Virtex FPGA board was purchased and utilized in

the system. The CPU board was programmed and tested as the interface between the Host

PC and the FPGA board. New serial communication protocols and software were

developed and tested. An overall top-level controlling application was created for the

system user in Labview on the Host PC. Details of these accomplishments are given in

the following subsections.

3.2 SV Implementation

The multi-sensor Self-Validation processor was first simulated and validated,

using VHDL and Xilinx tools. Next it was successfully implemented on the original

FPGA board and then revised to work on the new Virtex FPGA board. The complete

system (consisting of the Host PC running Labview code, the CPU board running C code,

 37

and the FPGA with the SV processor implemented with VHDL code) was debugged and

successfully tested.

3.3 SV Speedup

The final speedup calculated for the Self-Validation processor on the FPGA was

found to be significant. Processing on the FPGA takes only 50 clock cycles versus 15782

clock cycles on a Pentium microprocessor, giving a speedup of 315. Of course the total

processing time also depends on the clock frequency, which is higher on the Pentium, but

this is still an important accomplishment for the hardware team.

3.4 MSF Implementation

The Multi-Sensor Fusion (MSF) processor was fully developed, simulated, and

validated for the original FPGA board. All the VHDL modules were developed. These

modules include:

Area_Top_R10.vhd: This module calculates the area to the right and left of the

centroid for every sensor (up to 10 sensors). Each sensor calculations requires 6 clock

cycles as follows:

Clock #1: The points of the trapezoid for a sensor are selected. Description of this

operation is given in inp_mux module.

Clock #2a: The local controller compares the 4 points with the centroid and

calculates the internal control signals sel, sel_Com. Description of this operation is given

in the control module.

Clock #2b: the 8bit by 8bit multiplier is used.

 38

 Clock #3: The 16*8 multiplier multiplies the output of 8bit by 8bit multiplier

with constant (102).

Clocks #4, 5: The 24bit /16bit divider divides the product from 16*8 multiplier

with square of std. of the sensor.

 Clock #6: The quotient of the previous operation is accumulated by the

accumulator.

Total number of cycles needed by this multiplier = 6 * no. of sensors.

Busifc.vhd: This module contains the PC/104 bus interface for the FPGA signal

process. It defines the connections between the PC/104 bus, memory interface, register

file, and the SV/MSF processor.

Centroid.vhd: This module is used to compute the centroid of all sensor

trapezoids. The module has an accumulator to add all the sensor data values. The centroid

is calculates as the result of dividing the resultant sum by the no. of sensors. The divider

is implemented in the pdiv16_8 module. The centroid is executed in parallel with val_sen

module. All the sensor data, read in the val_sen module, are added by the accumulator in

this module.

Conf_control.vhd: This module is used to generate control signals for the self-

confidence process.

Control.vhd: This module is a local controller of the datapath of the area module.

It performs the six comparisons needed to determine the location of the centroid with

respect to the trapezoid points of all sensors.

Div_8.vhd: This module is an 8bit / 8 bit divider

Div_16_8.vhd: This module is a 16bit / 8 bit divider.

 39

Div_16_16.vhd: This module is a 16bit / 16 bit divider.

Div24_16UNS.vhd: The module performs unsigned division of 24 bit / 16 bit. A

quotient of 8 bits is generated.

fus_con_top.vhd: This module is used to calculate the fused confidence, which

is the area within a span of 3 * min. STD on either side of the fused value. The operation

of this module requires 6 clock cycles as follows:

Clock #1: The 4 points of the trapezoid for a sensor are selected.

Clock #2a: The local controller compares the 4 points with the limits of

evaluation start conf and end conf. Local controller calculates the internal control signals

selfuscon, selmul. The conf_control module describes this operation.

Clock #2b: The 8bit*8bit multiplier performs multiplication.

Clock 3: The 16bit*8bit multiplier multiplies the output of 8*8 multiplier with the

constant 102

Clocks #4, 5: The 24bit/16bit divider divides the product from 16*8 multiplier

with square of std. of the sensor.

Clock 6: Appropriate fus_conx is selected based on the condition satisfied. The

resulted quotient is accumulated by the accumulator.

Total no. of clock cycles needed for this module = 6 * no. of sensors + 1.

The extra clock is used to divide the accumulated result with the number of

sensors to calculate the fused confidence.

Inp_mux.vhd: This module calculates the start_base, end_base, start_top, and

end-top points of the trapezoid of each sensor. It also calculates the height of each of

these trapezoids. A 40 by 1 8-bit multiplexer is used to select the element of the trap

 40

array. The module contains the multiplexers to select the various points of the trapezoid

and the points of the array. It takes 2 clock cycles to perform a single selection.

Memifc.vhd: The module contains memory access signals and bus address

decoders. This file was modified in order to use the Virtex BlockRAMs as the memory.

The MSF process can access 256 words starting at address 1000-10FF.

MSF_Control.vhd: This module generates timing control signals needed for all

datapath circuits. It also generates control signals to interface with the system’s memory

and bus.

MSF_top.vhd: This module is the top-level module of the MSF code. It calls all

other MSF modules including the memory interface and the bus interface.

MSF_top_d.vhd: This module is the debugging version of the above MSF top-

level module.

Mux8B_2X1.vhd: This module is an 8-bit 2 to 1 multiplexer.

Mux8B_7X1.vhd: This module is an 8-bit 7 to 1 multiplexer.

Mux8B_10X1.vhd: This module is an 8-bit 10 to 1 multiplexer.

Pdiv16_b.vhd: This module is used to select the inputs of the 16bit/8 bit divider

from two possible cases. An 8 bit 2 to 1 multiplexer is used for this purpose. The

controller signals for the multiplexer are generated by the master controller.

Pdiv24_16.vhd: This module has a 24-bit/ 16-bit divider. This divider is used

called by two modules, the area module and the fus_conf module.

Pmul16_8.vhd: This module has a 16-bit by 8-bit multiplier and a 2 by 1

multiplexer. The MSF code requires 2 instantiation of a 16-bit by 8-bit multipliers. The 2

by 1 multiplexer is used to select one set of these inputs for multiplication.

 41

Pmul8_8.vhd: This module has an 8-bit by 8-bit multiplier and a 4 by 1

multiplexer. The MSF code requires 4 instantiation of an 8-bit by 8-bit multipliers. To

reduce the code size, one multiplier is used to perform the 4 multiplication operations.

The multiplexer is used to select the inputs to the multiplier out the possible 4 sets of

inputs.

Rearr_un_par.vhd: This module is used to sort all sensors’ data points in

ascending order using the odd-even sort method. The C code of this method can be found

at http://www.cs.rit.edu/~atk/Java/sorting/sorting.html.

Reg_16.vhd: This is a 16 bit register with enable and reset inputs.

Reg_8.vhd: This is an 8 bit register with enable and reset inputs.

Sen_val.vhd: This module is used to validate the confidence of a sensor. It

operate as follows:

Clock #1a: Read the confidence of sensor x from memory. (Done by the

controller)

Clock #1b: Load the conf into CONF_A register.

Clock #2a: Read sensor data, and std. deviation from memory for sensor x.

Clock #2b: Load the sensor data and sensor std deviation into SDATA_A and

SSTD_A respectively.

Clock #3a: Read the confidence of sensor x+1 from memory. (Done by the

controller)

Clock #3b: Load the conf into CONF_B

Clock #3c: Start execution process for values in Set A registers that includes

CONF_A, SDATA_A, SSTD_A registers

 42

Clock #3d: Send sstd to the 8*8 multiplier.

Clock #4a: Read sensor data, and std. deviation from memory for sensor x+1.

Clock #4b: Load the sensor data and sensor std. deviation into SDATA_B and

SSTD_B respectively.

Clock #4c: Read the value on sq_std bus (from multiplier) and continue

processing of data.

Clock 5a: Start execution process for values in Set B registers that include

CONF_B, SDATA_B, SSTD_B registers.

Clock #5b: Send sstd to the 8bit*8bit multiplier.

Clock #5c: Load the output values corresponding to the set A into the output

registers.

Clock #6: Read the value on sq_std bus(from multiplier) and continue processing

of data.

Clock #7a: Read the confidence of sensor x+1 from memory. (Done by the

controller).

Clock #7b: Start execution process for values in Set B registers.

Clock #7c: Send sstd to 8*8 multiplier.

Clock #8a: Read sensor data, and std. deviation from memory for sensor x+1.

Clock #8b: Load the output values corresponding to the set B into the output

registers.

Clocks 5 through 8 are repeated for each of the remaining sensors.

 43

Span.Vhd: This module calculates the span of area in the sum trapezoid to

determine the fused confidence. The fused confidence is the area on either side of

centroid in the sum trapezoid for a span of 3 times the minimum standard deviation.

TopMSF.vhd: This is the top -evel module. It generates all the needed control

signals for other modules.

Trap2max.vhd: Prior to starting this module 2 clock cycles are spent for the

selection of these points by the inp_mux. The operation of this module is as follow. For

all the forthcoming cycles the selection of points is performed in parallel with the

execution of trap2max.

Clock #1: Set inputs to 8bit *8bit multiplier and perform the multiplication.

Clock #2a: Reset all the registers by asserting Clr_hsum.

Clock #3_4a: Set inputs to 16bit/8bit divider. Perform division.

Clock 3_4b: The height for the 0th sensor at trap (index) is stored in the

accumulator register.

Step #3_4c: Store the accumulated height in the h_sum array at index location

specified by the index input.

Clock #5-8a: Calculate the height for the 1st sensor at trap (index).

Clock 5_8b: Compare the current h_sum with the previous h_sum and store the

max. h_sum's index and value.

Repeat clocks 5 through 8 for all the remaining sensors.

Clock #9-12: Calculate the height for the 2nd sensor at trap (index).

Repeat clocks 1-12 for all the forthcoming index points.

At Clock clkx = 12*(h_start - h_end)+4 perform the following:

 44

Step clkx+1: Store the index of the higher h_sum in max_ind.

Clock clkx+2: Access the trap element with index max_ind+1 and store it in

trap_mx0.

Clock clkx+4: Access the trap element with index max_ind-1 and store it in

trap_mx1.

Clock clkx+6: Access the trap element with index max_ind.

Clock clkx+7a: Calculate the mean of trap(max_ind+1) and trap (max_ind) and

trap(max_ind-1) and trap (max_ind).

Clock clkx7b: Select the mean of the element that is closer to trap (max_ind).

Number of clock cycles used in this module = 12*(h_start - h_end)+11.

The TopMSF project was created for the implementation of the MSF code with

bus interface (Busifc) and memory interface (Memifc).

The MSF code was then enhanced to run on the new Virtex FPGA board, and

again simulated successfully. However, it was not implemented and tested on the Virtex

FPGA board with rest of the system due to insufficient time available at the end of the

project period.

3.5 MSF Block diagrams

Block diagrams for all the VHDL modules were created. These diagrams were

used to optimize the reuse of primitive components such as the multipliers and the

dividers. They were also used to show the sequence of operation for each module. These

block diagrams include:

Area Comp: This diagram represents the comparison between the left and right of

the sensors’ centroid.

 45

AreaP1- AreaP4: These four diagrams illustrate the computation of trapezoid

area.

Centroid: This diagram illustrates the calculation of the centroid.

Dividers: This diagram shows the components needed for the division operation

and the sequence of their use.

Fcp1-Fcp5: These five diagrams show the sequence of calculation needed to

compute the fused value.

Inpmux: This diagram illustrates the use of multiplexers to choose between

different input sets to the dividers or the multipliers

Multipliers: This diagram shows the design of multipliers with different bit-width.

Rearrange: This diagram pictorially shows the sort operation of the N*4 +1 points

in an ascending order. It calls the sort module to perform the sort operation.

Sort: This diagram shows the details of the sort operation.

Traphtp1-Traphtp5: These five diagrams show the calculation of the height of the

trapezoids.

Ue: This module shows the design of a comparator unit.

Validatep1 – Validatep4: these four diagrams are used to show the sequence of

Validating sensors’ data.

3.6 Virtex FPGA Board (APS V240)

The original FPGA board (APS X240) with the Xilinx XC4085 device (about

80,000 gates) was found to be too small to hold the rather large MSF processor and the

 46

smaller SV processor. So we purchased a replacement FPGA board (APS V240) with a

much larger device, the Xilinx Virtex XCV800 with approximately 800,000 gates. As a

result, some significant changes had to be made to our system design to accommodate the

new device and its improved features. The device download and configuration code on

the CPU board was rewritten and tested with the new FPGA, whose configuration details

were different from the old FPGA. Since the new FPGA had a significant amount of fast

on-chip memory, we decided to eliminate the external memory chips, which caused a

significant redesign of the memory system and its interface with the SV and MSF

processors. Several other smaller changes were also implemented successfully on the new

Virtex board.

3.7 CPU Board

We learned all the details necessary to effectively utilize the CPU board on this

project. As discussed earlier, it interfaces to the Host PC via one serial line for all

command, status, and raw data. We also interfaced with a monitoring laptop PC, using

another serial line, to allow us to effectively download and debug the CPU code (written

in C). We revised the setup and communication portions of the SV and MSF code to run

on the CPU board. We implemented the high-level communications protocol with the

Host PC as presented elsewhere. Of course, the CPU board directly controls the Virtex

FPGA board, passing low-level commands and raw data to it and receiving back the

processed SV data at each sample time. It essentially calls on the FPGA as a high-speed

hardware-based subroutine implementing the signal processing algorithms.

 47

3.8 Communication

A sophisticated error-detecting and correcting high-level communication protocol

was defined and implemented over the serial communication line between the Host PC

and the CPU board, running at the full 115,200 bps speed. The line passes all commands,

status, input data and output data between the Host PC and the CPU board. This protocol

allows the system to automatically recover from transient communication errors and

continue normal operation.

3.9 Host PC Application

Control and communication with the CPU board and FPGA were implemented as

a Labview application on the Host PC, giving a simple and effective interface to the

system operator. This application fully supports all aspects of both the SV and MSF

downloading and processing tasks. Each step in the process may be executed

independently, simplifying debugging and reducing the total execution time.

3.10 Summary

3.10.1 Work Completed

During this I3PSC project, the Hardware Team successfully completed most of its

planned work, but had insufficient time to finish a few portions.

The team began with a literature search to study the possible signal processing

methods, software tools and hardware devices available. We selected and purchased

appropriate hardware (CPU Board, FPGA boards, DAQ board) and found effective ways

to utilize them. An overall system architecture was created. We developed software

 48

implementations of the two major algorithms, Self-Validation and Multi-Sensor Fusion to

verify their proper operation. We replaced the original floating-point arithmetic with

fixed-point versions for efficient hardware implementation. A library of fixed-point

arithmetic routines was created in VHDL. We designed and implemented a sophisticated

communication structure to tie together all the system elements.

Many enhancements were made to the original algorithms to enhance their

performance in hardware. We developed detailed architectures for their implementation

into hardware. We partitioned the algorithms into two sections: one section contained

computationally-intensive portions destined for hardware implementation, and the other

section continued to be implemented in software running on a standard microprocessor.

The hardware portion of the SV and MSF processors was implemented in VHDL

and simulated. Two new subsystems were designed specifically for the FPGA, including

a PC-104 bus interface and a memory block. Finally, the SV processor was fully

implemented and tested on the FPGA, utilizing all of the system components.

In addition to the technical contributions of this project, several graduate students

(MS) benefited from this project through the financial support for their work on the

project. Sobha Sankaran was a key contributor to the detailed design and implementation

of the Self-Validation software and hardware. Srikala Vadlamani was a key designer of

the Multi-Sensor Fusion software and hardware under the supervision of Dr. Mahmoud.

Jie (Ellen) Chen was responsible for implementing the control and communication

software on the Host PC to interface with the CPU board for both SV and MSF. Each of

these students contributed significantly to the development of the I3PSC hardware

system.

 49

3.10.2 Future Recommendations

We recommend that the following tasks, be undertaken to fully utilize the results

of the current project.

Complete implementation and testing of the MSF processor on the FPGA board,

controlled by the CPU board.

Then combine both processors (SV and MSF) on the same FPGA, running

simultaneously.

Complete the hardware/software interface between the CPU Board and the Data

Acquisition System (DAQ) to allow direct, autonomous acquisition and processing of the

Cupola data without burdening the Host PC.

Test the completely integrated system with the Cupola and live data.

 50

REFERENCES

[1] Nagrath, I.J and Gopal, M, Control Systems Engineering, Second Edition, New Age

International (P) Ltd., Publishers, 1995.

[2] Maciejowski,J.M, Multivariable Feedback Design, Addison-Wesley Publishers Ltd.,
1990.

[3] Richard R.Brooks and S.S.Iyengar, Multi-Sensor Fusion - Fundamentals and

Applications with Software, Prentice Hall, Inc., New Jersey, 1998.

[4] Ren C.Luo and Michael G Kay, "Multiple Integration and Fusion in Intelligent

Systems," IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,
September 1989.

[5] R.C.Luo, M.Lin, and R.S.Scherp, "Dynamic multi-sensor data fusion system for

intelligent robots," IEEE Journal Robotics and Automation, vol. RA-4, no. 4, pp. 385-
396, 1988.

[6] Keith E. Holbert, A.Sharif Heger and Nahrul K. Alang-Rashid, "Redundant Sensor

Validation by Using Fuzzy Logic," Nuclear Science and Engineering, vol. 118, pp.
54-64, 1994.

[7] Asok Ray and Rogelio Luck, "An Introduction to sensor Signal Validation in

Redundant Measurement Systems," IEEE Control Systems Magazine, vol. 11, no. 2,
pp. 43, Feb 01, 1991.

[8] Marcello R Napolitano, Charles Neppach, Van Casdorph , Steve Naylor, Mario

Innocenti and Giovanni Silvestri, "Neural Network Based Scheme for Sensor Failure
Detection, Identification and Accomodation," Journal of Guidance, Control and
Dynamics, vol. 18, no. 6, Dec 1995.

[9] Mohamed Abdelrahman and Senthil Subramaniam, "An Intelligent Signal Validation

System for Cupola Furnace - Part 1 and Part 2," American Control Conference, San
Diego, 1999.

[10] Janice C, Yang and David Clarke, "A Self-Validating Thermocouple," IEEE

Transactions on Control Systems Technology, vol. 5 no. 2 March 1997.

[11] M.P.Henry and D.W.Clarke, "The Self-Validating sensor: Rationale definitions,

and examples," Control Eng. Practice, vol. 1, no. 4, pp. 585-610, 1993.

[12] T.M.Tsai and H.P.Chou, "Sensor fault detection with the single sensor parity

relation", Nuclear Science and Engineering," vol. 114, pp. 141 1993

 51

[13] Mathieu Mercadal, "Sensor Failure detection using Generalized Parity relations

for Flexible Structures," Journal of Guidance, Control and Dynamics, vol. 12, no. 1,
Feb 1989.

[14] Jeff Frolik, C.V.PhaniShankar and Steve Orth, "Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure," In Proceedings of American
Control Conference, June 2000.

[15] Bernard Friedland, Advanced Control System Design, Prentice Hall, Inc., New

Jersey, 1996.

[16] K.J.Astrom and B.Wittenmark, Adaptive Control, Addison-Wesley Publishing

Co., Reading, MA 1989.

[17] Liu Hsu; Aldayr D. de Araujo; Ramon R. Costa, "Analysis and design of I/O

based variable structure adaptive control. (input-output variable structure model
reference adaptive control systems)," IEEE Transactions on Automatic Control, vol.
39, no.1, pp. 4, Jan 1994.

[18] E. Burdet, A. Codourey, "Evaluation of parametric and nonparametric nonlinear

adaptive controllers (Nonlinear controllers)," Robotica, vol. 16, no. 1, 1998.

[19] Judith Hocherman-Frommer; Sanjeev R. Kulkarni; Peter J. Ramadge, "Controller

switching based on output prediction errors," IEEE Transactions on Automatic
Control, vol. 43, no. 5, pp. 596, May 1998

[20] Michel Barbeau; Froduald Kabanza; Richard St.-Denis, "A method for the

synreport of controllers to handle safety, liveness, and real-time constraints," IEEE
Transactions on Automatic Control, vol. 43, no. 11, pp. 1543, November 1998.

[21] Specht, D.F., "Probabilistic Neural Networks," Neural Networks, November

1990.

[22] Ronald R. Yager and Dimitar P. Filev, Essentials of Fuzzy Modeling and Control,

John Wiley & Sons, 1994.

[23] Jeff Frolik and Mohamed Abdelrahman, "Synreport of Quasi-Redundant sensor

Data: A Probabilistic Approach," In Proceedings of American Control Conference,
2000.

[24] Hassan K. Khalil, Nonlinear Systems, Second edition, Prentice Hall Inc., 1996

[25] Mohamed Abdelrahman, Kevin Moore, Eric Larsen, Denis Clark and Paul King,

"Experimental Control of a Cupola Furnace," In Proceedings of American Control
Conference, 1998.

 52

[26] Pascal Gahinet, Arkadi Nemiroviski, Alan Laub, and Mahmoud Chilali, "LMI

Control toolbox 1.0," The Math Works Inc.

[27] Jeff Frolik, C.V.Phanishankar and Steve Orth, “Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure”, Proc. of American Control
Conference, 2000, pp. 2912-2916.

[28] Mohamed Abdelrahman, Parameshwaran Kandasamy and Jeff Frolik, “A

Methodology for the Fusion of Redundant Sensors”, Proc. of American Control
Conference, 2000, pp. 2917-2922.

[29] Jeff Frolik and Mohamed Abdelrahman, “Synthesis of Quasi-Redundant sensor

Data: Probabilistic Approach”, Proc. Of American Control Conference, 2000, pp.
2922-2926.

[30] Vipin Vijayakumar, Mohamed Abdelrahman, Jeff Frolik, "A Convenient

Methodology for the hardware implementation of fusion of Quasi-Redundant
Sensors", Proc. Of 32nd South-Eastern Symposium on System Theory, Florida, Mar
2000, pp. 349-353.

A APPENDICES.. 54

A.1 Self-Validation Example using Matlab ... 54

A.1.1 Matlab M File (SV4.m).. 54

A.1.2 Matlab FIS File (SV4.fis)... 57

A.1.3 Raw Data Input File (RawIn.txt).. 58

A.1.4 Matlab Input/Output File (sv4_in-out.txt) ... 60

A.2 Self-Validation Code Documents... 70

A.2.1 Theoretical Timing Analysis Spreadsheet (Sugeno)............................ 70

A.2.2 Preprocessed Output File (sv4_pp.txt)... 72

A.2.3 Self-confidence output file (sv4_outx.txt) ... 74

A.3 Hardware Block Diagrams... 77

A.4 FSM Controller ASM Charts .. 95

A.4.1 Self-Validation Controller ASM Charts .. 95

A.5 Timing Diagrams .. 100

A.5.1 Self-Validation Timing .. 100

A.6 MSF Hardware Block Diagrams ... 103

REFERENCES .. 140

A

 54

Appendices

A.1 Self-Validation Example using Matlab

A.1.1 Matlab M File (SV4.m)

% SV4.m
% Self Validation V4
% RLH - Modified to print out data for in_out.txt file

% Reading the three signal data from wk1 file
a=wk1read('TpDt1');

% Reading the FIS file to use it to find the self confidence of the
% sensor readings
fis=readfis('sv4.fis');

% Read the temperature and the time from the file and seperating
% them into individual data points
% and creating the three inputs required, to the fuzzy system.
sz=size(a);
for j=1:sz(1)
 % The Preprocessing required on the raw data to form the three input
 % to the fuzzy System.
 % Getting Change in time
 if j == 1
 ch_in_time = a(j,1);
 else
 ch_in_time=a(j,1)-a(j-1,1);
 end

 % Finding the current median and previous median temperature - to find
 % the change in temperature value leading to the calculation of one
 % of the input = rate of change in Temperature
 if (ch_in_time == 0)
 temp(1)=a(j,2);
 temp(2)=a(j,2);
 temp(3)=a(j,2);
 temp(4)=a(j,2);
 temp(5)=a(j,2);
 temp(6)=a(j,2);
 else

 55

 temp(6)=temp(5);
 temp(5)=temp(4);
 temp(4)=temp(3);
 temp(3)=temp(2);
 temp(2)=temp(1);
 temp(1)=a(j,2);
 end

 prev_temp=median(temp([2:6])); %Previous Median Temperature.
 curr_temp=median(temp([1:5])); %Current Median Temperature.

 % Setting the current median temperature as one of the input to the
 % fuzzy system = Median Temperature
 med_temp(j)=curr_temp;

 % Finding the second input = rate of change in temperature
 ch_in_temp=(curr_temp-prev_temp);
 if (ch_in_time == 0)
 rate_of_ch(j)=0;
 else
 rate_of_ch(j)=(ch_in_temp)/(ch_in_time);
 end

 % finding the Variance of the five value with respect to the
 % median = the third input to Fuzzy system
 var=0;
 for l=1:5
 var=var+((temp(l)-curr_temp)^2);
 end
 vr(j)=(var/5);

% End Preprocessing
% Execute Fuzzy Logic next

 % Getting the Self confidence from the fuzzy system
 conf(j)=evalfis([med_temp(j) rate_of_ch(j) vr(j)],fis);

end

figure, plot(a(:,2))
title('Raw Temperature');
figure, plot(med_temp)
title('Median-Filtered Temperature');
figure,plot(rate_of_ch)
title('Rate of Change');
figure, plot(vr)

 56

title('Variance');
figure,plot(conf)
title('Confidence');

echo on
diary in-out.txt
% RLH 11/18/99
% Execute sv4.m using sv4.fis and TpDt1.wk1 raw input data
%--
date

% Number of data points:
sz(1)

%-------------------------------------
% Raw data input (time, temp):
a

%-------------------------------------
% Pre-processed data (Filtered Temp, Rate of Change, Variance):

[transpose(med_temp) transpose(rate_of_ch) transpose(vr)]

%-------------------------------------
% Output self-confidence:

transpose(conf)

%-------------------------------------
% Rules:

showrule(fis)

%-------------------------------------
% Make plots of fis file:
figure,plotmf(fis,'input',1)
title('Temperature input MF');
figure,plotmf(fis,'input',2)
title('Rate-of-Change input MF');
figure,plotmf(fis,'input',3)
title('Variance input MF');
figure,plotfis(fis)
%-------------------------------------
%-------------------------------------
diary off
echo off

 57

A.1.2 Matlab FIS File (SV4.fis)

[System]
Name='SV4'
Type='sugeno'
Version=2.0
NumInputs=3
NumOutputs=1
NumRules=12
AndMethod='min'
OrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='wtaver'

[Input1]
Name='Temp'
Range=[0 1500]
NumMFs=3
MF1='low':'trapmf',[0 0 672.95 677]
MF2='ideal':'trapmf',[672.96 677 781.9 785.94]
MF3='high':'trapmf',[781.9 785.94 1500 1500]

[Input2]
Name='Rate_of_Ch'
Range=[-3.5 3.5]
NumMFs=3
MF1='Very_P':'trapmf',[0.26 0.35 3.5 3.5]
MF2='Very_N':'trapmf',[-3.5 -3.5 -0.35 -0.26]
MF3='Small':'trapmf',[-0.35 -0.26 0.26 0.35]

[Input3]
Name='var'
Range=[0 2025]
NumMFs=3
MF1='Constant':'trapmf',[0 0 0 4.0804]
MF2='Normal':'trapmf',[1.0201 4.0804 184.4164 251.2225]
MF3='High_Noise':'trapmf',[184.4164 251.2225 2652.25 2756.25]

[Output1]
Name='self_confidence1'
Range=[0 1]
NumMFs=4
MF1='V_low':'linear',[0 0 0 0.1]
MF2='low':'linear',[0 0 0 0.5]

 58

MF3='high':'linear',[0 0 0 0.75]
MF4='V_high':'linear',[0 0 0 1]

[Rules]
3 0 0, 2 (1) : 1
1 0 0, 2 (1) : 1
2 3 2, 4 (1) : 1
2 1 0, 2 (1) : 1
2 2 0, 2 (1) : 1
0 0 1, 2 (1) : 1
1 1 0, 1 (1) : 1
1 2 0, 1 (1) : 1
3 2 0, 1 (1) : 1
3 1 0, 1 (1) : 1
0 0 3, 2 (1) : 1
0 0 1, 2 (1) : 1

A.1.3 Raw Data Input File (RawIn.txt)

0 779.2346227
56 779.6359885
118 779.1388128
176 776.3767261
238 771.7933885
295 769.1202064
359 765.8402284
416 761.098934
475 759.6134492
537 755.3356674
599 748.8223216
659 746.9354711
715 747.0019339
779 744.2286262
837 740.3850099
899 733.484972
959 729.9123854
1017 731.322776
1079 724.1163191
1135 717.5365106
1197 712.771911
1255 709.5169645
1319 706.4234273
1376 698.6740478
1439 692.4645316
1496 690.1521471
1559 684.3051548

 59

1618 680.5815166
1675 679.3756931
1738 675.8635272
1795 678.1759117
1857 681.270312
1914 681.9936334
1977 687.0741467
2035 693.6850286
2098 699.1591393
2154 702.9526927
2216 711.3554784
2279 717.8610558
2335 724.1016455
2398 730.0004269
2454 736.1995853
2516 742.0802406
2579 754.6399668
2636 761.786003
2694 765.5182727
2757 769.7865598
2814 775.2563547
2877 778.4569227
2935 776.5441776
2998 776.2334429
3055 780.2635
3118 780.1469745
3175 774.2689087
3238 777.0335849
3296 774.5727382
3359 773.5749344
3416 767.3619656
3479 768.4978738
3536 767.0926621
3594 764.5662159
3657 760.6639053
3716 756.6286692
3778 755.7171806
3836 754.2765798
3898 748.0687899
3955 746.5332423
4018 743.229096
4075 740.0242123
4138 730.3577719
4195 730.4389082
4258 722.5548769
4315 720.7940466

 60

4378 713.5910424
4435 710.0771502
4494 709.150988
4557 699.3032857
4615 695.9775606
4678 688.4638216
4735 681.8917815
4798 678.0239969
4856 678.0093234
4944 680.8007572
4975 683.0898366
5035 684.0997246
5094 694.8338841
5154 693.0462961
5217 698.3149765
5274 699.6347361
5336 709.5661641
5394 716.8192312
5456 720.3288077
5514 727.5723801
5576 737.6488177
5633 739.3267854
5696 748.6263861
5753 759.2077677
5816 763.4113184
5873 775.0069037
5936 781.3752399

A.1.4 Matlab Input/Output File (sv4_in-out.txt)

% RLH 11/18/99
% Execute sv4.m using sv4.fis and TpDt1.wk1 raw input data
%--
date

ans =

18-Nov-1999

% Number of data points:
sz(1)

ans =

 100

 61

%-------------------------------------
% Raw data input (time, temp):
a

a =

 1.0e+003 *

 0 0.7792
 0.0560 0.7796
 0.1180 0.7791
 0.1760 0.7764
 0.2380 0.7718
 0.2950 0.7691
 0.3590 0.7658
 0.4160 0.7611
 0.4750 0.7596
 0.5370 0.7553
 0.5990 0.7488
 0.6590 0.7469
 0.7150 0.7470
 0.7790 0.7442
 0.8370 0.7404
 0.8990 0.7335
 0.9590 0.7299
 1.0170 0.7313
 1.0790 0.7241
 1.1350 0.7175
 1.1970 0.7128
 1.2550 0.7095
 1.3190 0.7064
 1.3760 0.6987
 1.4390 0.6925
 1.4960 0.6902
 1.5590 0.6843
 1.6180 0.6806
 1.6750 0.6794
 1.7380 0.6759
 1.7950 0.6782
 1.8570 0.6813
 1.9140 0.6820
 1.9770 0.6871
 2.0350 0.6937
 2.0980 0.6992
 2.1540 0.7030
 2.2160 0.7114

 62

 2.2790 0.7179
 2.3350 0.7241
 2.3980 0.7300
 2.4540 0.7362
 2.5160 0.7421
 2.5790 0.7546
 2.6360 0.7618
 2.6940 0.7655
 2.7570 0.7698
 2.8140 0.7753
 2.8770 0.7785
 2.9350 0.7765
 2.9980 0.7762
 3.0550 0.7803
 3.1180 0.7801
 3.1750 0.7743
 3.2380 0.7770
 3.2960 0.7746
 3.3590 0.7736
 3.4160 0.7674
 3.4790 0.7685
 3.5360 0.7671
 3.5940 0.7646
 3.6570 0.7607
 3.7160 0.7566
 3.7780 0.7557
 3.8360 0.7543
 3.8980 0.7481
 3.9550 0.7465
 4.0180 0.7432
 4.0750 0.7400
 4.1380 0.7304
 4.1950 0.7304
 4.2580 0.7226
 4.3150 0.7208
 4.3780 0.7136
 4.4350 0.7101
 4.4940 0.7092
 4.5570 0.6993
 4.6150 0.6960
 4.6780 0.6885
 4.7350 0.6819
 4.7980 0.6780
 4.8560 0.6780
 4.9440 0.6808
 4.9750 0.6831

 63

 5.0350 0.6841
 5.0940 0.6948
 5.1540 0.6930
 5.2170 0.6983
 5.2740 0.6996
 5.3360 0.7096
 5.3940 0.7168
 5.4560 0.7203
 5.5140 0.7276
 5.5760 0.7376
 5.6330 0.7393
 5.6960 0.7486
 5.7530 0.7592
 5.8160 0.7634
 5.8730 0.7750
 5.9360 0.7814

%-------------------------------------
% Pre-processed data (Filtered Temp, Rate of Change, Variance):

[transpose(med_temp) transpose(rate_of_ch) transpose(vr)]

ans =

 779.2346 0 0
 779.2346 0 0.0322
 779.2346 0 0.0341
 779.2346 0 1.6676
 779.1388 -0.0015 12.3681
 776.3767 -0.0485 18.3832
 771.7934 -0.0716 23.5097
 769.1202 -0.0469 26.9804
 765.8402 -0.0556 21.4902
 761.0989 -0.0765 24.4485
 759.6134 -0.0240 35.1455
 755.3357 -0.0713 32.9003
 748.8223 -0.1163 33.1492
 747.0019 -0.0284 16.0921
 746.9355 -0.0011 10.7600
 744.2286 -0.0437 29.0435
 740.3850 -0.0641 43.1687
 733.4850 -0.1190 36.0950
 731.3228 -0.0349 28.1443
 729.9124 -0.0252 40.3018
 724.1163 -0.0935 51.5034

 64

 717.5365 -0.1134 64.0739
 712.7719 -0.0744 40.4590
 709.5170 -0.0571 40.4093
 706.4234 -0.0491 60.9554
 698.6740 -0.1360 57.7605
 692.4645 -0.0986 61.0663
 690.1521 -0.0392 40.7508
 684.3052 -0.1026 27.7856
 680.5815 -0.0591 25.8352
 679.3757 -0.0212 7.9057
 679.3757 0 3.7637
 679.3757 0 4.8436
 681.2703 0.0301 14.6033
 681.9936 0.0125 35.5197
 687.0741 0.0806 49.8494
 693.6850 0.1181 59.2496
 699.1591 0.0883 67.8309
 702.9527 0.0602 78.6293
 711.3555 0.1500 84.8290
 717.8611 0.1033 90.1782
 724.1016 0.1114 76.5131
 730.0004 0.0951 73.3023
 736.1996 0.0984 111.8839
 742.0802 0.1032 145.3136
 754.6400 0.2165 133.4396
 761.7860 0.1134 103.4643
 765.5183 0.0655 49.0632
 769.7866 0.0678 37.4642
 775.2564 0.0943 27.3302
 776.2334 0.0155 9.5115
 776.5442 0.0055 3.8494
 778.4569 0.0304 2.9445
 776.5442 -0.0336 6.4174
 777.0336 0.0078 5.6818
 777.0336 0 6.7649
 774.5727 -0.0391 7.6432
 774.2689 -0.0053 11.1846
 773.5749 -0.0110 15.4671
 768.4979 -0.0891 13.1891
 767.3620 -0.0196 9.5560
 767.0927 -0.0043 9.9518
 764.5662 -0.0428 20.0147
 760.6639 -0.0629 19.4620
 756.6287 -0.0696 17.1302
 755.7172 -0.0147 17.1748
 754.2766 -0.0253 21.2207

 65

 748.0688 -0.0985 24.5630
 746.5332 -0.0269 23.1204
 743.2291 -0.0524 42.0565
 740.0242 -0.0562 47.5914
 730.4389 -0.1521 63.5263
 730.3578 -0.0014 49.1593
 722.5549 -0.1239 41.2988
 720.7940 -0.0309 52.5718
 713.5910 -0.1221 32.8590
 710.0772 -0.0558 48.8266
 709.1510 -0.0160 58.2177
 699.3033 -0.1563 68.3216
 695.9776 -0.0583 87.8930
 688.4638 -0.1193 65.2264
 681.8918 -0.1133 54.3268
 680.8008 -0.0124 15.0831
 680.8008 0 4.3865
 680.8008 0 6.3251
 683.0898 0.0388 33.9988
 684.0997 0.0168 41.4333
 693.0463 0.1420 42.0253
 694.8339 0.0314 30.7168
 698.3150 0.0561 33.6416
 699.6347 0.0228 87.8179
 709.5662 0.1602 78.7328
 716.8192 0.1251 95.1722
 720.3288 0.0566 96.1207
 727.5724 0.1271 81.5600
 737.6488 0.1599 104.9680
 739.3268 0.0294 124.5435
 748.6264 0.1476 107.5099
 759.2078 0.1856 154.9003
 763.4113 0.0667 138.6848

%-------------------------------------
% Output self-confidence:

transpose(conf)

ans =

 0.5000
 0.5000
 0.5000
 0.5759
 1.0000

 66

 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 0.9262
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

 67

 0.9454
 0.7652
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

 68

 1.0000
 1.0000
 1.0000

%-------------------------------------
% Rules:

showrule(fis)

ans =

If (Temp is high) then
(self_confidence1 is low) (1)
If (Temp is low) then
(self_confidence1 is low) (1)
If (Temp is ideal) and (Rate_of_Ch is Small) and (var is Normal) then
(self_confidence1 is V_high) (1)
If (Temp is ideal) and (Rate_of_Ch is Very_P) then
(self_confidence1 is low) (1)
If (Temp is ideal) and (Rate_of_Ch is Very_N) then
(self_confidence1 is low) (1)
If (var is Constant) then
(self_confidence1 is low) (1)
If (Temp is low) and (Rate_of_Ch is Very_P) then
(self_confidence1 is V_low) (1)
If (Temp is low) and (Rate_of_Ch is Very_N) then
(self_confidence1 is V_low) (1)
If (Temp is high) and (Rate_of_Ch is Very_N) then
(self_confidence1 is V_low) (1)
If (Temp is high) and (Rate_of_Ch is Very_P) then
(self_confidence1 is V_low) (1)
If (var is High_Noise) then
(self_confidence1 is low) (1)
If (var is Constant) then
(self_confidence1 is low) (1)

%-------------------------------------
% Make plots of fis file:
figure,plotmf(fis,'input',1)
title('Temperature input MF');
figure,plotmf(fis,'input',2)
title('Rate-of-Change input MF');
figure,plotmf(fis,'input',3)
title('Variance input MF');
figure,plotfis(fis)

 69

%-------------------------------------
%-------------------------------------
diary off

 70

A.2 Self-Validation Code Documents

A.2.1 Theoretical Timing Analysis Spreadsheet (Sugeno)

 TIMING CALCULATIONS FOR EXEC.C (Sugeno)

COMMENT
Naming Convention: The first alphabet in the block names denote the block type.
 C denotes Conditional block
 S denotes Straight line block
 I denotes Iteration block
The functions are listed in the order in which they appear in exec.c.
NOTE: fisPrintVariables is not included here as it dosen't include any computations.
FUNCTION NAME : fisTrapezoidMf

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock cycles Weighted Clockcycles
Col1 Col2 Col3 Col 1*2*3

S1 1 1 1 10 10
C1 1 1 1 13 13
C2 1 1 1 13 13
C3 1 1 1 13 13
C4 1/3 0.33 1 6 1.98
C5 1/3 0.33 1 6 1.98
C6 1/3 0.33 1 57 18.81
C7 1/3 0.33 1 6 1.98
C8 1/3 0.33 1 6 1.98
C9 1/3 0.33 1 55 18.15
P1 1 1 1 27 27

Grand Total: 120.88

of times the function is called = 7

FUNCTION NAME: fisArrayOperation

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S2 1 1 1 3 3
I1 1 1 3 43 129
I1_P1 1 1 1 41

Grand Total: 132

of times the function is called = 1

FUNCTION NAME: fisComputeInputMfValue

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I14 1 1 (1+1+1) 3 1714.05 1714.05
I14_I15 1 1 (3+ 2+ 2) 7 231.88 1522.05
I14_I15_P5 1 1 1 1 169.88

Grand Total: 1714.05

of times the function is called = 1

FUNCTION NAME: fisComputeTskRuleOutput

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I16 1 1 1 146 146
I16_I17 1 1 4 36 144
I16_I17_S8 1 1 1 34

Grand Total: 146

 71

of times the function is called = 1

FUNCTION:fisComputeFiring Strength

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I19 1 1 16 11820
I19_C18 1/2 0.5 1 205 201.375
I19_C18_I20 1/2 0.5 3 193 289.5
I19_C18_I20_S9 1/2 0.5 1 10 5
I19_C18_I20_C19 1/2 * 1/3 0.165 1 23 3.795
I19_C18_I20_C20 1/2 * 1/3 0.165 1 10 1.65
I19_C18_I20_C21 1/2 * 1/3 0.165 1 17 2.805
I19_C18_I20_S10 1/2 0.5 1 16 8
I19_C18_P6 1/2 0.5 1 160 80
I19_C22 1/2 0.5 1 205 537.375
I19_C22_I20 1/2 0.5 3 193 289.5
I19_C22_I20_S11 1/2 0.5 1 10 5
I19_C22_I20_C23 1/2*1/3 0.165 1 23 3.795
I19_C22_I20_C24 1/2*1/3 0.165 1 10 1.65
I19_C22_I20_C25 1/2*1/3 0.165 1 17 2.805
I19_C22_I20_S12 1/2 0.5 1 16 8
I19_C22_P7 1/2 0.5 1 160 80
I19_S13 1 1 16 21 336
I21 1 1 16 70 1120

Grand Total: 12940

of times the function is called = 1

FUNCTION:fisEvaluate

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S15 1 1 1 1 1
P11 1 1 1 1731.05 1731.05
P12 1 1 1 1872.75 12954
S16 1 1 1 1 1
I30 1 1 16 46 736
I30_P13 1 1 1 44 44
C30 1/2 0.5 1 17 8.5
C30_I32 1 1 1 15 15
C32 1 1 1 351 351
C32_P14 1 1 1 26 163
C32_I33 1 1 1 170 1792
C32_I33_I34 1 1 16 50 800
C32_I33_I34_C33 1/2 0.5 1 7 3.5
C32_I33_I34_C34 1/2 0.5 1 29 14.5
C32_I33_S18 1 1 1 3 3
C32_I33_I34 1 1 16 48 768
C32_I33_C33 1 1 1 33 33
C32_I33_C34 0 0 0 0 0
C33 0 0
C33_I35_P15 0 0
C33_I35_P16 0 0
C34 0 0

Grand Total: 15782.55
of times the function is called = 1

Setup functions called by exec.c

FUNCTION: fisMin

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

 72

 S17 1 1 1 19 19
Grand Total: 19

of times the function is called = 3

FUNCTION: fisMax

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S17 1 1 1 19 19
Grand Total: 19

of times the function is called = 3

A.2.2 Preprocessed Output File (sv4_pp.txt)

779.412 0.000 0.000
779.412 0.000 0.000
779.412 0.000 0.000
779.412 0.000 1.730
779.412 0.000 13.149
776.471 -0.051 17.647
771.765 -0.071 23.875
769.412 -0.039 26.990
765.882 -0.060 22.145
761.176 -0.076 25.260
759.412 -0.028 34.602
755.294 -0.067 32.180
748.823 -0.115 31.834
747.059 -0.025 15.917
747.059 0.000 10.727
744.118 -0.046 28.374
740.588 -0.057 43.253
733.529 -0.119 35.986
731.176 -0.037 29.066
730.000 -0.021 40.138
724.118 -0.094 50.173
717.647 -0.110 62.976
712.941 -0.071 40.138
709.412 -0.060 40.138
706.471 -0.046 61.592
698.823 -0.133 57.785
692.353 -0.101 62.630
690.000 -0.039 41.176
684.118 -0.101 27.336
680.588 -0.055 24.913
679.412 -0.018 7.266

 73

679.412 0.000 3.460
679.412 0.000 4.498
681.176 0.028 14.187
681.765 0.009 35.640
687.059 0.083 51.211
693.529 0.115 60.554
699.412 0.094 67.474
702.941 0.055 76.817
711.176 0.145 83.045
717.647 0.101 90.311
724.118 0.115 79.239
730.000 0.094 76.125
736.471 0.101 112.111
742.353 0.101 143.253
754.706 0.211 129.412
761.765 0.110 101.384
765.294 0.060 49.135
770.000 0.074 37.024
775.294 0.090 27.336
776.471 0.018 8.997
776.471 0.000 3.114
778.235 0.028 2.422
776.471 -0.030 5.882
777.059 0.009 5.190
777.059 0.000 6.228
774.706 -0.037 6.920
774.118 -0.009 10.035
773.529 -0.009 15.225
768.235 -0.092 14.187
767.647 -0.009 8.651
767.059 -0.009 9.689
764.706 -0.039 20.415
760.588 -0.064 19.377
756.471 -0.069 17.993
755.882 -0.009 16.609
754.118 -0.030 20.069
748.235 -0.092 24.567
746.471 -0.030 23.183
742.941 -0.055 40.138
740.000 -0.051 45.329
730.588 -0.149 61.592
730.588 0.000 51.211
722.353 -0.129 43.253
720.588 -0.030 52.941
713.529 -0.119 31.142
710.000 -0.055 47.405

 74

709.412 -0.009 59.862
699.412 -0.159 69.896
695.882 -0.060 90.657
688.235 -0.119 65.052
681.765 -0.110 52.941
680.588 -0.011 14.187
680.588 0.000 3.460
680.588 0.000 5.536
682.941 0.039 33.218
684.118 0.018 40.484
692.941 0.138 41.522
694.706 0.030 29.758
698.235 0.055 33.218
699.412 0.018 90.657
709.412 0.161 81.661
717.059 0.131 98.616
720.588 0.055 95.502
727.647 0.122 79.931
737.647 0.159 103.806
739.412 0.030 125.952
748.823 0.149 108.304
759.412 0.184 156.055
763.529 0.064 136.332

A.2.3 Self-confidence output file (sv4_outx.txt)

0.501960814
0.501960814
0.501960814
0.501960814
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000

 75

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
0.501960814
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
0.501960814
0.501960814
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000

 76

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
0.501960814
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000

 77

A.3 Hardware Block Diagrams

The following notes help in understanding the block diagrams.

1. All names that start with a 'B', 'P' are signals that connect with BUS Interface and

Processor Interface respectively.

2. 4 block diagrams are used to describe the FPGA H/W. They are listed below

a. Top level (Top.vsd)

b. Memory Interface (Memifc.vsd)

c. Bus Interface (BusIfc.vsd)

d. Register file (RegFile.vsd)

3. The Memory Interface depicts the 2 port Interface between RAM and Processor ,

RAM and CPU.

4. The Bus Interface connects PC/104 Bus to Memory and SP and contains 8 x 16

Register File.

5. The Top Level shows the connections between the three modules.

6. The internal signals that connect the 3 modules, namely PC104 ifc, 2 Port Mem

Ifc and Signal Processor application, are marked as 1,2 and 3. The signals that

constitute each of these groups are listed here.

a. (BMxxx) -> BMAI, MAI, BMDoutI, BMModeI, BMR_n_I, BMW_n_I,

BMCe_n_I, BMDWeI, and MDinI.

b. (PBxxx) -> PBA_I, PBD_I, PBR_n_I, PBW_n_I, PBRF_I.

c. (PMxxx) -> PMA_I, PMDout_I, PMR_n_I, PMW_n_I, PMCe_n_I, and

PMDWe_I.

 78

7. The following equations define the signals used in the Regfile block diagram

a. RFen=(RF * RFAdReg(2)')

b. RFtoBus=(RF * BR_n')

c. RFtoProc=(PBRF * PBR_n')

d. PBen=(PBRF * PBA(2) * PBW_n')

8. The following equations define the signals used in the BusIfc block diagram

a. BMR_n = (BR_n' * BMwrite' * Mem * BMmode)'

b. BMW_n=(BW_n' * BMwrite * Mem * BMmode)'

c. BMDWe=(BMwrite * Mem * BMmode)

d. MDrd=(BR_n' * BMwrite' * Mem * BMmode)

e. BMce_n=(Mem * BMmode)'

f. BDout=(BR_n' * BrdSel)

g. BDin=(BR_n * BrdSel)

 79

BMxxx

PBxxx

Signal
Processor
Application

(Self Validation,
Preprocessing,
Fuzzy Logic)

SYSCLK

Top Level Hardware Architecture (FPGA)

(1)

(2)

CLK

PMxxx
(3)

MA

MD

MOE_n

MWE_n

MCE_n

17 17

16
U7MD(7-0)

(15-8)
U8MD(7-0)

U7MA
U8MA

(7-0)

U7OE_n
U8OE_n

U7WE_n
U8WE_n

U7CE_n
U8CE_n

128k X
16

SRAM2 Port
MemIfc

SA
16

SD

IOR_n

16

IOW_n

IOCS16_n

 BAD

BDAT

BR_n

BW_n

BCS16_n

PC104
Bus PC104

BusIfc

10

 80

BMDWe

PMDWe

BMmode

BMmode

BMmode

BMA
(16 - 0)

PMA
(16 - 0)

BMDout
(15 - 0)

PMDout
(15 - 0)

MDin
(15 - 0)

BMR_n
BMW_n
BMCe_n

PMR_n
PMW_n
PMCe_n

17

17

16

16

16

17

16

MDWe

16

MD (15 - 0)

MOE_n

MWE_n

MCE_n
 MDWe

A1

1

0

1

0

(To SRAM)

2 - Port Memory Interface (MemIfc)

B1

C1

D1

A0

B0

C0

D0

A

B

C

D

MA(16-0)

 81

Bus
Address
Decoder

Bus Port

2-port
Register

File
8 x 16

Proc Port

RF Address
Register

Memory
Address
Register

Memory
Ifc

Decoder

(to
PC/104
BUS)

Base=300h

 RF

RFad

MemAdHI

MemAdLo

Mem

Brd Sel

BAD

BCS16_n

BR_n

BW_n

BDAT

BMR

BMW

BMA

BMDout

MDin(15-0)

RF

BR_n

BW_n

Mem

BMR_n

BMW_n

BMCe_n

BMDWe

MDrd

(to
memory
interface)

(16-0)

PBR_n PBW_n PBD PBA

(to proc)

10

16

17

16

16

16

16
3

16

3

PC/104 Bus Interface
(BusIfc)

PBRF

CLK

BMwrite

BMmode

MDrd

BDin

BDout

BMmode

16

 82

 83

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

Q

Q

Q

Q

Q

Q

Q

Q

0

1

2

3

0

1

2

3

S

S

E

E

R0

R1

R2

R3

R4

R5

R6

R7

RFAdReg
(1-0)

RFen BW_n
BDat
(15-0)

PBA
(1-0)

PBen CLK PBD
(15-0)

Bus

BusIfc-Register File(Reg File)

2

16 16

16

2

0

1

2

3

4

5

6

7

S

0

1

2

3

4

5

6

7 S

RFtoProc

PBD
(15-0)

PBA
(2-0)

Proc

RFAdReg
(2-0)

RFtoBus

BDat
(15-0)

Bus

16

16

3

3

 84

Controller
FSM

CmdReg 6bit Memory
Access Counter

Counter

PBRF, PBR_n, PBW_n,
PBA(2-0), ConfToPBD

PMR_n, PMW_n,
PMCe_n, PMDWe

LdIMFP0a, LdIMFP2a, LdIMFP0b,
LdIMFP2b, LdSug0, LdSug2

LdIV

LdImfVal00, 01,02,10,11,12,20,21,22,
LdFS, LdFSn, LdTw, LdTwf, LdConf,

ClrFsn, ClrTw, ClrTwF

SelImfpB

S

R

Q

E

C

LD

Q

E C

CLK

CLK CLK

CLK

PBD

LdCmd

Inc
CNT

CLR
CNT

Count

PBD(15-0)

StatToPBD

Busy

0

0

Sensor

PMA(16-0)

ClrMAC

IncMAC

0

(5-0)

(13-6)

(16-14)

PB-RF Ifc

PM-Mem Ifc

Load
 from
Mem

Load from RF

Load
Internals

(11-4)
Sensor

CMD
(15-12)

(3-0)

(15-12)

(11-4)

(3-1)

(0) 16

4

4

16
8

8

4

8

3

SV-FPGA
Controller

6

8

3

SelRule(3-0)

CLK

SelRuleOut(3-0)

4

SetPB

SetPA

}
}

}4

Delay Reg

Q

}

CLK

 85

CompFire
HardWired Signals

(fisComputeFiringStrength)

mfsRule70 (B70)

mfsRule71 (B71)

mfsRule72 (B72)

mfsRule80 (B80)

mfsRule81 (B81)

mfsRule82 (B82)

mfsRule90 (B90)

mfsRule91 (B91)

mfsRule92 (B92)

mfsRule00 (B00)

mfsRule01 (B01)

mfsRule02 (B02)

mfsRule11 (B11)
mfsRule10 (B10)

mfsRule12 (B12)

mfsRule20 (B20)

mfsRule21 (B21)

mfsRule22 (B22)

mfsRule30 (B30)

mfsRule31 (B31)

mfsRule32 (B32)

mfsRule41 (B41)

mfsRule42 (B42)

mfsRule40 (B40)

mfsRule50 (B50)

mfsRule51 (B51)

mfsRule52 (B52)

mfsRule60 (B60)

mfsRule61 (B61)

mfsRule62 (B62)

mfsRule100 (B100)

mfsRule101 (B101)

mfsRule102 (B102)

mfsRule110 (B110)

mfsRule111 (B111)

mfsRule112 (B112)

IMFval00 (A00)

IMFval00 (A01)

IMFval00 (A02)

IMFval00 (A10)

IMFval00 (A11)

IMFval00 (A12)

IMFval00 (A20)

IMFval00 (A21)

IMFval00 (A22)

255

8

8

8

8

8

8

8

8

8

8

P.1

8

8
8

8

8

8
8

8

8
8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

 86

ComFire
Multiplexers (fisCompfiringStrength)

0

1
2

3
4

5

6
7

8

9
10

11

mfsRule00

mfsRule10

mfsRule20
mfsRule30

mfsRule40

mfsRule50
mfsRule60

mfsRule70

mfsRule80
mfsRule90

mfsRule100
mfsRule110

(B00)

(B10)
(B20)

(B30)

(B40)

(B50)
(B60)

(B70)
(B80)

(B90)

(B100)
(B110)

mfsRule0(B0)

0
1

2

3
4
5

6

7
8

9

10
11

mfsRule01

mfsRule11
mfsRule21

mfsRule31

mfsRule41
mfsRule51

mfsRule61
mfsRule71

mfsRule81
mfsRule91

mfsRule101
mfsRule111

(B01)

(B11)
(B21)
(B31)

(B41)
(B51)

(B61)
(B71)
(B81)

(B91)
(B101)
(B111)

mfsRule1(B1)

0

1
2

3
4

5
6

7

8
9

10

11

mfsRule02

mfsRule12

mfsRule22
mfsRule32

mfsRule42

mfsRule52
mfsRule62

mfsRule72
mfsRule82
mfsRule92

mfsRule102
mfsRule112

(B02)

(B12)
(B22)

(B32)

(B42)

(B52)
(B62)

(B72)
(B82)

(B92)

(B102)
(B112)

mfsRule2(B2)

4 SelRule(3-0)

4

4

SelRule(3-0)

SelRule(3-0)

8

8

8

8

8
8

8
8

8
8

8

8
8

8

8

8
8

8

8

8

8
8

8

8
8

8

8
8

8

8

8

8
8

8

8

8
8

P.2

8

8

 87

ComFire
(Comparator) fisComputeFiringStrength

Comparator

mfsRule2
(B2)

mfs1

B0 < B1

mfs1 < B2

8

8

8

8

P .3

0

1

CLK

Comparator

0

1
8

8

mfsRule0
(B0)

mfsRule1
(B1)

8

8

Firing
Strength

Reg.

E

D

LdFS

8

Strength
Firing

Strength
(V0-V11)

8

 88

CompInMF
Output Registers(fisComputeInput, fisTrapezoid)

Input
Value00

Reg.

E
D

Input
Value01

Reg.

E
D

Input
Value02

Reg.

E
D

Input
Value10

Reg.

E
D

Input
Value11

Reg.

E
D

Input
Value12

Reg.

E
D

Input
Value20

Reg.

E
D

Input
Value21

Reg.

E
D

Input
Value22

Reg.

E
D

LdIMFval00

LdIMFval01

LdIMFval02

LdIMFval10

LdIMFval11

LdIMFval12

LdIMFval20

LdIMFval2
1

LdIMFval22

IMFval00 (A00)

IMFval01(A01)

IMFval02(A02)

IMFval10 (A10)

IMFval11(A11)

IMFval12(A12)

IMFval20(A20)

IMFval21(A21)

IMFval22(A22)CLK

8

P.4

8

8

8

8

8

8

8

8

8

8

comparator

0

1
8

8

Trap1

Trap2

8

8 trap1 <
trap2

 89

SE
T

A
SE

T
B

CompInMF
MFParameters(fisComputeInputMf, fisTrapezoid)

 E

 D Para 0a
Reg.

 E

 D Para 1a
Reg.

 E

 D Para 2a
Reg.

 E

 D Para 3a
Reg.

 E

 D Para 1b
Reg.

 E

 D Para 2b
Reg.

 E

 D Para 3b
Reg.

16

MDin(15-0)

LdIMfP0a
(15-8)

(7-0)

(15-8)

(7-0)

(15-8)

(7-0)

(15-8)

(7-0)

LdIMfP2a

LdIMfP0b

LdIMfP2b

para0a_reg

para0b_reg

para1a_reg

para2a_reg

para3a_reg

para1b_reg

para3b_reg
CLK

P.1

8

8

8

8

8

8

8

8

 E

 D Para 0b
Reg.

para2b_reg

0

1

0

1

0

1

0

1

SelIMfpb

8

8

8

8

8

8

8

8
8

Para0 (a)

Para1 (b)

Para2 (c)

Para3 (d)

8

8

8

 90

CompInMF
TRAP1 (fisComputeInputMf, fisTrapezoid)

Input
Value
Reg.

E

D

Comparat
or

Comparator

Comparator

Subtractor

Para0 (a)

Para1 (b)

Input_val_reg
(x)

a

b

IV

a

I
V

IV

a

b

Subtractor

16

PBD(7-0)

CLK

8

8

8

8

8

8

Sel0

Sel1

Sel2

Sel3

para 1> Input_val_reg

Input_val_reg
>= para0

Para0 NOT EQUAL Para1

Input_val_reg_para0

Para1_para0
8

16

LDIV

div_out_Trap1

Divider
16b/8b

Multiply
X 256

Shift by 8
Subtractor

16 b

8

P.2

IV

IV

0

1

2

3

255

0

0
Trap1

8

 91

CompInMF
TRAP2 (fisComputeInputMf, fisTrapezoid)

Input_val_reg (IV)

Comparator

Comparator

Comparator

Subtractor

Para2 (c)

Para3 (d)

IV

IV

c

d

Subtractor

8

8

8

8

8

Sel3

Sel2

Sel1

Sel0

para 2 NOT EQUAL para 3

 para3 >=
Input_val_reg

Input_val_reg > Para2

para3_Input_val_reg

Para3_para2 8

div_out_Trap2

 8

8

16

d

c

d

c

d

8

8

8

8

X 256
Shift by 8

Subtractor
16 b

Divider
16/8

8

P.3

IV

Trap 2

0

1

2

3

0

0

8

8

255

 92

Eval1 (FisEvaluate1)

C
om

parator

0

firingStrength
V(0-11)

N
O

T EQ
U

AL
FSN

ot0
R

eg.
 Set

E

C
LK

LdFSN

01

C
lrFSN 127

outValue

FSN
ot0

8

C

C
onf

R
eg

ED

C
LK Ldconf

8

PBD
(15-0)

C
onfToPBD

8

16

8

 93

rule_out9 (Z9)

rule_out0 (Z0)

rule_out1 (Z1)

rule_out3 (Z3)

rule_out4 (Z4)

rule_out5 (Z5)

rule_out10 (Z10)

rule_out11 (Z11)

(FisEvaluate3)

Sug- Coeff
Reg0

E

D

Sug- Coeff
Reg1

E

D

LdSug0

Sug- Coeff
Reg2

E

D

Sug- Coeff
Reg3

E

D

rule_out6 (Z6)

rule_out7 (Z7)

rule_out8 (Z8)

8

8

rule_out2(Z22)
8

MDin (15-0)

CLK

16

(15-8)

(7-0)

(15-8)

(7-0)

LdSug2

8

8

8

8

P.1Eval5

 94

rule_out0(Z0)

rule_out1(Z1)

rule_out2(Z2)

rule_out3(Z3)

rule_out4(Z4)

rule_out5(Z5)

rule_out6(Z6)

rule_out7(Z7)

rule_out8(Z8)

rule_out9(Z9)

rule_out10(Z10)

rule_out11(Z11)

Adder
12b

12

12

0

8
firing Strength

V(0-11)

LdTW

ClrTW

4

4
SelRuleOut(3-0)

Multiplier
8b X 8b

=16b Adder
20b

0

4

16
20

12

20

total_w(ZA)

20

(FisEval4 and FisEval5)

8

P.2Eval5

0

1

2

3

4

5

6

7
8

9
1
01
1

8

8

8

8

8

8

8

8

8

8

8

8

20
total_wf (ZB)

ClrTWF

20

CLK

Reg
totalwf

E

D

LdTWF

Reg
totalw

E

D

CLK

12
Divider

20b/12b =
8b

8

outvalue

 95

A.4 FSM Controller ASM Charts

A.4.1 Self-Validation Controller ASM Charts

 96

(Read Cmd Reg)

(Clear stuff)

PBRF, PBW, Busy, RFA=4(SR),
Stat To PBD

(Write Busy to Status
Reg)

Go Busy 0002

A

PBRF, PBR, Busy, LdCmd, RFA=0(CR)

PBRF, PBW, Busy, RFA=4(SR),
Stat To PBD

Exec?

WaitEx0

NotBusy

1000

2000

1

0

Z

(Read Cmd Reg)

(Write NOT Busy to
Status Reg)

Exec?

CMD=1

0

0

1

1

PBRF, PBR, LdCmd, RFA=0(CR),
clrMAC, clrCnt, SetPA

Idle 0001

Reset

ASM Chart
SV-FPGA Controller

Cmd Handshake
P.1

 97

PMR, PMCe, LdImFp0a, IncMAC,
PBRF, PBR, LdIV, RFA=1(In0)

ImFinit0 0004

PMR, PMCe, LdImFp2a, IncMAC,

ImFinit1 0008

PMR, PMCe, IncMAC,

ImF1 0010
C

Count(0)Count=8

LdSug0 LdImfP0b LdImfP0a

PMR, PMCe, IncMAC,

ImF2 0020

0

1

1

0

 (Set A)

(Set B)

(Read Mem 0 (IMF param0, 1
Read RF1 (Input0)

(Read Mem 1 (IMF param2, 3

(Read Mem Even)

(Which param Reg Set to
Load (A or B) ?)

(Lost cycle?
Load Sugeno)

(Read Mem odd)

P.2

A

 Comp. Input MF Values 1

ASM Chart
SV-FPGA Controller

Count(0)Count=8

LdSug2 LdImfP2b LdImfP2a

B

0

1 0

1 (Set A)

(Set B)

 98

(Read RF2 (Input 1))

(Read RF3 (Input 2))

IMF3

Count=0

Count=1

Count=2

Count=3

Count=4

Count=5

Count=6

Count=7

LdInfVal22, ClrCnt

E

LdImfVal00

LdImfVal01

LdImfVal02,
PBRF, PBR, LdIV,

RFA=2 (in1)

LdImfVal10

LdImfVal11

LdImfVal12,
PBRF, PBR, LdIV,

RFA=3 (in 2)

LdImfVal20

LdImfVal21

C

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0(Count=8)

(Load Correct Output
Regs)

B

IncCnt

0040

Count(0)

SetPB SetPA

1

0

(Inc Cycle for next)

(Which Param set to Read
next?)

 Comp Input MF Values 2

ASM Chart
SV-FPGA Controller P.3

 99

LdFSn, ClrCnt, LdTW, LdTWf

IncCnt

Count=4

1 0200Eval 12

0400DivOut

0

1

(Load Total 11)

(Delay for Output Divider)

(Store Conf in RF5)

LdFS, LdFSn, IncCnt, LdTW, LdTWf

Count=11

0100Eval 1-11

0

(Load Firing Strength 1-11
Load Total 0-10)

LdFS, IncCnt, ClrFSn, ClrTW, ClrTWf

Eval0 0080

(Load Firing Strength 0)

P.4

E

 Evaluate Conf

ASM Chart
SV-FPGA Controller

PBRF, PBW, ConfToPBD, RFA=5(OutConf)

LdConf

Z

0800OutConf

 100

A.5 Timing Diagrams

A.5.1 Self-Validation Timing

 101

N
otes:

1. C
om

m
and handshake at start/end N

O
T show

n

2. R
egister File (R

F) and M
em

ory (M
em

) lim
ited to 1 R

d or W
r per clock

3. Values available in regs at end of clock show
n w

ith label

4. 8M
H

z(125ns) clock

5. A
llow

 3 clocks (375 ns) for divider to produce A
xx

6. A
llow

 5 clocks (625 ns) for divider to produce out

SV-FPG
A

 Tim
ing

P.1

8M
H

z
C

LK
1

5
10

15
20

R
FM
em

C
om

pInM
F

C
om

pFirSt

Eval1

Eval3

C
ount

(SelR
ule)

SelR
uleO

ut

R
1

(in0)
(in1)
R

2
(in2)
R

3

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

(IM
F Param

s)

A
00

A
01

A
02

A
10

A
11

A
12

A
20

1
2

3
1

2
3

1
2

3
1

2
3

1
2

3
1

2
3

1
2

3
1

0
1

2
3

4
5

6
7

 102

SV-FPG
A

 Tim
ing

P.2

8M
H

z
C

LK

25
30

35
40

45

R
F

M
em

C
om

pInM
F

C
om

pFirSt

A
rrayO

p

Eval1

Eval3

Eval4

Eval5

C
ount

(SelR
ule)

SelR
uleO

ut M
17

M
18

M
19

A
21

A
22

1
2

3
2

3

8
0

2
3

4
5

6
7

BxxV0
V1

V2
V3

V4
V5

V6
V7

V8
V9

V10
V11

Zxx

>0
>1

>4
>5

>6
>9

>10
>11

>2
>3

>7
>8

W
, X

*0
*1

*6
*9

*10
*11

*2
*3

*7
ZAZB

*4
*5

*8

1

8
9

10
11

12
0

1
2

3
4

5

2
3

4
5 O
ut

R
5

(C
onf)

10
4

5
6

7
8

9
10

11
1

2
3

(O
M

F Sug)

 103

A.6 MSF Hardware Block Diagrams

 104

 105

COMP
16
16

larea
rarea

COMP
16
16

larea
rarea

COMP
16
16

larea
rarea

00 2

2

4

4

00 2

2

4

4

2<< 8

8

8

8

8 8
poscen _

0

0

poscen _

8

8

8
snoofsensor

D

E

D

E

LdH

clk

8

8
sh _

eh _

Area Comp

rarealarea >

lareararea <

lareararea =

 106

 107

AREA (P1)

comp

8
88

8
8
8

8

8

8
8 comp

8

8
=

8 8
=

ct
sb

sbct ≤

0−larea

ebct ≥ct
eb

255 1_larea

8
8
8
8 comp

ct
sb
st

()stctsbct <> &&)(

ct
sb Logic

AreaTMP 2_larea

2_larea

1a

(2)

(1)

(0)

comp
8

8
8

8 8
=

ct
st

stct =

102 3_larea

8
8
8
8 comp

ct
st
et

()etctstct <> &&)(

8
88

8

ct

st

4_larea
2a

Unitmultiplier
MULTI 8

+8
102

(3)

(4)

−

−

 108

AREA (P2)

8
8 comp

8

8 8=

etct =ct
et

153 5_larea

8
8
8
8

comp

ct
et
eb

()ebctetct <> &&)(

8
88

8

ct
eb −

6_larea
0a

Logic
TMPAREA

8
8

255
−

tmpout

(5)

(6)

 109

 110

06
L

0_larea
8

8

4

6
L

8

8

8

6_larea

6

+

+

E

D

areaclr _

clear

E

D

areaclr _

clear

Area (P3)

1_larea

6

16

6

16
larea

int_ polft

16

6

siglarea _

clk

fldarea _

8
8
8
8

0

1
2

2

3
3

intpo

0
2

8
16

4

32

8
16
32

0
2

4

 111

 112

outtmp _

AREA (P4)

8
8

8
8
8
8

0a
1a
2a

ht Unit
multiplier
MULTI 16_ outmm *

bb 8*16
102 b

b
16

2424_ outmm
16 24

TMP. AREA Logic

MULTI muliplier Unit

8

)2(
)4(
)6(

1
2
4

8
8
8

8

)2(
)4(
)6(

1
2
4

8
8
8

1a
2a
0a

1a
ht

0a

1mul

2mul

bb 8*8
16

16_ outmm

11,1 →aa
2,2 →hta
40,0 →aa

Note: All the multiplier & divider units are implemented outside
the Area module

 113

+

bbb 16816 =+

E

D

E

D reg
Cen

Clk

snoofsensor

16

16

8

sdata
addcen _

bb
b 88

16 =

Ldcen

8

CENTROID

sigaddcen __

reg
add
Cen

8

Center

addLdcen _

sigcen _

cenClr _

 114

 115

24 16/24

16

outmul 8_16

stdsqu _

16
16
16 0

1
2

addcen _
outmul 8_8

conffus _

2/0
1

8
8

snoofsensor

255

2
2

16
8

8/16

D
8 24

outdiv 16_24

1624dLd

clk

D
8 24

outdiv 8_16

816dLd

clk

816dsel

Dividers for MSF

NOTE:
Sel6d_8 Inputs from

0 : centroid
1 : Trap Height
2 : Fused Conf

 116

 117

8 8

Fused_Conf (P1)

8
8
8
8

=

=

8
8
8

8

8
8

8

8

8
8

8

)0(bst _
confen _
ben _

255

confst _
bst _

255

Comp

Comp

Comp

confst _
bst _
tst _

confst _
bst _

255

8

8

8

8

8

8

8

)__(&&)__(benconfenbstconfst ><

)__(&&)__(benconfstbstconfst <>

0_ conffus

1_ conffus

bstconfst __ =

2_ conffus

0c

16_24divin

)2(

)1(

confst _

8

8
8

102
+ 8

4_ conffus
8_8mulin

8
8

Comp

confst _

tst _
ten _ 8

)__(&&)__(tenconfsttstconfst <>

8
8

confst _
ten _ − 8

1c

102 5_ conffus

8
8

confst _

tst _ 8
Comp tstconfst __ =

8
8

confst _

ten _ 8
Comp tenconfst __ =

)3(

)4(

)5(

8
153

8
3_ conffus

−

−

=

=

 118

8

Fused_Conf (P2)

8
8

confst _
ben _ 8

Comp benconfst __ =

8
8

Comp

confst _
ten _
ben _ 8

)__(&&)__(benconfsttenconfst <>

8
8

confst _
ben _

− 8
2c

8
indiv _

=
8

6_ conffus

8
0 = 8

7_ conffus

8
255 =

8
8_ conffus

8
8

confen _
ben _ 8

Comp benconfen __ =

)6(

)7(

)8(

8
8
8

Comp

confen _
ten _
ben _ 8

)__(&&)__(benconfentenconfen ><

8
8confen _

ben _
− 8

3c

8
8
8

255
indiv _

9_ conffus
−

(9)

 119

 120

Fused_Conf (P3)

8
8

confen _
ten _ 8

Comp tenconfen __ =

8
153 = 8

10_ conffus

8
8

confen _

ten _ 8Comp
)__&(&)__(tenconfentstconfen <≥

8

tst _

8
8
8

11_ conffus

−
confen _
tst _ 4c

8
8

8

102
8_8mul

(10)

(11)

8
8

confen _
bst _ 8

8
8

confen _

tst _ 8
tstconfen __ =

Comp

8
8

confen _

tst _ 8Comp
)__&(&)__(tstconfenbstconfen <≥

8

bst _

−
5c

8
102

= 8
12_ conffus

8 = 8
13_ conffusindiv _

)12(

)13(

*

 121

Fused_Conf (P4)

Note: 16/8 divider is implemented outside fus_conf module

8
8

8

0_ conffus

13_ conffus

1_ conffus

)0(
)1(

)13(
parconffus __

+ D

Ldconf

clk

16

accconffus __

fusconclr _

8/16 8

conffus _

snoofsensor
8

finfusconf _8
16

 122

0c

3

8

5c 8

0

5

0c

3

5c 8

0

5

8
8
8
8
8

ht
2c
3c

ht

selmul

selmul 8*8 8*16 16/24 8

88

8

8

fusmul _1

fusmul _2

16

16 24

8_8mul

tstd

indiv _
102

Fused_Conf (P5)

NOTE: All multipliers and dividers are implemented outside the fus_conf module.
The dotted lines show the buses going outside the module

8

 123

8

8
8
8

8
8
8

8
8

8

8

8

8

8
8

8
8
8
8

8
8

E

D

E

D

E

D

E

D

E

D

8

8

8

8

8

8

8

8

8

Ldinp
nosensel __

0_ toprstart
1_ toprstart
2_ toprstart
3_ toprstart

0_ baserstart
1_ baserstart
2_ baserstart
3_ baserstart

0_ baserend
1_ baserend
2_ baserend
3_ baserend

1_ toprend
0_ toprend

2_ toprend
3_ toprend

0_ rheight
1_ rheight
2_ rheight
3_ rheight

htmux

etmux

ebmux

sbmux

stmux

sight _

sigst _

sigsb _

sigeb _

siget _

reght _

regeb _

reget _

regsb _

regst _
st

sb

et

eb

ht

INPUT MUX

8
8
8

8
8

E

D 8

0_ rm
1_ rm
2_ rm
3_ rm

mux
slope sigm _

regm _ m

16
16
16

16
16

E

D 16

clk

0__4 rstdsq
1__4 rstdsq
2__4 rstdsq
3__4 rstdsq

mux
sq4 sigstdsq __4

regsq _4 stdsq _4

 124

Multipliers for MSF

fusmul _1

fusmul _2

08

8
8
8 1

2
3

08

8
8
8

1
2

2

2

sstd

sstd

1mul

2mul
slope

inmul _

8

8

8*8 D
16

outmul 8_8

88mLd

clk

outmul 8_8

3

16

8

8*16 D
24 24

outmul 8_16

816mLd

clk102

8minstd

8 4

4
16

NOTE:
Sel_mul8_8 Inputs from

0 : val_sen
1 : Area
2 : Trap Height
3 : Fused Conf
4 : Span

8_8_ mulsel

 125

 126

REARRANGE

Output
0Reg

Output
1Reg

Output
12Reg

Output
11Re g

0Reg

1Reg

12Reg

11Re g

SORT
ODD

SORT
EVEN

SORT

asctrap 0_

asctrap 1_

asctrap 11_

asctrap 12_

0_2tarr

1_2tarr

11_2tarr

12_2tarr

0_3tarr

1_3tarr

11_3tarr

12_3tarr

8

8

8

8

8

8

8

8

8
8

8

8

0__ muxtarr

1__ muxtarr

11__ muxtarr

12__ muxtarr

00_ rtrap

10_ rtrap

33_ rtrap

ct

0__ regtarr
1__ regtarr

11__ regtarr
12__ regtarr

seltrap

20r
30r
01r
11r

clk

Span

8minstd
*

)8*8(
8

3
E

D reg
Span

Ldspan

outmul 8_8
16 16

NOTE: 8*8 multiplier is used to calculate 3 * stdmin for span module.
 The multiplier is implemented outside the Rearrange module.

 127

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8
=

8 8

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8

..EU8
8
8

8

0__ muxtarr
1__ muxtarr

2__ muxtarr
3__ muxtarr

4__ muxtarr
5__ muxtarr

..EU8
8
8

8
..EU8

8
8

8

6__ muxtarr
7__ muxtarr

8__ muxtarr
9__ muxtarr

10__ muxtarr
11__ muxtarr

12__ muxtarr
8 8

Even Sort Odd Sort

0_2tarr
1_2tarr

2_2tarr
3_2tarr

4_2tarr
5_2tarr

6_2tarr
7_2tarr

8_2tarr
9_2tarr

10_2tarr
11_2tarr

12_2tarr=

0_3tar

1_3tar
2_3tar

3_3tar
4_3tar

5_3tar
6_3tar

7_3tar
8_3tar

9_3tar

10_3tar

11_3tar
12_3tar

SORT

 128

 129

COMP

trap
bst _
tst _

)_()_(tsttrapandbsttrap <≥

Trap_ht (p1)

COMP

trap
tst _
ten _

)_()_(tentrapandtsttrap ≤≥

COMP

trap
ten _
ben _

)_()_(bentrapandtentrap ≤>

COMP

trap
bst _
ben _

)_()_(bentraporbsttrap ><

8
88

8
8 −

trap
bst _

b
bb

16
8*8

=1m 16
b

b
b

8
8

16

=255
8

1h

8
88

8
8 −

trap

ben _
b
bb

16
8*8

=1m 16
b

b
b

8
8

16

=255
8

2h

(0)

(1)

(2)

(3)

 130

Trap_ht (p2)

0
1
2
3

)0(
)1()2()3(

0
1h

height

2h

parht _

b
bb

16
1616

=
+ parsumht −_

E

D

hsumclr _

clear

hsumLd −

16
clk

sumh −

16

E

D

hsumclr _

clear

E

D

hsumclr _

clear

E

D

hsumclr _

clear

16

16

16

)0(_ sumh

)1(_ sumh

)40(_ sumh
16

16

clk

hsumarrLd −

16
8

8

8

8

8

 131

 132

COMP
)(int__ indsumh

max)(int__ >indsumh16

16

16

32

32 32

16

32

mxindLd _
max

sigmax_

sigind _max_

clk
indint_

indmax_

E

D

hsumclr _

clear

E

D

hsumclr _

clear

1

0

1

0
16 16

Trap_ht (p3)

(from master
controller)

 133

 134

D

E

COMP16

1>>

1>>

+

+

16

upper

lower

)_(_ indmxsumh
)1_(_ +indmxsumh

)_(_ indmxsumh
)1__(_ indmxsumh

D

E

D

E

1conf

0conf

0tt

1tt

8

8

8

8

8

8

8

16

16

16
16

0

1

clk

clk

clk

trap

Ldfusval

]_[indmxtrap

]_[indmxtrap

0_ mxLdtap

1_ mxLdtap

0_ mxtrap

1_ mxtrap

sigvalfus __ valfus _

lowerupper <=

8

NOTE: Trapht2 and max all run parallel
Trapht2, max, fus_val are combined into a single module trap2max.vhd

Trap_ht (p4)

sub

sub

 135

8

8

8
8

8
8

COMP
8
8

x
y

yx >

Unit Element (UE)

y

x

a

b

1
0

1
0

 136

D
E

D
E

D
E

D
E

D
E

D
E

16

MDin

Ldconf

8

8

8

8

8

8

8

8

8

8

clk

)0:7(

)8:15(

)0:7(

)8:15(

)8:15(

)0:7(

Aconf _

AsdatA _

AsstD _

Bconf _

BsstD _

BsdatA _

0

1

0

1

0

1

8

8

8

8

8

8

Brsstd _

Arsstd _

Brsdata _

Arsdata _

Arconf _

Brconf _

selAB

conf

sdata

sstd

Validate Sensor (P1)

 137

1

0 8
8

1

0 8
8

1

0 8
8

1

0 8
8

1

0 8

1

0 8

comparator
8

conf

8

8

8

8

8

8

0

0

0

0

0

0

1_trap

0_trap

2_trap

3_trap

topstart _

basestart _

topend _

baseend _

height

slope

Validate Sensor (P2)

8
basestart _

topstart _
8

8

sdata
8

topend _
8

(/)
b88

8 =

816
16 =

(/)

baseend _
+

)8(b

+
)8(b

+
)8(b

tstdh _

255

stdsq _5

65025+
)16(b

8

sstd 2>>

1<<

1>>

qstd

tstd

hstd

* 16
)8*8(2<<

stdsq −4

)8(b

)8(b
Sub

Sub

 138

E

D

E

D

E

D

E

D

E

D

clk

8 sdata
0Ldvs

88

8

8

8

8

E

D

E

D

E

D

E

D

E

D

8

8

8

8

8

8

8

8

8

8

8

8

8

8

01regt

0streg

00regt

0sbreg

0etreg

02regt

0ebreg

03regt

0hreg

0sreg

0_1 rtrap

0_0 rtrap

0_2 rtrap

0_3 rtrap

0_ toprstart

0_ baserstart

0_ toprend

0_ baserend

0_ rheight

0_ rslope

VALIDATE SENSOR (p3)

1_trap

topstart _

0_trap

basestart _

topend _

slope

height

3_trap

baseend _

2_trap

E

D16

0_4 stdrsqstdsq _4 04regsq
16

 139

VALIDATE SENSOR (p4)

Note: The same diagram can be repeated with appropriate modifications
for the rest of the sensors

E

D

E

D

E

D

E

D

E

D

clk

1Ldvs

88

8

8

8

8

E

D

E

D

E

D

E

D

E

D

8

8

8

8

8

8

8

8

8

8

8

8

8

8

11regt

1streg

10regt

1sbreg

1etreg

12regt

1ebreg

13regt

1hreg

1sreg

1_1 rtrap

1_0 rtrap

1_2 rtrap

1_3 rtrap

1_ toprstart

1_ baserstart

1_ toprend

1_ baserend

1_ rheight

1_ rslope

1_trap

topstart _

0_trap

basestart _

topend _

slope

height

3_trap

baseend _

2_trap

E

D16 16

1_4 stdrsq
stdsq _4 14regsq

 140

REFERENCES

[1] Nagrath, I.J and Gopal, M, Control Systems Engineering, Second Edition, New Age

International (P) Ltd., Publishers, 1995.

[2] Maciejowski,J.M, Multivariable Feedback Design, Addison-Wesley Publishers Ltd.,

1990.

[3] Richard R.Brooks and S.S.Iyengar, Multi-Sensor Fusion - Fundamentals and

Applications with Software, Prentice Hall, Inc., New Jersey, 1998.

[4] Ren C.Luo and Michael G Kay, "Multiple Integration and Fusion in Intelligent

Systems," IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,

September 1989.

[5] R.C.Luo, M.Lin, and R.S.Scherp, "Dynamic multi-sensor data fusion system for

intelligent robots," IEEE Journal Robotics and Automation, vol. RA-4, no. 4, pp. 385-

396, 1988.

[6] Keith E. Holbert, A.Sharif Heger and Nahrul K. Alang-Rashid, "Redundant Sensor

Validation by Using Fuzzy Logic," Nuclear Science and Engineering, vol. 118, pp.

54-64, 1994.

 141

[7] Asok Ray and Rogelio Luck, "An Introduction to sensor Signal Validation in

Redundant Measurement Systems," IEEE Control Systems Magazine, vol. 11, no. 2,

pp. 43, Feb 01, 1991.

[8] Marcello R Napolitano, Charles Neppach, Van Casdorph , Steve Naylor, Mario

Innocenti and Giovanni Silvestri, "Neural Network Based Scheme for Sensor Failure

Detection, Identification and Accomodation," Journal of Guidance, Control and

Dynamics, vol. 18, no. 6, Dec 1995.

[9] Mohamed Abdelrahman and Senthil Subramaniam, "An Intelligent Signal Validation

System for Cupola Furnace - Part 1 and Part 2," American Control Conference, San

Diego, 1999.

[10] Janice C, Yang and David Clarke, "A Self-Validating Thermocouple," IEEE

Transactions on Control Systems Technology, vol. 5 no. 2 March 1997.

[11] M.P.Henry and D.W.Clarke, "The Self-Validating sensor: Rationale definitions,

and examples," Control Eng. Practice, vol. 1, no. 4, pp. 585-610, 1993.

[12] T.M.Tsai and H.P.Chou, "Sensor fault detection with the single sensor parity

relation", Nuclear Science and Engineering," vol. 114, pp. 141 1993

 142

[13] Mathieu Mercadal, "Sensor Failure detection using Generalized Parity relations

for Flexible Structures," Journal of Guidance, Control and Dynamics, vol. 12, no. 1,

Feb 1989.

[14] Jeff Frolik, C.V.PhaniShankar and Steve Orth, "Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure," In Proceedings of American

Control Conference, June 2000.

[15] Bernard Friedland, Advanced Control System Design, Prentice Hall, Inc., New

Jersey, 1996.

[16] K.J.Astrom and B.Wittenmark, Adaptive Control, Addison-Wesley Publishing

Co., Reading, MA 1989.

[17] Liu Hsu; Aldayr D. de Araujo; Ramon R. Costa, "Analysis and design of I/O

based variable structure adaptive control. (input-output variable structure model

reference adaptive control systems)," IEEE Transactions on Automatic Control, vol.

39, no.1, pp. 4, Jan 1994.

[18] E. Burdet, A. Codourey, "Evaluation of parametric and nonparametric nonlinear

adaptive controllers (Nonlinear controllers)," Robotica, vol. 16, no. 1, 1998.

 143

[19] Judith Hocherman-Frommer; Sanjeev R. Kulkarni; Peter J. Ramadge, "Controller

switching based on output prediction errors," IEEE Transactions on Automatic

Control, vol. 43, no. 5, pp. 596, May 1998

[20] Michel Barbeau; Froduald Kabanza; Richard St.-Denis, "A method for the

synreport of controllers to handle safety, liveness, and real-time constraints," IEEE

Transactions on Automatic Control, vol. 43, no. 11, pp. 1543, November 1998.

[21] Specht, D.F., "Probabilistic Neural Networks," Neural Networks, November

1990.

[22] Ronald R. Yager and Dimitar P. Filev, Essentials of Fuzzy Modeling and Control,

John Wiley & Sons, 1994.

[23] Jeff Frolik and Mohamed Abdelrahman, "Synreport of Quasi-Redundant sensor

Data: A Probabilistic Approach," In Proceedings of American Control Conference,

2000.

[24] Hassan K. Khalil, Nonlinear Systems, Second edition, Prentice Hall Inc., 1996

[25] Mohamed Abdelrahman, Kevin Moore, Eric Larsen, Denis Clark and Paul King,

"Experimental Control of a Cupola Furnace," In Proceedings of American Control

Conference, 1998.

 144

[26] Pascal Gahinet, Arkadi Nemiroviski, Alan Laub, and Mahmoud Chilali, "LMI

Control toolbox 1.0," The Math Works Inc.

[27] Jeff Frolik, C.V.Phanishankar and Steve Orth, “Fuzzy Rules for Automated

Sensor Self-Validation and Confidence Measure”, Proc. of American Control

Conference, 2000, pp. 2912-2916.

[28] Mohamed Abdelrahman, Parameshwaran Kandasamy and Jeff Frolik, “A

Methodology for the Fusion of Redundant Sensors”, Proc. of American Control

Conference, 2000, pp. 2917-2922.

[29] Jeff Frolik and Mohamed Abdelrahman, “Synthesis of Quasi-Redundant sensor

Data: Probabilistic Approach”, Proc. Of American Control Conference, 2000, pp.

2922-2926.

[30] Vipin Vijayakumar, Mohamed Abdelrahman, Jeff Frolik, "A Convenient

Methodology for the hardware implementation of fusion of Quasi-Redundant

Sensors", Proc. Of 32nd South-Eastern Symposium on System Theory, Florida, Mar

2000, pp. 349-353.

 145

