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Chapter 1 

1.1 Introduction 

 

The cupola furnace is used by the iron foundry industry to melt scrap steel, cast 

iron and alloying materials into a consistent grade of iron for casting purposes.  There are 

approximately 400 cupolas in the United States, which accounts for 70% of cast iron 

production [28]. With an industry estimate of 60% yield on castings, this equates to the 

direct production 1.204 million tons of carbon generating 4.412 million tons of carbon 

dioxide per year.  This amounts to 1-2% of the total annual national production of green 

house gas [29].  The cupola has maintained its competitiveness for several reasons.  

Compared with competing technologies such as arc or induction melting, the cupola uses 

the energy in coal more efficiently because it does not have to go through the 

intermediate step of producing electricity, and the required coke making consumes little 

energy. The combustion products in cupola melting are easily contained, another 

advantage over arc melting.  The cupola is a relatively simple device that can be made in 

many sizes to suit the molten metal needs of foundries of various sizes.  

While cupola melting is simple in principle— burning coke with an air blast and 

melting metal— the actual physical and chemical details of the process are quite 

complex, and the phenomena occurring in the melt zone are difficult to measure directly 
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because of the aggressive chemical environment that exists inside the cupola. Controlling 

these phenomena is desirable, however, for efficient energy use, for producing iron of 

acceptable quality, and for reducing the environmental impact of the melting process.  

The inevitable random variations in charge composition, blast effectiveness, and even 

local meteorological conditions, however, lead to a degree of variability in the cupola 

output.  This variability can be reduced by expert operation of the cupola by experienced 

personnel.  Reducing this variability is more important for some cast products than for 

others; where iron temperature and composition are crucial, as in the production of 

automotive parts, holding furnaces, sometimes hundreds of tons in size, are used to pool 

the output of one or more cupolas, and temperature and composition can be adjusted 

before the hot metal goes to the casting line [28].  

The economic and environmental costs of this variability can be substantial.  Iron 

that fails to meet specifications can cause substandard castings or even casting failure; the 

material may be re-melted, but the energy spent melting it the first time is wasted.  The 

costs of installing, maintaining, and operating large holding furnaces to level out the 

variability is an additional cost of producing iron.  Materials such as coke breeze (fines 

from the handling of coke) that would cause poor operation if charged from above can 

also be injected through the tuyeres for added energy; the incinerator-like nature of the 

cupola incorporates these, and even other hazardous wastes unrelated to cupola operation, 

into the relatively benign cupola outputs: cast iron, CO, CO2, and slag.   
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1.2 Objectives and Scope of the Project 

The purpose of the project was to develop and demonstrate an intelligent, integrated 

industrial process sensing and control system, or PSCI 3  for short, for the foundry cupola, 

the primary industrial process used for producing cast iron.  However, the PSCI 3  is a generic, 

enabling, cross-cutting technology that can be broadly applied to advanced process sensing and 

control problems in the ferrous metal casting industries as well as in other industrial 

environments.  The project addressed two main objectives:  

 

A. Development of a generic architecture for the integrated, intelligent industrial process 

sensing and control system. The proposed PSCI 3  architecture is characterized by 

• Intelligent signal processing capabilities and sensor fusion methodologies, 

• Intelligent algorithms for hybrid model fusion, 

• Methodologies for integrating intelligent signal analysis and sensor and model 

fusion algorithms with intelligent model-based control methodologies, 

• An object oriented generic architecture for integrating all system components. 

• Implementation of the intelligent signal processing and sensor fusion 

algorithms through hardware realization using reconfigurable logic, 

B.  Demonstration of the application of PSCI 3  to the specific industrial setting of cupola iron 

melting furnaces).  The demonstration will include: 
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• Testing of the developed algorithms using experimental data,  and static and 

dynamic models available from a production cupola and the ALRC research 

cupola, 

• Implementation of the developed algorithms on the 18-inch research cupola at 

DOE’s Albany Research Center (ALRC) , 

• Testing the developed PSCI 3  for regulations of melt rate, temperature, 

and selected iron composition on the ALRC experimental cupola furnace.
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1.3 Deliverables 

The final goal of this project was the development of a system that is capable of controlling 

an industrial process effectively through the integration of information obtained through 

intelligent sensor fusion and intelligent control technologies.  The industry of interest in this 

project was the metal casting industry as represented by cupola iron-melting furnaces.  

However, the developed technology is of generic type and hence applicable to several other 

industries. The system architecture was divided into the following four major interacting 

components:   

1. An object oriented generic architecture to integrate the developed software and hardware 

components 

2. Generic algorithms for intelligent signal analysis and sensor and model fusion 

3. Development of supervisory structure for integration of intelligent sensor fusion data into 

the controller 

4. Hardware implementation of intelligent signal analysis and fusion algorithms  

Table 1-1 lists the deliverables as they appeared in the proposal.  They are listed here 

for completeness.  As will be illustrated in the current report, the objectives stated in the 

proposal have been achieved. 
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Table 1-1 I3PSC Project Tasks 

Task # Description 

1 Generic Structure for Integrating Sensor Fusion and Control 

System Components  

2 Algorithms for Intelligent Signal Preprocessing, Multi-Modal 

Sensor Fusion, Model Fusion, Sensor and Model Fusion  

3 Re-configurable Logic Implementation for Intelligent Signal 

Processing and Sensor Fusion Algorithms 

4 Algorithms for Integration of Intelligent Sensor Fusion Data into 

the Controller 

5 Prototype Implementation and Testing for ALRC Cupola 

 

1.4 Project Organization, Administration, and Execution 

1.4.1 Management Organization 

 

This project represented a model for collaboration between technical developers, 

industry oversight, and end users as represented in Figure 1.  The technical expertise was 

provided by: 

1- Tennessee Technological University ((TTU) as the main contractor,  
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2- Utah State University (USU) as a subcontractor, 

3- Idaho National Environmental and Engineering Laboratory (INEEL) as a 

subcontractor, and 

4- Albany Research Center (ALRC) as a subcontractor. 

The industry oversight was provided by American Foundry Society (AFS) and the end 

users represented by General Motors (GM).and US Pipe. 

Detailed management organization of the project technical development team is shown in 

Figure 2. The main tasks of the project are listed in Table 1 along with the groups responsible 

for the completion of each task.    

 

1.4.2 External Advisory Board 

In a kickoff meeting in Detroit in January 1999, TTU, USU, INEEL, GM and 

AFS agreed to create an external advisory board for the project under the direction of the 

AFS.  This board had representatives from foundries and industrial control companies 

and will serve to assess the progress of the project and the achievement of its goals.  

Collaborators arranged several meetings with the advisory board over the period of the 

project. These meeting were coordinated with meetings of the AFS cupola steering 

committee.  The purposes of these meetings were to review the status of the completion 

of the project, exchange ideas among collaborators and external advisory board and to 

inform the industry about the benefits of the technology and its potential advantages.  
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1.4.3 Coordination of Teams Efforts 

 

Coordinating the efforts among the teams working on the project was the 

responsibility of the principal investigator.  This coordination was achieved through 

continuous communication through: 

• Use of Email and Phone, as needed, to address individual teams concerns, problems 

or achievements.  Emails could be addressed to a specific team leader or to the PI. 

• Conference calls were scheduled as needed, among TTU investigators and 

investigators from USU and INEEL to discuss the progress and coordinate the efforts. 

• The meetings with the advisory boards were used to have technical meeting among 

the technical developers at TTU, USU, INEEL, and ALRC. 

• A web site and ftp sites were developed where technical materials were exchanged 

among the collaborators. (www.ece.tntech.edu/I3PSC) 
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Figure 1-1: Graphical Representation of Project Organization 

 

 

Figure 1-2 Detailed representation of Project Organization 
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1.4.4 Overall System Vision 

Figure 3 shows a schematic of the different components developed in this project 

and how they are tied together for a cupola furnace application.  The system is generally 

divided into online and offline components.  The offline analysis component is aimed at 

analyzing the data collected during a heat and plan for next heats.  This analysis is based 

mainly on cupola models.  The model currently in use is the model developed by the 

American Foundry Society (AFS).  However, the developed tool can be adapted to accept 

other models as they become available.  The online component is aimed at actual analysis 

and control of the cupola furnace during a heat.  It is composed of several modalities that 

handle the data as it is collected from the sensors, fuse this data along with other data that 

are pertinent to the cupola operation such as data coming from other sensors, virtual 

sensors, models, or expert systems (MMSF).  The data is then fed to an intelligent 

controller, which decides based on the required operational parameters, which input 

variables to manipulate.  The required operational parameters are fed to the controller 

using the planner.  The planner can be used, by the user, to plan, offline, how the heat 

will be conducted. However, it can also be used online to make changes, as appropriate, 

to the heat plan. 
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Figure 1-3 Overall System Vision for I3PSC applied to Cupola Furnaces 

1.5 Evaluation based on Proposed objectives: 

In fulfilling the proposed objectives, the following has been achieved: 

• Innovative sensor fusion algorithms based on a new concept has been developed, 

implemented and tested.  These Algorithms allow for the fusion of quasi-

redundant sensors data and produces a best estimate and  a parameter  indicating  

the degree of confidence in the measurement. The algorithms were presented in 

conference publication namely, the American Control Conference (ACC), and 
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published in the prestigious journal of IEEE Transactions on Instrumentation and 

Measurements. 

• The developed algorithms were improved to incorporate trend information as well 

as linguistic information.  This allows for the fusion of information from sources 

other than physical sensors such as virtual sensors, models and expert system 

information. 

• Generic algorithms for the integration of sensing and control based on the 

previously developed algorithms for sensor fusion were developed and 

implemented. 

• The developed generic algorithms for sensor fusion and integration of sensing and 

control represent advances in basic science.  The researchers have also presented 

application specifically for cupola furnaces.  These results were presented at 

professional conferences with audience interested in the advancement of melting 

methods.  

• Algorithms for the implementation of the sensor validation and multiple sensor 

fusion algorithms on hardware were developed, simulated and tested .     

• A generic data structure and an object oriented based software package were 

developed for the incorporation of the different algorithms.  The current package 

incorporates the following modules: 

o A Data Acquisition modality for interfacing with existing data acquisition 

system in a cupola or other industrial plant, 
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o A planner modality where a plan for the cupola heat can be developed, 

o  A sensor fusion modality, 

o A virtual sensors modality for predicting values of some important 

parameters based on other system measurements, 

o A controller modality for producing suggested values for the manipulated 

variables based on the system requirements, 

o A monitoring modality for monitoring trends of specific variables and 

alerting operator when certain patterns take place. 

The software and data structure were designed to allow for easily 

incorporating other modalities and modifying the existing ones. 

• The integrated system was successfully demonstrated on a research cupola facility 

in Albany Research Center, Albany, Oregon.  The demo involved successful 

interface of the developed system to the existing DAQ system, monitoring and 

controlling the main parameters of the cupola furnace, namely, molten iron 

temperature, melt rate and Carbon composition using manipulated variables, 

namely, oxygen enrichment, blast rate, steel/cast ration and coke/metal ratio.  The 

control system ability to achieve and maintain operational parameters as well as 

reject disturbances and minimize transition periods was illustrated. 

A list of the papers supported by the project and published in refereed journals 

and conferences is presented in Appendix 1.A.  A list of academic theses supported by 
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the project is listed in Appendix 1.B.  Other information pertaining to the project 

achievements were presented in previous reports [32]  - [34]. 

 

1.6 Summary and Report Organization 

In summary, the project has achieved all the proposed objectives starting from 

development of algorithms for sensor validation and fusion, integration of sensing and 

control, development of a package for integrating system components and a proof of 

concept of using FPGA to implement sensor fusion algorithms.  The project has 

supported the development of basic science in the form of publications in professional 

refereed journals and conferences as well as practical and applied science with reference 

to cupola furnace as evidenced by demonstration using cupola furnace data and models 

and actual demo plans on a research cupola.   

This report is divided into two sections.  Section 1 describes a subset of the developed 

algorithms and results of demonstration runs.  Chapter 1 summarizes the project 

organization, objectives and results of the project.  Chapters 3 and 4 provide a description 

of the basic algorithms that were developed for sensor fusion and control.  More 

information can be found in the published work listed in Appendices 1.A and 1.B. A brief 

description of the developed software package is provided in the form of a user manual in 

Appendix A of Section One.  Section 2 describes the hardware implementation.  Chapters 

1-3 describe work accomplished during project years.  Chapter 4 gives a summary of the 



 

 

 

 

27

work accomplished and future recommendations. The section ends with Appendices that 

describes more details of the algorithms hardware implementation. 
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Chapter 2 

2 MOTIVATION and OVERVIEW 

Feedback control systems have gained extreme importance in modern engineering 

world.  Feeding back the output has made it possible for systems to perform their 

assigned tasks with better reliability.  A number of control techniques have been 

developed to achieve the desired response from a feedback control system.  These 

techniques achieve accurate tracking of the system output along a specified reference 

value [1].  There are also robust techniques that can achieve good performance even if the 

system is not modeled accurately [2].  Robust feedback control system also reduces the 

sensitivity of the system with respect to the system parameter variation and external 

disturbances.  A schematic diagram of a general feedback control system is shown in 

Figure 2-1. 
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Figure 2-1 Schematic Diagram of a Feedback Control System 
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2.1 Motivation 

Sensors are used to measure and feedback output data in feedback control systems.  

The feedback data are used to decide the necessary control action.  The performance of a 

feedback control system depends heavily on the reliability of the sensors' readings.  There 

are different reasons why the sensor data may not be reliable. These reasons include:  

1) Sensors may be prone to high levels of noise and disturbances during measurement 

and transmission of the data;  

2) Sensors' characteristics may vary with changes in environmental parameters, such as 

the temperature, humidity, or due to aging;  

3) Accurate measurement of some variables may not be possible due to the physical 

nature of the process; and 

4) Failure of electronic circuitry of the sensor.  

There are several methods available to increase the reliability of process 

measurements using redundant sensors. The redundancy may be achieved through 

physical sensors, analytical sensors, or inferential sensors.  Analytical sensors depend on 

a model of the physical process to estimate the value of the intended system parameter.  

Inferential sensors utilize other output variables to infer estimates for different variables.  

Techniques such as signal validation and multiple sensor fusion are usually used to get a 

better estimate for the desired variable.  These techniques will be discussed in detail in 
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Chapter 2. A schematic diagram of a closed loop system that utilizes the multiple sensor 

fusion is presented in Figure 2-2. 
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Figure 2-2  A Feedback Control System with Multiple Sensor Fusion 

The above techniques are used to reduce the sensitivity of the system performance 

with respect to sensors' failures.  This is accomplished by not relying on a single sensor 

measurement.  For multiple sensor fusion or signal validation techniques to work 

satisfactorily, certain conditions need to be satisfied.  These include, for example, the 

availability of redundant sensors, an accurate plant model, or known relations between 

variables.  Since most techniques still rely back on other sensors for the feedback value, 

there will be situations where the feedback value is not reliable.  A measure for the 

performance of the signal validation or multiple sensor fusion technique needs to be 

developed and utilized in the controller structure.  
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2.2 Research Approach 

The research focus of this report is to develop a methodology to prevent the 

performance degradation of an automatic control system due to unreliable sensor data.  

The suggested solution to the problem is twofold:  

1) The development of a multiple sensor fusion algorithm that can produce a best 

estimate and reliability measure for the estimate of the sensor data. 

2) The development of a controller structure, which utilizes the estimate and the 

reliability measure to change its performance, so as to prevent costly mistakes. 

The methodology developed should reduce the sensitivity of the system to the 

sensor data when the reliability of the sensor data is found to be low.  This is achieved by 

changing the controller's dependability on the sensor signal according to the reliability 

measure from the multiple sensor fusion.    A block diagram of the feedback control 

system to be developed is shown in Figure 2-3. It resembles Figure 2-2, but for the 

additional flow of information, the confidence, from the multiple sensor fusion block to 

the controller. 
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Figure 2-3 Block Diagram of Proposed System 

 The problem considered in this report is that the performance of the 

feedback controller degrades when the feedback signal from the sensor data is unreliable.  

The problem of increasing the reliability of the feedback signal was tackled in many 

ways.  The most common method used to increase the reliability of the feedback signal is 

multiple sensor fusion.  One other approach is to check the reliability of each sensor by 

using self-validation.  In this chapter, a quick review of some of these multiple sensor 

fusion and self-validation techniques is presented.  A basic overview of adaptive 

controllers and some adaptive methods are also discussed.  

2.3 Multiple Sensor Fusion and Signal Validation 

2.3.1 Multiple Sensor Fusion 

Sensor fusion is defined as the method to fuse or manipulate information from 

different sensors and come up with one value of interest.  These sensors may measure the 
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desired measurand or may measure different values, which should be combined to get the 

required information.  If the different sensors are measuring the same quantity, then these 

sensors are called redundant sensors.  In this report multiple sensor fusion is constrained 

to mean only the fusion of redundant sensors.   

There are many reasons why multiple sensor fusion is used.  Combining several 

sensors' data will give more accurate information of a measurand improving the 

reliability of measurement data.  The measurement data become less sensitive to noise 

and disturbances that might not affect all the sensors, when many sensors are used.  

Efficiency and performance of the measured data are enhanced [3].   

Several techniques are available to fuse the values from the redundant sensors [4].  

The most obvious approach is to find the average of the sensor data.  In this case, 

however, the estimate will be affected by the invalid sensor data.  A simple improvement 

to this was to have a weighted average of the redundant information.  A weight is given 

to each sensor depending upon a threshold. The threshold for the current decision is 

usually the previous estimate. This helps in eliminating the spurious data.  The choice of 

threshold is important in this method.  If the process data has large variations between 

adjacent values, the threshold technique may result in removing valid sensor data.  

Kalman filtering technique is generally used for sensor fusion where Gaussian 

noise exists.  The performance of the Kalman filter technique depends upon the accuracy 

of the system model [Chapter 12, [3]].  It gives better results if there exists a linear model 

to the system and if both the system and the sensor noise can be modeled as Gaussian 
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noise.  Finding an accurate model for systems is not always possible in many cases and 

most of the real time systems are nonlinear. 

A method developed by Luo and Lin [5] finds the estimate from the multiple 

sensor fusion of only consensus sensors.  The method first eliminates those sensors' data 

that are likely to be erroneous.  This is accomplished by using a probability density 

function(PDF) around each sensor's data.  This PDF around each sensor's data is used to 

find the distance from other sensors' data. This distance measure is stored as a matrix for 

each sensor, which are combined later to find a combined matrix from which the optimal 

fusion estimate is found.  This method of having an individual matrix and forming a 

combined large matrix that is reduced to get optimal value is called the Bayesian 

approach [5]. 

Many others also approach the multiple sensor fusion problem by finding the best 

combination of sensors that are to be fused.  The search is based on the distance between 

the sensors, each sensor's failure rate and its previous data.  Algorithms like neural based 

search and genetic algorithms were used [Chapter 10, [3]].  The combination of selected 

sensors is then usually averaged to find the estimate.  The performance of these 

approaches depends on the search algorithm.  These are best suited for decision-making 

sensor fusion problems. 

As an extension to the above search first and then fuse, multiple sensor fusion is 

implemented using approximate agreement approach in [Chapter 11, [3]].    The approach 

first establishes an agreement set on each sensor data.  This is done by each sensor 
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broadcasting its value to other sensors.  Each sensor then forms the agreement set based 

on the distance from other sensor data.  This agreement set helps in eliminating invalid 

sensor data and find the estimate on which most sensors agree.  This approach requires 

3t+1 sensors with t+1 giving accurate reading, where t is the number of faulty sensors.  

The mean of the agreement set after removing t lower and t higher data gives the 

estimate.  This algorithm is again best suited for binary decision-making (Target or no 

Target). 

Multiple sensor fusion techniques use the redundant data and come up with one 

value.  Each sensor data have an effect on the final estimate.  A failed sensor will have 

adverse effect on the estimate if not removed.  So it is necessary to validate the sensor 

data before fusing the redundant data and remove the sensor.  The next section discusses 

some of the signal validation techniques that achieve this.   

2.3.2 Signal Validation 

Signal validation is a technique by which the sensor's signal is validated for its 

accuracy.  Signal validation may involve all or one of the following: detection, isolation, 

and characterization of faulty sensors [6].  Most of the initial researches depended on 

finding an additional measure for the sensor, either by having redundant sensors or by 

producing an analytical redundancy to the sensor data by using a model for the process.   

A detailed survey of the signal validation using redundant sensors based on 

statistical methods is described in Ray and Luck [7].  The statistical approach is based on 

the difference between the current sensor data and other redundant sensor data.  Fuzzy 
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logic (FL) is also used for signal validation using redundant sensors.  The advantage of 

using FL is that the strict boundary posed by the numerical sensor data can be replaced 

with linguistic terms [6].    

Analytical redundancy is used in situations where physical redundancy is not 

possible.   Analytical redundancy is created using a model for the process.  Neural 

networks have been used to create the analytical redundancy using historical data of the 

process [8]. Combinations of fuzzy and neural systems have been used to create 

analytical redundancy for a specific sensor.  Another type of redundancy is created using 

inferential sensors.  The redundancy is obtained from using sensors that measure other 

variables and the relationship between the variables and the variable of intent.  Genetic 

algorithm is used to find empirically the variables best suited for use in the inferential 

redundancy while neural based fuzzy system is trained to estimate the monitored sensor 

signal [9].   These analytical and inferential redundancy are then treated as physical 

redundancy and used in validating physical sensor data.  

There are many difficulties in creating physical or analytical redundancy for 

sensor signals like increased cost, complexity in hardware implementation for the 

sensors, and uncertainty in modeling the plant.  Moreover, the reliability of the sensors 

that are used for the redundant measurement cannot be assumed.  Hence, few researchers' 

started to work on the validation of sensors using data from the sensor that is being 

validated.  This is discussed in the next section. 
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2.3.3 Self-Validation 

 

The technique of validating a sensor using the historical data from that sensor 

alone is called self-validation.  These self-validating sensors are called intelligent sensors 

and many researches are taking place to create intelligent measurements.  Yang and 

Clarke in their section [10] have defined the self-validating sensors, their rationale, and 

how they can evolve into intelligent measurements. 

Initial research in this area started by considering the invalid data of sensors as 

noise and hence using filtering techniques for the self-validation. Kalman filter was found 

to give good results for self-validation. A detailed description of self-validating sensors 

was given in Henry and Clarke [11].  The research by Tsai and Chou  [12] uses the 

correlation of system dynamics with multistep readings of a sensor.  

Using historical data of the sensors for self-validation was used by Mercadal [13]. 

This reference paper uses the historical data to create an analytical model for the sensor 

depending upon its previous values.  The actual sensor data are then validated by 

comparing it with the value predicted from the model.   

The paper [14] develops a fuzzy based self-validating algorithm based on the 

validated historical data of the sensor. The algorithm developed in this paper is described 

in detail as it is implemented and used as a part in this report.  In this paper a measure of 

reliability of the sensor data, called self-confidence, is obtained.  Self-confidence is a 

measure of the agreement between the characteristics of current sensor data and historical 



 

 

 

 

43

sensor data that are deemed valid.  This self-confidence can be used for the detection and 

isolation of faulty sensors.   

An FL-based system is developed based on same basic rules that characterize the 

sensor data, namely:  

1) The data from the sensor should be within a valid range; 

2) The absolute value of the rate at which data varies should not be higher than a given 

threshold that is determined using historical data; 

3) The standard deviation of the sensor data within a certain window should be less than 

a given threshold; and 

4) The standard deviation of the sensor data should not be zero, which would indicate a 

constant value. This indicates that the sensor is not working properly. 

These requirements are coded as rules in the fuzzy system.  The input variables 

used are the data, rate of change in the data, and the standard deviation of a certain 

window.  The membership functions for these input variables are defined by finding the 

variation and the trend in the historical data.  The membership functions are shown in 

Figure 2-4.  The limits in the membership function, namely MT1, MT2, etc., are found 

from the processing of the historical data.  The deviation of the data from the curve is 

considered as the standard deviation of the sensor.  The block diagram of the self-

validation algorithm from the paper is shown in Figure 2-5. 
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Figure 2-4  Membership Functions 

Acquire Data
Set

Pre-process
Data

Create
Parameters from

Verified Data
Set

Create Fuzzy
Membership

Functions from
Parameters

Acquire Real
Data

(Runtime)
Median Filter Obtain

ConfidenceFuzzy System
Pre-Processing to

calculate input
parameters

 

Figure 2-5  Block Diagram of the Self-Validation Technique 
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The rules of the fuzzy system remains the same for all sensors while the 

membership function varies from one sensor to another sensor depending upon the 

sensor's historical data.  The fuzzy output gives the self-confidence of the sensor.  The 

median output of the data is the sensor data output of the self-validation.  

2.4 Adaptive controllers 

Controllers are designed based on the model of the plant.  Earlier control 

designers assumed exact knowledge of the plant and that the plant is modeled accurately.   

These controllers demanded accurate measurement of the state variables that are used for 

controlling the performance of the plant.  It was soon realized that meeting these 

requirements is not possible in all situations and people tried to design controllers that are 

robust.  Many robust control design techniques were developed and these controllers 

were able to tolerate the variation in the model, system parameters, and state variable 

estimations. But, these controllers achieved them at the cost of performance [15]. 

Adaptive controllers provide an answer to the problem. Adaptive controllers are 

basically a controller whose control law adapts its own behavior as it learns about the 

process it is designed to control or as the process changes with its environment.  The field 

of adaptive control is a very wide and what is presented in this section is a brief 

introduction to adaptive control.  It is not intended to be a thorough literature review. 

Adaptive control methods are classified into two broad categories [15]:  
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1) Indirect or explicit control. - The basic requirement in this method is the availability 

of a design model, but the parameters of the model are not known.  The plant 

parameters are estimated explicitly on-line and the control parameters are then 

adjusted based on these estimations.  Indirect control methods utilize separate 

parameter identification and control schemes.   

2) Direct or implicit control. - This method does not assume the availability of the 

design model.  The controller parameters are adjusted directly, only using plant input 

and output signals. The identification and control functions are merged into one 

scheme.  

Many adaptive control approaches have been developed. Gain scheduling, self-

tuning of the controller, model reference adaptive control, and variable structure adaptive 

control are some of the most commonly used approaches. All of these approaches fall in 

one of the two categories mentioned above [16]. Few approaches that involve both the 

direct and indirect method have also been developed.  

Gain scheduling is the simplest type of the adaptive control.  In this approach, the 

controller gains are made dependent on the parameters that can be measured or inferred 

from other measurements.  This approach is very conservative and poses many problems 

if the dependent parameter has high rate of variation [15]. 

Parameter estimation forms the base for self-tuning.  The required parameter is 

modeled and an observer is implemented to estimate the parameter.  The controller is 

designed as a dependent on the estimated parameter.  This method requires all the state 
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variables for parameter estimation, which is not possible in all systems [16].  Using state 

estimator may help, but it results in a complex system. 

Model reference adaptive control is based on a reference model for the plant. The 

error between the actual output and the output from the reference model is used to change 

the controller parameters.  This approach introduces a lot of nonlinearity through 

multipliers and additional error processing.  Hence, determining the stability of the 

system is very difficult [16].   

Variable structure adaptive control from input and output variables has been 

discussed in the paper [17].  Variable structure is similar to model reference adaptive 

control but instead of using parameter estimation, it uses signal synreport.  A 

discontinuous switching control function is designed to generate the sliding surface for 

the variable structure adaptive control.  The paper derives the stability of the adaptive 

control.  The disadvantage of the variable structure control is that it requires the 

knowledge of all state variables. State estimator may be used, but it results in a complex 

system. 

In [18] Burdet and Codourey compares most of these adaptive control algorithms 

and have tested experimentally two of the best algorithms. It was shown that the 

Adaptive FeedForward Controller (AFFC) is well suited for learning the parameters of 

the dynamic equation. The resulting control performance is compared with the measured 

parameters for any trajectory in the workspace and was said to give better results. The 
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paper also introduces an adaptive look-up-table memory and was shown to be simpler 

and better for tasks that requires repeating the same trajectory. 

In [19], another type of adaptive control based on switching the controllers is 

developed. In this paper the output of the plant with unknown parameters were made to 

track the reference signal through switched nonlinear feedback control strategy.  Many 

controllers were designed and the controllers are selected online through a performance 

evaluation procedure that uses the output prediction error.  The paper also discusses 

sufficient conditions under which the closed loop control system is exponentially stable.  

This approach achieved asymptotically stable control and the results of this approach 

were illustrated with three examples.  

Automatic synthesizing of controllers other than gain scheduling was used in [20].  

The paper describes a method that automatically derives controllers.  The controllers 

were derived for timed discrete-event systems with non-terminating behavior modeled by 

timed transition graphs. The specifications of control requirements were expressed by 

metric temporal logic (MTL) formulas. The syntheses of the controllers were performed 

by using, a forward-chaining search and a control-directed backtracking.  The synreport 

process does not require explicit storage of an entire transition structure.  This feature of 

automatic synthesizing of the controllers for the above procedure of switching controllers 

may compliment each other for obtaining superior performance from an adaptive 

controller. 
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Adaptive controllers give better performance even when the system parameters or 

the environment changes. Adaptive controllers have gained importance with rigorous 

proofs for stability.  Their tolerance to large parameter variations has made them more 

suitable for many industrial applications. 

2.5 Conclusions 

Most of the literatures in multiple sensor fusion exist for detection purposes and 

are developed for target or enemy detection in military-based research.  Few literatures 

are available on fusing redundant sensors for non-military applications. These are 

commonly based on averaging the redundant data.  Kalman and Bayesian methods are 

based on probability density function (PDF). Kalman filtering technique, however, needs 

a good model of the system, which is not always available.  The Bayesian method 

considers two data points at a time for a confidence measure and also involves lot of 

matrix manipulations.  The approximate agreement approach explains the advantages of 

finding agreement between the sensors.  One other factor that is required is the degree of 

agreement between the sensors on the estimate value.  There was no literature discussing 

an algorithm to find such a measure.  

Adaptive control methods are available to improve performance.  The controller 

parameters are adapted based on the system parameter variation, environment changes 

and even with performance.  However, not much of research exists in the area of adapting 

the controllers based upon the sensor reliability.   
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This chapter discussed some of the self-validation techniques, multiple sensor 

fusion algorithms and adaptive control approaches. The problem of improving the 

performance of the system even under the failure of sensors is solved using adaptive 

control approach.  The self-validation technique and multiple sensor fusion algorithm is 

used to decide upon the adaptation of the controller.  The self-validation technique 

developed in Year 1 of the project was reviewed in section 2.4.  In Chapter 3, the 

developed methodology for redundant as well as multi-modal sensor fusion is presented.  
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Chapter 3 

3  MULTIPLE SENSOR FUSION 

In Chapter 2, several multiple sensor fusion algorithms were discussed.  Sensor 

fusion is used to reduce the effect of a sensor failure over the operation of the system 

considered.  The signals from sensors are fused to get a better estimate of the measurand 

value. Thus, sensor fusion helps in improving the reliability of the measurements that 

primarily affects the performance of a system.  This is especially true in the case of 

feedback control systems. 

Among the multiple sensor fusion algorithms discussed in Chapter 2, many 

techniques build on averaging the redundant sensors' readings.  However, averaging the 

sensors' data would still mean that a failed sensor would affect the estimate value.  So, 

the factor that should be considered in the sensor fusion is the confidence in the data 

obtained from each sensor.  This is the concept that was introduced in section 2.2 as the 

self-confidence.  A multiple sensor fusion algorithm incorporating this self-confidence 

will be less affected by a sensor failure.   

Some of the algorithms that were studied in Chapter 2, produces an estimate that 

represents the value that most sensors agree. But, these techniques do not specify the 

degree of agreement on the estimate by the sensors. Hence, a multiple sensor fusion 

algorithm that reflects the degree of agreement among sensors will be more appropriate.  
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In this chapter, a multiple sensor fusion algorithm that produces a measure of the 

confidence in the estimated value of the measurand is developed.  The confidence 

measure reflects the degree of agreement among the sensors.   

First, the discussion on redundant sensor fusion algorithm and how a measure of 

confidence in the estimate is produced, are presented.  Next, the integration of the self-

confidence into the multiple sensor fusion algorithms to mitigate the effect of sensor 

failure are presented.  The multiple sensor fusion algorithm is tested using data from an 

experimental run of a cupola furnace.  A comparison of the results with that of the 

averaging method is also discussed.  A unified framework for multi-modal sensor fusion 

is also presented in this chapter of the report. 

3.1 Parzen-like Methodology for Redundant Sensor Fusion 

3.1.1 Description of Parzen Estimator 

The Parzen estimator is a nonparametric method for estimating probability density 

functions without making any assumptions about the nature of the distribution [21].  

Given a set of sensor data, the Parzen estimator utilizes parametric functions such as 

Gaussian functions that are centered at each of the sensors’ readings.  The functions are 

then added up and normalized.  The resulting Probability Density Function (PDF) reflects 

the distribution of the sensors’ data.  The PDF energy is more concentrated where more 

data points exist.  This is illustrated in Figure 3-1. 
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Figure 3-1 Individual Gaussian Functions and the Cumulative PDF 

 

For this research a Gaussian function (GF) is selected as the parametric function.  

The mean value of the GF is equal to the sensor reading and the standard deviation is 

estimated from the noise level in the sensor [14].  The PDF is given by 
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where N is the number of sensors, xk is the kth sensor data, and σκ is the standard 

deviation.  The parameter σκ  is estimated based on the standard deviation of the noise 

associated with each of the sensors considered.   

3.1.2 Estimation of Measurand Value from PDF 

The estimate value of the measurand is calculated from the PDF obtained as 

explained in previous section.  There are several ways to get an estimate of the 
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measurand value similar to defuzzification methods such as average, centroid, maximum, 

and sum of the maximum [22].  In this research an algorithm was developed for 

estimating the measurand value. The algorithm is an integration of the peak and centroid 

methods. 

1. Find the range X which contains 95% of the PDF energy. 

2. Find the centroid of the PDF using: 

∫

∫
=

X

X

PDFdx

PDFdxx
Centroid

.
. 

3. Find the area on each side of the centroid. 

4. The estimate is found as the value of measurand that corresponds to the supremum of 

the PDF on that side of the centroid that has the higher area, thus 

5. Measurand Estimate =  arg(Sup(PDF))).    …(3.2) 

The function arg corresponds to finding the x co-ordinate at which the maximum 

value occurs in the PDF.  This procedure is illustrated in Error! Reference source not 

found.. 
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Figure 3-2 Estimation of the Measurand Value 

This particular method of finding the estimate is found to be more advantageous 

than other methods as explained in this section. The estimate of the multiple sensor 

fusion algorithm should be the value on which most of sensors agree, and at the same 

time the estimate should not be adversely affected by invalid sensors. Other methods for 

estimating the measured value from the PDF such as centroid and peak allow faulty 

sensors to have an effect on the estimate or may not give the most probable value on 

which the sensors agree.  Figure 3-3 shows how the estimate, if chosen, using the 

centroid would be affected by the faulty sensor. Figure 3-4 shows that the peak value 

does not always correspond to the value on which most sensors agree, at all cases.  
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Figure 3-3  Comparison of Estimate with the Centroid 
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Figure 3-4  Comparison of Estimate with Peak Values 

3.1.3 Confidence in Estimate 

The estimate value from the previous procedure takes into account the agreement 

between the sensor data.  However, the estimated value does not explicitly reflect the 
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degree of agreement between the sensors and hence the confidence in the estimated 

value. The agreement between the sensors is reflected in the width of the PDF function 

estimated according to the process previously described.  Thus, the confidence is 

calculated using the area of the PDF that is enclosed within three standard deviations on 

each side of the estimated measurand value.  In the ideal case, where all the sensors agree 

exactly, this will be approximately equal to one.  As the agreement between the sensors' 

decrease, this area will decrease as well.  This is illustrated in Figure 3-5 and Figure 3-6.  

The confidence is related to the PDF function width according to the relation: 
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where σ is the maximum standard deviation of the parametric functions used in 

forming the PDF. 
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Figure 3-5  Measurand Estimate with High Confidence 
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Figure 3-6  Measurand Estimate with Low Confidence 

3.2 Considering Self-Confidence in Redundant Sensor Fusion 

The self-confidence of a sensor data obtained from the self-validation technique 

explained in section 2.2 is a measure of how much this data agrees with the expected 

characteristics of the sensor as estimated from historical data.  Thus, a change in the 

sensor noise level or if the sensor data or its rate of change exceeds the expected limits, 

the self-confidence value decreases.  Integration of this self-confidence into the redundant 

sensor fusion is necessary to decrease the effect of the failed sensors on the estimated 

value.  

In Section 3.1 the Parzen like procedure for estimating the PDF which was then 

used to get a best estimate for the measurand value was presented.  The function used in 

Parzen estimation was a Gaussian function with a standard deviation that depends upon 

the sensor noise.  This Gaussian function can be thought of as a representation of the 
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probability in finding the true value of the measurand data around the sensor reading.  As 

the self-confidence decreases, the probability of finding the true value of the measurand 

in the neighborhood of the sensor measurement decreases.  In other words, the region in 

which the true value could be with respect to the sensor reading becomes wider.  This 

could be reflected by scaling up the standard deviation of the Gaussian function, used in 

building the PDF, using the self-confidences of the sensors. Thus, the PDF function 

becomes 

∑
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where SC is the self-confidence of the sensor and the rest of the parameters are 

defined as in (3.1).  Figure 3-7 and Figure 3-8 illustrate the effect of the change in self-

confidence over the shape of the Gaussian functions and hence the PDF.  It should be 

noted that this change is not used in the standard deviation used for finding the 

Confidence. 
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Figure 3-7  Estimation of Measurand without Considering Self-Confidence 
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Figure 3-8  Estimation of Measurand Considering Self-Confidence 
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Figure 3-9  Block Diagram of Multiple Sensor Fusion 
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A block Diagram of the Multiple Sensor Fusion Algorithm Developed including 

the integration of self-confidence is shown in Figure 3-9. 

3.3 Application and Testing 

In the following section the testing results are presented for the redundant sensor 

fusion methodologies presented in sections 3.1 and 3.2.  The testing was performed using 

data from an experimental cupola iron-melting furnace in Albany, Oregon.  The system 

uses three temperature sensors that measure the temperature of the iron melt produced 

from the furnace.  These sensors were quasi-redundant as explained in [23].  The sensors' 

data of two of the temperature sensors were translated using a linear regression relation to 

give an estimate of the third sensor.  The resulting data were then treated as if the sensors 

were redundant sensors.   

3.3.1 Results of the Sensor Fusion Methodology without Considering Self-

Confidence 

The results of testing the methodology of integrating redundant sensors presented 

in Section 3.1 are presented first. Figure 3-10 shows the results of the test.  The data from 

one of the sensors (TC5) were artificially perturbed by injecting sudden disturbance at t = 

10 minutes and high noise level into the sensor in the range t=40 to 70 minutes.  For 

comparison purposes, an estimate of the measurand value using the average of the sensor 

data is presented in Figure 3-11.  The self-confidences of the three sensors are presented 

in Figure 3-12.  Figure 3-13 shows the total confidence in the estimate.  It is clear from 
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Figure 3-11 that the average method results in the estimated value to be affected by the 

sudden disturbances as well as by the noise introduced into one of the sensors.  In 

comparison Figure 3-10 shows that the effect of the disturbances were mitigated to some 

extent.  However, a close up of the data in Figure 3-10 shows that the estimated value of 

the measurand is still affected by the readings of the sensor, which was artificially 

injected with the high noise level.  This close up is shown in Figure 3-14.  It should be 

noted, however, that the confidence in the estimates are lower in periods where the 

agreement between the considered sensors decreases as shown in Figure 3-13. 
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Figure 3-10  Estimated Value from PDF without Considering Self-Confidence 
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Figure 3-11  Estimated Measurand Value Using Average Method 
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Figure 3-12  Self-Confidence of the Three Sensors 
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Figure 3-13 Confidence of the Estimate Value Using PDF 
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Figure 3-14  A Closeup that Shows Effect of Not Considering Self-Confidence 

  

3.3.2 Results of the Sensor Fusion Methodology Considering Self-Confidence 

The test is repeated using the same data presented in Section 3.3.1.  However, this 

time the methodology presented in Section 3.2 is used.  The self-confidences of the 

sensors over the considered time period is shown in Figure 3-12.  The estimates of the 
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measurand value are shown in Figure 3-15.  A close up of Figure 3-15 is shown in Figure 

3-16.  A Comparison between Figure 3-14 and Figure 3-16 shows the advantages of 

including the self-confidence in the sensor fusion methodology.  When the high noise 

level was injected the self-confidence of the sensor affected by the noise is reduced (See 

Figure 3-12) and in turn its effect over the PDF function is reduced.  This leads the 

estimate of measurand value to depend more on the other two sensors with higher self-

confidence parameters. Moreover, the overall confidence of the estimate increases (See 

Figure 3-17). This is because the energy around the third sensor is decreased by the 

inclusion of the self-confidence.  
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Figure 3-15  Estimated Value using PDF Considering  Self-Confidence 
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Figure 3-16  Close Up of Figure 3-15 
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Figure 3-17  Confidence of the Estimate from PDF including the Self-Confidence 

 

Multiple sensor fusion helps the feedback controller by giving a better estimate to 

the sensor's data, but there might be conditions where even this estimate may be poor.  In 

other words, multiple sensor fusion does not assure reliability at all conditions.  At these 
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conditions, the feedback controller will fail, degrading the performance of the system.  In 

the algorithm developed, the reliability on the estimate is reflected by the confidence.  

This measure of confidence can be used in a way to achieve a better performance of the 

feedback controller even when the estimate from the sensor fusion fails. 

3.4 A unified Framework for Multi-Modal Sensor Fusion 

3.4.1 Trend Fusion 

 

The independent sources of information for sensor fusion considered, in this 

section, include the real sensors themselves and/or information regarding the trend of the 

measurand as provided by other sources such as models or virtual sensors. Our goal, here, 

is the development of a methodology wherein information regarding trend as is fused 

with the absolute measurements from the sensors.  

Motivation for developing this trend fusion algorithm stems from the fact that the 

estimates of virtual sensors and models developed for the cupola furnace were found to 

provide more accurate information on the measurand trend rather than on its value. 

 This section is arranged as follows: a brief description of the previous 

work on multiple sensor fusion is presented.  This is followed by description of the 

algorithm of fusion based on trend.  Simulations that illustrate the algorithm and its 

effectiveness are presented throughout the paper. 
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3.4.2 Multiple Sensor Fusion 

 

The process of multiple sensor fusion (MSF) based on Parzen estimator, presented 

in the previous sections [28], provides an algorithm for fusing data from multiple sensors. 

In this methodology, no emphasis is given on the trend of the system.  

Based on the measure provided by the sensor, the reading is fed to a fuzzy engine 

[27]. The fuzzy engine looks at the median value, the rate-of-change, and the variance of 

the parameter and assigns it a confidence measure. The fuzzy engine assigns each sensor 

self-confidence value based on the agreement between current and historical behavior 

[27].  In the MSF algorithm, a trapezoidal distribution is constructed around each sensor 

measurement [30]. The spread of the distribution depends on the slef-confidence measure 

of that sensor. Such a distribution is constructed for each of the sensors and these 

distributions are added up and normalized. The reading corresponding to the peak on the 

larger side of the centroid of the joint distribution is the fused measure.  The confidence 

in the fused value was considered as the area enclosed within three standard deviations on 

either side of the fused value. 



 

 

 

 

70

0 10 20 30 40 50 60 70
660

680

700

720

740

760

780

800

Instants of Time

Te
m
pe
ra
tu
re

Multiple Sensor Fusion without Trend Information

Correct Sensor

Information from Trend Sensor 

Erroneous Sensor

Fused Plot

 

Figure 3-18 Multiple Sensor Fusion without trend information 

 

In the MSF algorithm, the major emphasis was on the absolute measurements of 

the sensors and their self-confidence.  There however, are cases where trend information, 

if available, can provide useful information.  Consider, for example, a sequence of sensor 

measurements as shown in Figure 3.18.  The fused value at points where all sensors meet 

would be of very high confidence and the confidence values at all other points would be 

low. This is illustrated in Figure 3.19. 

Figure 3.20, shows the plots of Information regarding the trend. In this figure, we 

assume that we have an additional source of information on the trend, but the algorithm 

does not use this information for the fusion process. Examining this figure, it is clear that 

the erroneous sensor is effecting the calculation of the fused value. The methodology 



 

 

 

 

71

introduced in this section aims at handling such situations by using the available trend 

information. 
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Figure 3-19 Confidence Plot 
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Figure 3-20 Sources of Trend Information 
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3.4.3 Fusion based on Trend 

 

As explained earlier, the MSF algorithm presented in [27] considered only the 

agreement between the sensor values rather than their trend. By examining Figure 3.18 it 

is obvious that one of the used sensors is trending differently. Obviously this sensor is 

erroneous and its value should not be allowed to affect the fused value. The trend fusion 

algorithm introduced thereafter minimizes the influence of that erroneous sensor on the 

fusion process by including the trend of the sensor as a source of information for the 

fusion process. 

The algorithm proposed in this section looks at the trend of the parameter along 

with the measured value. Based on the trend information provided by each of the real 

sensors, a fused value for the trend is calculated using the Parzen estimator algorithm 

presented in [27]. Using this trend, and the previous distribution of the measurand at a 

previous instant, an estimate of the current value of the measurand is estimated. This 

estimated distribution is further used for the estimation of the final fused value of the 

measurand. 

The sequence of steps used in this algorithm is as follows: 

• Determine the measure of self-confidence from the fuzzy engine [26]. 

• Estimate the fused trend from the individual sensors using the Parzen Estimator 

Algorithm [27]. 
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• Based on the parameter value at the previous instant and measure of trend, an 

estimate of the parameter at this instant is calculated. The distribution for the 

expected temperature is obtained from the distribution of the fused temperature at the 

previous instant and the distribution of the fused trend at the current instance. The 

distribution of the expected value is obtained from the formula 

t
dt
dPPP

i
ii ∆






+= −1ˆ  

Where, 

iP̂  - Fuzzy distribution of the expected measurand value the ith instant. 

Pi-1 – Fuzzy distribution of the measurand at the (i-1)th instant. 

dP/dt – rate of change (trend). 

∆t – change in time. 

The above equation can be considered as a fuzzy arithmetic operation with the 

result being the distribution for the expected temperature. The distribution obtained 

for the expected measurand value is normalized. 

• Using this measurand estimate and the distribution obtained from actual sensor 

measurements the sensor fusion algorithm is performed to obtain the fused value and 

a measure of confidence using the algorithms described in details in [27] and 

summarized in previous section. 
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Figure 3-21 General Methodology for Sensor Fusion using Trend 

Figure 3-21 summarizes the sequence of steps proposed in the incorporation of 

trend in sensor fusion. 

Figure 3.22 shows the distribution of the trends of three sources of information at 

one instant, namely 60. The distribution of the fused trend is shown and this distribution 

is convoluted with the fused distribution of the temperature at the previous instant, which 

is shown in Figure 3.23.  
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Figure 3-22 Distributions of Trends and Fused Trend 

The final temperature distribution is shown in Figure 3.24.  This information on 

the expected temperature helps in deciding the correct value in the fusion process. Using 

this estimated measure of the parameter along with the actual measure, it can be observed 

that the effectiveness of the sensor fusion algorithm has improved. This is illustrated in 

Figure 3.25.  It can be seen that the fused value determined by the algorithm coincide to a 

good extent with the correct sensor for several instances of time.  However, the algorithm 

still fails at multiple points. 
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Figure 3-23 Distribution of Temperatures at the previous instant 
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Figure 3-24 Final Distribution of Temperature 

It was observed that the failure of the algorithm is accountable mainly to the 

effect the erroneous sensor has on the fused distribution. Since the erroneous sensor has a 

very steady performance, the fuzzy engine assigns it a very high confidence.  An 

improvement to the previous algorithm would consider the degree of agreement among 

the trend sensors.  This agreement would be used to modify the self confidence of each 

sensor.  This is presented in the following section. 
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Figure 3-25 Multiple Sensor Fusion Considering Trend 

 

3.4.4 Confidence based on agreement among the Sensors 

 

A calculation is proposed wherein the self-confidence measure of each sensor is modified 

based on the degree of agreement among the trends of the sensors. Using the Parzen 

estimator, the fused distribution is estimated and the area enclosed by each of the sensor 

within three standard deviation from the fused value is calculated. The self-confidence 

measure of each sensor is modified using the formula 

( ) 















= 5.0,

*max
,minmax

TotalAreaArea
AreaSCconfidence

i
ii  

Where,   

SC – Self Confidence of the Sensor,  

Areai – area enclosed by ith sensor in Fused Distribution. 
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Total Area – area enclosed in three standard deviation around the fused value.  An 

arbitrary minimum value of 0.5 was assigned to the sensor confidence. 

In developing the normalized distribution of the fused data, the contribution of the 

erroneous sensor is reduced when compared to the contribution made by other sensors. 

This can be observed from Figure 3.26.   It can be observed that the distribution of 

erroneous sensor spreads further and its contribution to the final fused distribution is 

reduced.  
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Figure 3-26 Distributions of Trend after accounting for agreement between sensor trends 

 

Using the new confidence measure, the fusion distribution is recomputed. Since 

the self-confidence of the each sensor is dependent on the degree of agreement between 

all the sensors, the effect of the erroneous sensor is largely eliminated and there is a great 

improvement in the performance of the sensor fusion algorithm.  From the combined 
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distribution, the fused value is the argument of the peak of the distribution on the larger 

side of the centroid of the distribution. The equations are as shown below: 

∫

∫
=

X

X

dxxPDF

dxxxPDF
Centroid

)(

)(
 

Measurand Estimate = arg (Peak (PDF (x))) 

Where, x is the parameter whose fused value is to be estimated PDF (x) is the 

estimated density function of the parameter. 

The developed fusion algorithm-incorporating trend was tested for various sets of data 

and the results were in agreement to those expected. It was also observed that the 

performance of the sensor fusion algorithm could be improved further by incorporating 

the fused value at previous instants. This would be akin to low-pass filtering of the data 

coming out of the sensor fusion module. Figure 3.27 shows the performance of the final 

algorithm.  It is clear that the algorithm has picked the correct sensor for all instances of 

time. 
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Figure 3-27 Multiple Sensor Fusion after filtering 
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3.4.5 Measure of Fused Confidence 

 

In this algorithm, it can be observed that we have different types of information 

sources, namely trend sensors and value.  Thus, in evaluating the measure of the fused 

confidence, it is necessary, to weigh the confidence obtained from trend fusion and that 

obtained from value fusion. The formula used to evaluate the overall confidence of the 

measurement is given by: 

VT

VVTT

NN
CNCN

denceFusedConfi
+
+

=
**

 

Where, NT = Number of Trend Sources, CT = Confidence of Fused Trend, NV = 

Number of Sources of Value, CV = Confidence of Fused Value; Figure 3.28 illustrate the 

calculated overall confidence for the previous example. 
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Figure 3-28  Fused Confidence Plot 
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3.4.6 Summary 

The section introduced the concept of incorporating trend in Sensor Fusion to deal with 

cases where reliable trend information sources such as virtual sensors or model are 

available. The algorithm was tested using data obtained under various circumstances and 

the results are shown. The results clearly indicate that the algorithm performed correctly 

under circumstances of sensors malfunctioning by incorporating trend information. 

3.5 Fusion of Linguistic Sources 

In this section, the algorithm for multi-modal sensor fusion is further strengthened 

using expert systems as additional sources of information. An expert system provides 

linguistic information on the parameter, which has to be converted to numerical form so 

that the sensor fusion algorithm can fuse it along with information from the other sources.  

We start by fusing linguistic information on the trend of the measurand and then 

continue with fusing information on the value of the measurand itself. 

 

 

3.5.1 Linguistic Information on Trend 

 

Consider an expert system, may be an operator who can predict the trend of the 

parameter. This source of information would be in linguistic form and would be quite 

reliable. This source of information need not be available at every instant of time. It is 
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possible that the operator can intervene at certain instants of time when there is a sudden 

change in the operating conditions.  

This section proposes a methodology that acquires linguistic information from an 

expert system and converts it to numerical form that can be fused along with the other 

numerical information sources on trend.  

Consider a parameter being monitored by a single sensor that gives information 

about its value. Considering that the sensor fails at some particular instant as shown in 

Figure 3.29.  We assume an additional source of trend information.  The result of the 

sensor fusion presented earlier is shown in the same figure.  It partially corrects the faulty 

sensor readings, but the performance is still not satisfactory. 
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Figure 3-29 Failure of a Sensor 
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Considering that we have a linguistic source of information on trend. Each 

linguistic variable has a pre-defined range of measurand trend values. These ranges are 

defined based on the behavior of measurand. An example of a set of ranges defined for 

the trend of a measurand could be: 

Sharply decreasing: [-0.1752 –0.0584] 

Decreasing: [-0.1168 0] 

Steady: [-0.0584 0.0584] 

Increasing: [0 0.1168] 

Sharply increasing: [0.0584 0.1752] 

So the linguistic information provided by the operator or expert system is 

converted to give the operating range of operation of the trend. A Triangular distribution 

is constructed around this range with the peak at the center of each range. This 

distribution is then combined with the distributions of the sensor data and normalized to 

get the fused Distribution from which the centroid and the confidences are calculated as 

discussed in earlier sections. 

 Figure 3.30 shows the additional linguistic trend information. The effect of 

incorporating the linguistic trend information in the sensor fusion algorithm is illustrated 

in Figure 3.31  it can be observed that the performance of the fusion algorithm has 

improved when compared to Figure 3.29. 
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Figure 3-30 Trends after considering Linguistic Source 

This increase in reliability of the Fused Trend further improves the calculation of 

the expected value of the parameter. This causes the Fused value to be more reliable.  
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Figure 3-31 Sensor Fusion with Linguistic Trend Information 

 

3.5.2 Fusion of Linguistic Information on the Measurand Value 
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In this section, the effectiveness of having an expert system to enhance the fusion 

process by considering the measurand value. 

Consider a case of sensor failure as shown in Figure 3.32. In this case, the sensor 

performs satisfactorily till a particular instant and from then on, it has a shift in its 

readings. But, the sensor still continues to have the similar trend as indicated by the other 

linguistic sources for trend. As a result of this, the algorithm tends to start following 

erroneous reading provided by the sensor. 

In this section, a similar methodology as that of the linguistic source on trend is 

considered for the parameter value as well. The operator provides the algorithm with a 

linguistic value, which as before has a predefined range. The ranges for the measurand 

values could, for example be: 

Very low: [667.5 692.5] 

Low: [680 715] 

Normal: [692.5 737.5] 

High: [715 760] 

Very high: [750.5 775] 

These ranges are obtained from the historical data considering the behavior of the 

parameter. Figure 3.33 shows that the performance of algorithm after considering 

linguistic information on the parameter also. 
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Figure 3-32 Another Case of Sensor Failure 
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Figure 3-33 Multi-Modal Sensor Fusion with Linguistic Sources 
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It can be observed that the algorithm with this linguistic source of information on 

the parameter value provides a very reliable fused value.   
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3.6 Wavelet-Based Sensor Fusion for Data having Different Sampling Rates 

 

3.6.1 Introduction 

Data obtained from numerous sensors can be used to provide more reliable evaluation 

of physical data than a single sensor. In many industrial settings, several sources of data 

regarding a certain parameter may be collected.  However, information from these 

sources may not always be available at the same points in time due to physical 

limitations.  In a cupola furnace, for example, the temperature of the molten iron is 

measured both using a thermocouple and a pyrometer. The thermocouple (TC) 

measurements are made on a physical sample extracted from the furnace output and thus 

performed relatively infrequently as compared to the near-continuous collection of 

pyrometer data.  However, the pyrometer data is considered to be a less reliable measure 

and is susceptible to gross corruption. Figure 1 shows a sample of cupola temperature 

data obtained using a pyrometer (Pyro_Temp) and a thermocouple (Bath_Temp). For this 

data, the sampling ratio between pyrometer and TC data is approximately 16:1. 

Our objective in this fusion algorithm is to provide a generic methodology to fuse two 

data sources with different time resolution as motivated by this previous example. In this 

work, the pyrometer data is said to have high time resolution and the TC is said to have 

as low time resolution sensor. The assumption made is that the reliability of low-rate 
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signal is higher than high-rate signal.  Under this scenario, the fused data will be both 

higher in accuracy and have higher time resolution than can be gleaned from either 

source on its own. 
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Figure 3-34: Cupola temperature data 

Wavelet transforms can be used to project the data features into different levels of 

time resolution.  The fusion process is thus performed at the appropriate time-base of 

resolution common to data from sensors having different sampling rates.  By fusing the 

data features of different levels, the sampling rate difference between two data sources 

can be compensated.  Figure 3-35, Figure 3-35 show an example of such situation in 

which a multi-rate fusion algorithm would be needed.  The high sampling rate signal is 

corrupted while the low sampling rate signal is not.  The result of a wavelet based fusion 

algorithm is shown in Figure 3-36.  The effectiveness of the developed algorithm is 
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further discussed in Table 3.1.  The table shows the RMS error between the original 

signal, the corrupted and fused signal.  The details of the algorithm is given in [31]. 
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Figure 3-35 Low sampling rate signal ][2 nX  
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Figure 3-36: Corrupted high sampling rate signal ][1 nX  
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Figure 3-37: Fused signal 

Table 3.1: Mean square error of fusion methods 

Method MSE 

No Fusion (corrupted signal) 1.0856 

Spline Interpolation 0.0273 

Proposed Wavelet-based Method 0.0063 
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Chapter 4 

4  INTEGRATION OF MULTIPLE SENSOR FUSION IN CONTROLLER 

DESIGN 

The main focus of this project is to reduce the risk of a catastrophic response of a 

feedback control system when the feedback data from the sensors is not reliable, while 

maintaining a reasonable performance of the control system.  An algorithm for multiple 

sensor fusion was presented in Chapter 3.  Sensor fusion helps in improving the 

reliability of the measurement. It does not, however, address the control problem when 

the data are known to be unreliable.  In certain conditions, even multiple sensor fusion 

could produce an incorrect estimate.  So, the problem still exists even if multiple sensor 

fusion is used.   

This chapter starts with the study of a case where the multiple sensor fusion 

algorithm that was developed in Chapter 3 produces a bad estimate.  Then, a 

methodology for the controller design to improve the system performance in these 

situations is developed.  The stability of the closed loop system with the developed 

controller is studied using Lyapunov stability theory in the final sections of the chapter.  

A linear plant model is considered while studying the stability of the system with the 

controller.   
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4.1 Motivation 

The multiple sensor fusion algorithm is developed, based on the fact that the 

correct estimate lies at the highest probability value as determined using the sensors' data.  
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Figure 4-1 Wrong Estimate from the Multiple Sensor Fusion 

In the case shown in Figure 4-1, two sensors read the correct value (near 10) 

while the other two read the wrong value (near 14).  The estimate from the sensor fusion 

can be seen to be closer to the wrong value, just because the readings from the two 

sensors that have failed are closer to each other than those of the correct sensors. 

Although the estimate from the sensor fusion algorithm was wrong, it can be seen 

from the figure that the corresponding confidence is low.  This confidence can thus be 

used as an important parameter that can be integrated into the controller so as to improve 

the performance of the system when the multiple sensor fusion fails. 
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4.2 Controller Design 

The controller, designed with the assumption that the estimate from the sensor 

fusion is reliable, may drive the system fast into the wrong direction if the estimate was 

wrong.  On the other hand, if the controller is designed considering the worst case 

scenario, it will result in sluggish response.  One method that can be used to improve the 

performance of the system is to design the controller such that it has fast response when 

the confidence is high and a slow response when the confidence is low. Hence the 

controller should be able to adapt itself and produce a controller that adapts its response 

depending upon the confidence in the estimate. 

  The required performance of the controller after the integration of the 

confidence can be summarized as  

1. When the confidence is high: the feedback signal is reliable.  So, the controller should 

be fast enough to track the reference value. 

2. When the confidence is low: the feedback signal is not reliable, which implies that 

even if the controller has tracked the value fed to it, the state that the system has 

reached may not be the correct reference value. So, the controller should not try to 

reach the reference value very fast.  

One way to achieve this requirement on the controller is by designing two 

controllers, a fast controller that will be active when the confidence is high and a slow 

controller, which will be used when the confidence is low. The controller is then 
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implemented by changing its parameters between those of fast controller and slow 

controller using the confidence as the weighting parameter between the two controllers.  

A schematic diagram of the system with the controller designed is shown in Figure 4-2.  

The resulting expression for the controller parameter, with the confidence as the 

weighing parameter, is given below.  

lh KKK )1( αα −+=        ...(4. 1) 

and    

α = f(confidence)       ...(4. 2) 

where,  

K   - State feedback matrix of dimension m x n, m is the number of output 

variables and n is the number of state variables. 
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Figure 4-2 Schematic Diagram of the System with Sensor Fusion Integrated with the Controller 
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f   - Nonlinear piecewise continuous function operating on the minimum of the 

confidence on each state variable estimate from multiple sensor fusion. 

Kh  - State feedback matrix corresponding to fast controller (m x n) 

Kl  - State feedback matrix corresponding to slow controller (m x n) 

The conditions that the nonlinear function, f, should satisfy to meet the controller 

requirements specified above are  

 α = 1   when confidence is 1 , 

 α = 0   when confidence is 0,     ...(4. 3) 

and  0 < α < 1, for all other confidence between 0 and 1.  

 

4.3 Stability Analysis 

The controller designed as discussed above will be helpful only if the closed loop 

system with the controller is stable. This application is developed for a cupola furnace 

plant in Albany research center, which has a linear model. Hence a linear model is 

considered in the stability analysis.  The stability conditions for the closed loop system 

are not trivial since the system is time variant as the controller parameters change with 

the time.  A theorem is stated and proved in this section. The application of the theorem 

discusses the conditions on the stability of the closed loop system.    
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Theorem 4.1  

 Consider a linear time varying system  

)()(
)()()(

)()()(

txty
tytKtu

tButAxtx

=
−=

+=&

          ...(4. 4) 

where, kmn RuRyRx ∈∈∈ ,, are the state, output, and input variables, 

respectively. A, B, and K are the matrices of appropriate dimensions. The system will be 

asymptotically stable, if 

1. The controller parameter K is given by expression (4.1). 

2. There exists a Lyapunov function of the form given in (4.5) where P is a positive 

definite matrix that proves the stability of the system for both matrices Kh and Kl.  

PxxV T=        ...(4. 5) 

Proof:  The system equation after combining all the expressions is  

xtBKAx ))(( −=& .  

  It is given that the closed loop system with the time invariant controller 

parameters Kh and Kl, are asymptotically stable with the same Lyapunov function in 

(4.5).  Hence the Lyapunov equations for these systems will be satisfied.  

Equations (4.6) and (4.7) gives the respective Lyapunov equation. 

( ) 1)( QBKAPPBKA h
T

h −=−+−      ...(4. 6) 
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( ) 2)( QBKAPPBKA l
T

l −=−+−      ...(4. 7) 

where, Q1 and Q2 are positive definite matrices.   

 For the controller K given by Equation (4.1), the derivative of the 

Lyapunov function is  

xBKAPPBKAxV TT )]()[( −+−−=& .     ...(4. 8) 

Substituting (4.1) in (4.8), gives 

( ) xKKBAPPKKBAxV lh
T

lh
T )))1((())1(( αααα −+−+−+−=& . 

Writing A = αA + (1-α) A and separating the Kh and Kl terms, gives 

xBKAPPBKABKAPPBKAxV l
T

lh
T

h
T )]}())[(1()]()[({ −+−−+−+−= αα&      ...(4. 9) 

which, by (4.6) and (4.7), gives 

Q3 = αQ1 + (1-α) Q2 .                   ...(4. 10) 

The derivative of the Lyapunov function is hence, 

xQxxQxxQxV TTT
321 )1( −=−−−= αα& .              ...(4. 11) 

In expression (4.11), both the terms in RHS are negative since 10 ≤≤ α . Hence 

V& is always negative.          Q.E.D 

The closed loop system with the controller designed in section (4.2) can be proved 

asymptotically stable by the direct application of the above theorem. As the confidence in 

the estimate changes, the controller K changes with time. But, the controller parameters 
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are bounded by Kh - for high speed and Kl - for low speed and the intermediate value 

varies between these bounds.  Finding a single positive definite matrix P for the 

Lyapunov function in (4.5) that satisfies the Lyapunov criteria for both Kh and Kl is 

sufficient to prove the stability of the closed loop system, where K is given by (4.1).   

The above proof for stability is based on the assumptions that the state of the 

system is known exactly.  This is not always true in the closed loop system. Multiple 

sensor fusion gives a good estimate for the measurand.  However, there exists an 

uncertainty in the state of the system as illustrated in Figure 4-3.  The stability conditions 

should incorporate this uncertainty in the state of the system. Theorem 4.1 is extended to 

include the uncertainty in the states.  

Theorem 4.2 

Let us consider a linear time varying system given by the system equation  

 
))()()(()(

)()()(
xgtxtKtu

tButAxtx
−−=

+=&
                ...(4. 12)  

where g(x) is the uncertainty in the output. If the system satisfies  

1. The conditions of Theorem 4.1. 

2. The Lyapunov function PxxxV T=)( ,  satisfies 

    2
2

2
1 ),( xkxtVxk ≤≤  
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Figure 4-3 Uncertainty in the Estimate from Multiple Sensor Fusion 

 

  0      )(),(
23 >≥∀−≤

∂
∂

+
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∂ µxxWxtf

x
V

t
V            

...(4. 13) 

∀ t ≥ 0, ∀ x ∈ D, D = Rn, W3(x) is a positive definite function and   µ is a positive 

constant.  

3. The uncertainty is piecewise continous and locally Lipschitz in x and satisfies the 

following conditions,  

 
2102

)( xxg δδ +<                 ...(4. 14) 

where the bound on δ0 and δ1 is given by the expressions 

  
2

1

2

123min
0 2

)2)((
k
k

PBK
PBKQ

r
δλ

δ
−

<              ...(4. 15) 
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2

3min
1 2

)(
PBK

Qλ
δ <                 ...(4. 16) 

where r is the radius of a Ball Br ⊂ D. Then, the state of the system is given by 

100         ),, )( ()( ttttttxtx o <≤∀−≤ β  

   1            ,)( ttrtx >∀≤              ...(4. 17) 

where β is a class KL function.   

In other words the steady state of the system lies within the ball, Br shown in 

Figure 4-4 for all time t > t1. 

Proof: 

 The system equation can be separated into the feedback-stabilized part and 

the uncertain term as  

)()( xBKgxBKAx +−=& .                ...(4. 18) 

x
r

Br

 

Figure 4-4  Region of Stability 
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 The derivative of the Lyapunov function is 

xxPBKgxPBKgxPxBKAxxBKAPxV TTTTT ))(()()()( ++−+−=& . 

Since the last two terms are scalar, they can be combined and using the proof of 

the Theorem 4.1, the derivative of the Lyapunov function is 

)(23 xPBKgxxQxV TT +−=& .             ...(4. 19) 

 

 Using Holder's Inequality, gives 

   
2223 )( 2 xgPBKxxQxV T +−≤& . 

 The uncertainty g(x) is given by the expression (4.14). Using this relation 

in the expression gives 

 
21220223 22 xPBKxPBKxxQxV T δδ ++−≤&  

  022
2

212
2

23min 22)( δδλ PBKxxPBKxQV ++−≤&              ...(4. 20) 

}2)2)(({ 02123min22
δδλ PBKPBKQxxV −−−≤& . 

 

The term 123min 2)( δλ PBKQ −  is always positive as δ1 is bounded as given in 

(4.16).  This gives an expression for µ defined in (4.13) 

  
)2)((

2

123min

02

δλ
δ
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−
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Substituting the bound on δ0, and δ1, µ satisfies the relation 

  
2

1

k
k

r<µ . 

The constants ki are:  k1 = λmin(P), k2 = λmax(P). 

This satisfies the condition in Theorem 5.1 of [24] 

   
2

1
2

2 minmax xkxk
rxx =≤

<
µ

. 

Thus all the conditions for the Theorem 5.1 in Error! Reference source not 

found. are satisfied. Applying the theorem and corollary 5.3 in Error! Reference source 

not found. completes the proof.     Q.E.D 

 This theorem can be applied to the closed loop system developed. As 

mentioned before the system satisfies all the conditions of the Theorem 4.1.  Thus, all the 

conditions for the Theorem 4.2 are satisfied. The closed loop with the controller designed 

as specified in Equation (4.1) is stable within the Ball Br. The asymptotic stability of the 

closed loop system with respect to the origin cannot be specified.   

  Thus, the confidence parameter from the multiple sensor fusion algorithm 

presented in Chapter 3 is integrated into the controller design and the closed loop system 

with such a controller is proved to be asymptotically stable though not to the origin, but 

to a ball of radius r.  The confidence from the multiple sensor fusion is integrated into the 

controller to prevent the degradation of the system's performance when the multiple 
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sensor fusion fails.  The next chapter deals with the implementation of this theory in a 

multi-variable feedback control system and simulates the performance of the system. 

4.4 Fuzzy Controller 

In the previous sections a traditional controller was designed and a procedure for 

integrating the sensor fusion in the controller design was presented.  The stability of the 

designed controller was rigorously proven.  Traditional controllers, however, are more 

suitable for linear systems with well-defined models.  Although linear models in a 

specified range of operation can describe cupola furnaces, they are in general nonlinear 

systems with a lot of uncertainty in the inputs.  In this section an alternative to the 

previously designed traditional controller is given.  The alternative design is based on 

fuzzy control principles.  Using the pairing of cupola inputs to outputs as CMR/%C, 

O2/T, and BR/MR, three fuzzy controllers were designed. The fuzzy controller is 

composed of a fuzzy inference system and an integrator.  The fuzzy inference system 

suggests changes to the inputs in order to achieve the desired changes in the outputs.  The 

integrator accumulates these changes and presents it to the cupola.  The inputs to each 

fuzzy inference system are: 1) the error which represents the difference between the 

desired output and the current output and 2) the change in the error averaged over a 

period of time. The outputs of the fuzzy inference system of each controller can take on 

five values: large positive (LgPos), small positive (SmPos), zero, small negative 

(SmNeg), or large negative (LgNeg). These values represent the required change in the 
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input to achieve the desired change in output. Each fuzzy inference system contains five 

trapezoidal membership functions for each input: a large positive and negative, a small 

positive and negative, and an zero range. Since there are two inputs (error and change in 

error) with five membership functions each, there are twenty-five rules relating the inputs 

and outputs of each fuzzy inference system used in this paper. 

4.4.1 Controller design 

 

In order to control the system properly, some knowledge of the desired response 

for each output such as MR, T and %C and limitations on the ranges and possible rates of 

change of the available inputs such as O2, BR and CMR is required. This is important 

since the controller might request changes in those input parameters that might not be 

achievable or might cause erroneous response of the cupola. 

 

A normal settling time for a moderate change in melt rate was selected to be 5 minutes. 

This means that small changes in MR could be achieved within 5 minutes.  Changes in 

molten metal temperature were also selected to be achieved in 5 minutes.  For changes in 

the %C, the long time delay associated with changes in the charge composition forces 

changes in the %C to take a longer time period.  The time selected to achieve changes in 

%C is 50 minutes. 
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The process of designing the fuzzy controller is an iterative one.  An initial guess 

was made to the membership function parameters, the output values, and the rules so that 

simulations could be performed. Plots of the fuzzy inputs and system outputs were then 

used to tune the controller parameters. For example, an initial definition of a small 

change in the error or a large change in error is readjusted after looking at the response of 

the system during a simulation.  A narrow value for the ideal range would cause the 

system to be very sensitive to noise while a wide range for the ideal membership function 

would allow the system to deviate considerably from the desired output.  Using the 

simulations, the fuzzy output parameters were chosen such that: the settling times were 

close to 600 seconds, the system inputs would not change too quickly, and overshoots 

were minimized. Figure 4-5 and Figure 4-6 are examples of the membership functions of 

the two inputs for the melt rate fuzzy inference system.  Figure 4-5 represents the error in 

the MR while Figure 4-6 represents the change in error in the MR.   

An iterative method for changing the rules from the initial guess is similarly 

followed.  These rules were updated based on examining plots generated through 

simulations. The list of rules for the melt rate controller is shown in Appendix 4.A.  The 

rules for the other two outputs of interest in this paper, namely T and %C are very 

similar. Examining a subset of these rules illustrates the main idea behind the fuzzy 

controller.  The error in an output is positive when the set point is higher than the actual 

value and the rate of change in the error is negative if the error is decreasing and vice 

versa. Consider a case when the MR is at steady state and an increase in the MR is 
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requested.   The error in the MR is positive and change in the error is zero, then, 

according to rule 23 in Appendix 4.A, the blast rate should be increased at its maximum 

rate. Another example is if the error in MR is zero, but the output is heading toward an 

overshoot because the rate of change in the error is a large positive value, then the change 

in the BR should either be a small negative according to rule 15 in Appendix 4.A. 

One of the main objectives of this research was to obtain a controller that could be 

used for any cupola, not just the Albany Research Center's experimental cupola in 

Albany, Oregon. Therefore, equations were developed to reconfigure the fuzzy 

membership function and output parameters. These use the steady state parameters and 

the limitations on the system inputs to achieve the reconfiguration of the parameters.  
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Figure 4-5 Membership functions of the error in melt rate (eMRate) 

 

Figure 4-6 Membership functions of the change in error for the melt rate (deMRate) 
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4.4.2 Smith Predictor 

Due to the nature of the cupola in loading the fuel at the top and burning at the 

bottom, a long time delay exists between changing the CMR and that change affecting 

the melting zone. In order to accommodate that time delay a predictive model based 

strategy is utilized.  This was suggested first by Smith (Smith, 1957) and thus the method 

is referred to as a Smith predictor.  The Smith predictor is utilized with the %C controller.  

The schematic diagram of the system with the Smith predictor is shown in Figure 4-7.  

As shown in this figure, an estimate of the input to the cupola is fed to a duplicate 

transfer function relating the CMR to the %C. The signal from the duplicate transfer 

function has a time delay applied to it and then is subtracted from the %C output signal. 

The resulting signal is then added to the undelayed signal from the duplicate transfer 

function. The final result is the feedback signal for the system. The time delay in the 

Smith predictor is representative of the best-known or average delay measured.  

 

 

 

 

 

 

Figure 4-7 Implementing a Smith predictor 
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4.4.3 Integration of Sensor Fusion in Controller Design 

 

The harsh environment at the output of the cupola results in sensor drift and 

failure. By using several sensors and the sensor fusion technique developed earlier a 

confidence between zero and one can be determined that reflects the accuracy of the 

output value. It is desirable to use the confidence level to adapt the speed of response of 

the controller. This is achieved by scaling the output of the fuzzy inference in the fuzzy 

controller by a function related to the confidence. In this paper, the confidence is raised to 

a power and this is multiplied into the output of the fuzzy inference system. Assume for 

example that the confidence level in a signal is 90%, it could be raised to the fifth power 

which results in reducing the change in the input to 60% of the amount requested by the 

fuzzy inference system. If the confidence is 50%, the change in input is reduced 3% of 

the amount requested by the fuzzy engine. Thus, the effect of using the confidence in the 

measurement to scale the fuzzy engine output is to adapt the speed of response of the 

controller based on our confidence in the measurements.  This can be effective in 

mitigating the effects of failed sensor or external disturbances over the performance of 

the closed loop system. 
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4.4.4 SIMULATOR DESIGN 

 

The model was implemented in Simulink for the transfer matrix first order 

responses and the time delay of the CMR. The model requires loading the data of the 

steady state variables, time constants, CMR time delay, operating point, and input 

boundaries.  

4.4.5 BASIC LAYOUT 

The simulation is to represent a change in the outputs and inputs from a normal 

operating point. The output of the controller reflects the desired rate of change of the 

system inputs. The controller output is integrated to reflect the total change in the system 

input. The value of the integrator is bounded to prevent integral windup. Each integrator 

output then passes its value to three transfer functions obtained from the transfer function 

matrix. Each system output receives three values, one from each integrator after passing 

through a transfer function. These values are added to give the total change in the output.  

Error signals, which represent deviation of the actual signal from the desired output, are 

one of the inputs that get fed to the controllers.  The change in the error signal is averaged 

over a period of time and is sent to the controller as a second input. Figure 4-8 illustrates 

the layout. 
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Figure 4-8 Simulation layout 

4.4.6 NOISE, DISTURBANCES, AND VARYING PARAMETERS 

The actual system is non-linear and has been approximated by a linear system 

with constant parameters in the transfer matrix. Sensors that measure the system outputs 

are subject to noise and the system inputs may not perform exactly as the controller 

demands. The simulation must take these factors into consideration. 

Noise 

Gaussian noise was added to the system outputs before sampling for feedback. 

This represents the fact that the sensors do not measure the outputs perfectly. For such a 

harsh environment as a cupola, this noise could be considerable.  
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Disturbances 

Disturbances in the form of a square wave were added to each of the integrator 

signals. This represents not knowing exactly the system inputs. An example would be 

setting the blast to increase and not knowing one of the fans were down or the feed of 

metal into the cupola could have different densities and could be difficult for the human 

loaders to approximate its weight. 

Varying Parameters 

There was no research done on finding how the parameters changed non-linearly. 

In order to test for all possible cases, a sine wave with an offset close to one was 

multiplied to the transfer functions, except for the duplicate transfer function of the Smith 

predictor. For each of the transfer functions, the sine wave was at a different initial phase 

and all were at different frequencies. With all at different frequencies, the simulation 

could be run long enough so that all combinations of the parameters within a range could 

be studied. 

4.4.7 RESULTS 

The controller was tested under ideal conditions, output noise, input disturbance, 

sensor fusion noise, by varying the model parameters over a wide range, and actual CMR 

time delay being different than that used in the Smith predictor. The tests of the 

controller's robustness and dependability are described below with generated plots of the 

results. 



 

 

 

 

114

IDEAL CONDITIONS 

The model was tested without noise and with step inputs that would reflect a 

change in the operation of the cupola. The temperature was requested to undergo a 

change of 50o C at 3000 seconds, the melt rate to change by 0.1(tons/hr) at the same time. 

A change of 0.1% in %C was requested at 100 seconds. The reason the changes in 

temperature and melt rate were requested at a much later time was that the CMR has a 

much longer settling time due to the long time delay of the charge. With these change 

times, the three outputs changed and settled at close to the same time. Figure 4-9 shows 

the plots of the outputs, inputs, error, and the change in error. Most of the fuzzy 

parameters were fine-tuned using these plots. 

Figure 4-9 shows that the settling time is very close to 600 seconds for the melt 

rate and temperature. The carbon has a settling time of 2000 seconds, after a pure time 

delay of 1800 seconds. This long settling time is necessary for the Smith predictor to 

work properly. 

OUTPUT NOISE 

Gaussian noise was added to the output signal. This represents the fact that the 

sensors are subject to extreme noise because of the nature of the cupola. Even when 

averaging several sensors measuring the same output, there is noise. Figure 4-10  is the 

plots generated with noise. Notice the error plot is basically the noise after the outputs 

reach steady state. The change in error reflects a noisy output, which had to be taken into 
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consideration when choosing the membership function parameters. An example is that if 

the output noise caused the change in error signal to enter the large change in error range 

in the fuzzy system, then the inputs may change significantly to correct for it. It then 

leads to an oscillating input and output. 

As can be seen in Figure 4-10, the controller rejects output noise efficiently. The 

inputs move seldom under the noise conditions introduced, increasing the life of the 

actuators. 

INPUT DISTURBANCE 

Input disturbances can be common in the cupola environment. The scrap iron is 

typically lifted with a human operated front-end loader. Since the scrap iron will have 

varying densities, there will be a disturbance at the input. The blast rate can be affected 

by its ability to penetrate the charge in the cupola. The configuration of the charge is 

constantly changing in the cupola causing a disturbance. Mechanical problems in 

producing the blast can cause disturbances. The oxygen enrichment will be disturbed if 

the blast is disturbed because it is a percentage increase of oxygen in the blast air. 

Mechanical problems in the oxygen delivery can also cause disturbances.  

Figure 4-11 shows plots of the inputs and outputs with the inputs disturbed. The 

disturbances are in the form of a square wave. This gives periodic negative and positive 

disturbances to the inputs. Figure 4-11 reflects the ability of the controller to adapt to 

disturbances. The frequencies of the square waves were taken to be 6000 seconds for the 
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O2, 9000 seconds for the BR, and 30000 seconds for the CMR. The controller reacts to, 

and corrects for, these disturbances. The outputs show a 20% error due to the time it takes 

to correct for the instantaneous changes in the inputs. The plot shows a long history 

because the frequencies of the square waves were all different, allowing worst possible 

cases to arise.  
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Figure 4-9 Step response under ideal conditions 
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Figure 4-10 Step response with noisy outputs 

 

 

Figure 4-11 Step response with input disturbances generated with square waves 

4.4.8 Integration of Sensor Fusion In Controller Design 

 

The sensor fusion technique provides the controller with a confidence level in the 

measurements of the output values.   As explained earlier, the confidence level reflects 

how trustworthy the measurements are.  If the confidence is close to zero, then the 

response should be slow. If the confidence is close to one, the response should be normal. 

To test the integration of the sensor fusion in the controller design, a relatively large 

disturbance is applied to the output with the cupola at steady state.   This disturbance 

represents a failure in the sensors rather than an actual disturbance. Figure 4-12 and 
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Figure 4-13 are plots of the inputs and outputs of the melt rate for the confidence levels 

of 0.9 and 0.5 respectively during the disturbance. The confidence is taken to the fifth 

power and multiplied to the controller's  rate of change for the blast rate. 

The change in the melt rate due to the disturbance in the measurement at a 90% 

confidence is 0.038 (tons/hr) and responds much like it would without sensor fusion. The 

change in the melt rate for a 50% confidence was only 0.0038. The figures show that the 

reduced confidence slows the controller down so that the output changes are 10% of 

those at a confidence of 90%. It does not stop the changes and if the sensors that cause 

the confidence to go down are not replaced or corrected, the output could eventually 

reach an erroneous value. With sensor fusion, it is shown that the cupola's operators will 

have much more time to fix bad sensors before lowering the quality of the product. The 

controller can be easily adjusted by changing the power that the confidence is taken to.  
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Figure 4-12 Response for melt rate confidence of 0.9 and –0.1 pulse for 600 seconds 

 

 

 Figure 4-13 Response for melt rate confidence of 0.5 and –0.1 pulse for 600 seconds 
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4.4.9 VARYING MODEL PARAMETERS 

 

A linear model has approximated the non-linearity of the cupola furnace. The 

experimental data shows that the model is good only for a narrow operating range. This 

problem could be solved by designing many controllers and then use a look-up table to 

choose the best controller for a certain operating point. It would be better if one controller 

would work under all the normal operating ranges. This is one reason for using fuzzy 

logic control, that is, it is robust. In Figure 4-14, a sine wave disturbance, with an offset 

of 1.125 and amplitude of 0.375 is multiplied to each of the nine transfer functions at 

different frequencies. This varies the steady state transfer function response from 75% to 

150% of the original value. Since they are varied at different frequencies, a worst-case 

combination will align if the simulation runs long enough.  

The non-linearities in the actual cupola are not a problem for the fuzzy controller. 

Figure 4.14 shows the results of a widely varying model. Applying a sinusoidal varying 

gain to the nine individual transfer functions varies the model. The frequencies are all 

different in order to study the worst case scenario. The controller performs excellent in 

this test. The one case at 12000 seconds indicates the melt rate cannot be controlled. At 

this point the input plot shows the blast rate is at its maximum level, therefore the desired 

operating point cannot be reached. 
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Figure 4-14 The results of varying the model parameters 

4.4.10 Varying Pure Time Delay of the CMR 

The Smith predictor depends on previous knowledge of the time it takes for the 

charge to burn down to the output level. It can be an average for the range of the cupola's 

operation or it could be a function of the inputs and outputs. Even if it were given by a 

function, the penetrability of the charge by the blast cannot be absolutely known, 

clumping of charge materials in the cupola, and coke consistency can all lead to 

inaccuracy in the calculation. Therefore results with the cupola given a 2400 second time 

delay with the Smith predictor given an 1800 second time delay is given in Figure 4-15.  
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Figure 4-16 is the results of a pure time delay of 1200 seconds in the cupola and 1800 

seconds in the Smith predictor. 

 

Figure 4-15 Smith predictor with a +600 second time delay plant offset 

 

Observing Figure 4-15, a 25% overshoot can be seen due to the 600-second 

difference between the cupola’s and the Smith predictor's time delay. Figure 4-16 shows 

the controller's reaction to a –600 second in the same difference, which increases the 

settling time by 100%. These results are good since the %C remained within 25% of the 

required change in set point after a 2000 second settling time. A 600 second difference in 

the time delays would indicate a serious problem and would probably not occur in the 

actual cupola. Therefore, this controller is acceptable for an average time delay given for 

the Smith predictor. 
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Figure 4-16 Smith predictor with a -600 second plant time delay offset 

If a function is available for calculating and updating the Smith predictor's time 

delay, then this controller is conservative and should be adjusted to lower the settling 

time.   

    

4.4.11 COMBINING ALL NOISES AND DISTURBANCES 

 

Figure 4-17 is a plot of all the above noises and disturbances added in. This represents the 

cupola in a worst case scenario where many disturbances are simultaneously taking place. 

The Smith predictor's time delay is 200 seconds more than the cupola's and the sensor 

fusion confidence is 50%.  The figure shows the result of applying all the noises, 
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disturbances, and varying parameters to the system. The controller works satisfactorily 

under these extreme conditions. 

 

  

 

 

Figure 4-17 System Performance Under Effect of All Disturbances 
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Appendix 4.A 

1.    If (eMRate is LgNegMR) and (deMRate is LgNegdMR) then (ChangeBlast is LgNegBR)  
2.    If (eMRate is LgNegMR) and (deMRate is SmNegdMR) then (ChangeBlast is LgNegBR)  
3.    If (eMRate is LgNegMR) and (deMRate is ZerodMR) then (ChangeBlast is LgNegBR)    
4.    If (eMRate is LgNegMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmNegBR)  
5.    If (eMRate is LgNegMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR)   
6.    If (eMRate is SmNegMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmNegBR)  
7.    If (eMRate is SmNegMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmNegBR)  
8.    If (eMRate is SmNegMR) and (deMRate is ZerodMR) then (ChangeBlast is SmNegBR)    
9.    If (eMRate is SmNegMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmNegBR)  
10.  If (eMRate is SmNegMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR) 
11.  If (eMRate is IdealMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR)  
12.  If (eMRate is IdealMR) and (deMRate is SmNegdMR) then (ChangeBlast is ZeroBR)   
13.  If (eMRate is IdealMR) and (deMRate is ZerodMR) then (ChangeBlast is ZeroBR)    
14.  If (eMRate is IdealMR) and (deMRate is SmPosdMR) then (ChangeBlast is ZeroBR)   
15.  If (eMRate is IdealMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmNegBR) 
16.  If (eMRate is SmPosMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR) 
17.  If (eMRate is SmPosMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmPosBR) 
18.  If (eMRate is SmPosMR) and (deMRate is ZerodMR) then (ChangeBlast is SmPosBR)   
19.  If (eMRate is SmPosMR) and (deMRate is SmPosdMR) then (ChangeBlast is SmPosBR) 
20.  If (eMRate is SmPosMR) and (deMRate is LgPosdMR) then (ChangeBlast is SmPosBR)  
21.  If (eMRate is LgPosMR) and (deMRate is LgNegdMR) then (ChangeBlast is SmPosBR)  
22.  If (eMRate is LgPosMR) and (deMRate is SmNegdMR) then (ChangeBlast is SmPosBR) 
23.  If (eMRate is LgPosMR) and (deMRate is ZerodMR) then (ChangeBlast is LgPosBR)   
24.  If (eMRate is LgPosMR) and (deMRate is SmPosdMR) then (ChangeBlast is LgPosBR) 
25.  If (eMRate is LgPosMR) and (deMRate is LgPosdMR) then (ChangeBlast is LgPosBR)  
 

The fuzzy inputs are eMRate for the error in the melt rate and deMRate for the 

rate of change in the error. The membership function names are LgNegMR and 

SmNegMR for large and small negative melt rates, LgPosMR and SmPosMR for large and 

small positive melt rates, LgNegdMR and SmNegdMR for large and small negative rate of 

change in the melt rates, LgPosdMR and SmPosdMR for large and small positive rate of 

change in the melt rates, IdealMR is about a zero error, ZerodMR is about a zero rate of 
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change in the error of the melt rate. The outputs are constants for large or small, negative 

or positive, and zero changes in the blast rate.  
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Chapter 5 

5 Demonstration Plans 

5.1 Introduction 

The demonstration plans aimed at illustrating the functionality of I3PSC 

technology as it is applied to cupola iron melting furnaces.   The plans were carried out as 

proposed at a research facility operated by the US DOE in Albany Oregon (ALRC). 

ALRC operates an 18” research Cupola furnace equipped with state of the art 

instrumentation for measurement of various cupola parameters.  Moreover, in order to 

carry out the I3PSC demo plans, several new instrumentations such as a continuous 

immersion thermocouple and an ultrasonic radar were installed and tested on the furnace 

as promising technologies that could be recommended for use in the cupola foundries.  

The parameters of importance to the current demonstration plans were: 

1- Iron Temperature, 

2- Melt Rate, 

3- Carbon content of molten iron,  

4- Off gas temperature and composition 

5- Cupola back pressure 

6- Blast rate 
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7- Oxygen enrichment 

8- Metal stream composition (SCR) 

9- Coke to metal ratio (CMR) 

Instrumentation used for measurement of the above parameters included: dip 

thermocouples, continuous immersion thermocouple and optical Pyrometers for 

measurement of molten iron temperature, ultrasonic radar for measurement of molten 

iron level, electronic scale for measurement of molten iron weight, thermal arrest 

equipment for quick measurement of carbon, silicon and carbon equivalent of the molten 

iron.  Moreover, other parameters such as CMR and SCR were manually monitored and 

calculated. 

The demonstration plans aimed at addressing the following questions: 

1- Can I3PSC system be successfully interfaced and integrated into an existing 

cupola with its own instrumentation and data acquisition system with minimal 

effort? 

2- Can the I3PSC system provide reliable information regarding the cupola 

parameters and state of operation? 

3- Can I3PSC system be used to integrate sensing and control algorithms in order to 

provide an automatic control system that can successfully operate cupola 

furnaces in order to avoid some of the problems that currently occur in cupola 

foundries? 
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The last question is the most important one as its success automatically indicates a 

positive answer to the first two questions. 

The I3PSC system was interfaced through an Ethernet network connection to the 

existing Data Acquisition Computer at Albany Research Center (ALRCDAQ).  A special 

software module was written to specifically exchange the important cupola parameters 

between the I3PSC computer and the ALRCDAQ.  This software module is what needs to 

be customized if the I3PSC system is to be used at a different facility.  This arrangement 

ensured that no changes to the ALRCDAQ were required and that any changes to the 

number of parameters monitored can be done quickly.  This arrangement is illustrated in 

Figure 5-1. 
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Figure 5-1 Configuration for Interfacing I3PSC with ALRC DAQ for Demo Runs 

Three of the demonstration runs were focused on illustrating the integration of 

sensing and control of cupola parameters.   

5.2 Setup of I3PSC for Demonstration Runs  

I3PSC system was configured with the following modalities: 

a) Data Acquisition Modality:  A modality whose function is to collect and send raw 

data and I3PSC control parameters from and to the ALRCDAQ. 
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b) Virtual Sensor Modality:  A modality using models to predict values of important 

cupola parameters.  Two virtual sensors were configured.  One for molten iron 

temperature and the other for the iron melt rate. 

c) Sensor Fusion Modality:  For fusion of data collected from the cupola.  Three 

parameters were of interest in the demo runs, namely, iron temperature, melt rate, 

and Carbon content of the molten metal. 

d) Monitoring modality:  This modality monitors trend of important variables and 

displays the current trend of such variables such as increasing, decreasing, 

constant, etc.  This modality can also be setup to monitor for conditions such as 

bridging that would be reflected in changes in operational parameters such as 

cupola back pressure and exit temperature.  An example of such situation is 

shown later in this chapter. 

e) Planner modality:  This is the modality which specifies the run plan in terms of 

the requirements on the variables of importance.  This was limited during the 

demo runs to the three variables specified earlier, , namely, iron temperature, melt 

rate, and Carbon content of the molten metal. 

f) Controller Modality:  This modality uses information from the sensor fusion 

modality as well as planner modality to decide adjustments to the control 

parameters of the cupola.  These parameters included: blast rate, oxygen 

enrichment, coke to metal ratio (CMR) and steel to cast ratio (SCR). 
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5.3 Results and Analysis of Demo Runs  

One of the runs was aimed at ensuring that the cupola instrumentation were 

working properly and the interface between the I3 PSC and the data acquisition 

system as well as the integrated system at ALRC are working properly.  It was also 

used to test the effect of changing the CMR on the cupola operating conditions.  The 

subsequent runs aimed at demonstrating the ability of I3PSC to control the carbon 

content of the molten iron by adjusting the composition of the iron stream, the melt 

rate and temperature of the molten iron within an appropriate range.   

The first of these runs illustrates the ability to change the carbon content of the 

molten iron from 2.8% Carbon to 3% while maintaining the metal temperature and 

the melt rate constant.  It also illustrates the ability of the I3PSC controller to reject 

disturbances in the form of unknown metal stream that is being introduced into the 

cupola.  Partial results of the first of these runs are shown in Figure 5-2 through  

Figure 5-7.  
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Figure 5-2 Control of Carbon Content, Run #2 

 

 

 

Figure 5-3 Metal Stream Changes suggested by I3PSC for control of %C for Run #1 
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Figure 5-4 Individual Measurements and Fused Melt Rate for Run #1 

 

Figure 5-5 Confidence of Fused MR 
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Figure 5-6 Individual Measurements and Fused Temperature 

Figure 5-7 Confidence of Fused Temperature 
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Figure 5-8 Oxygen Enrichment for Temperature Control for Run #1 

 

Figure 5-9 Blast Rate for Melt Rate Control for Run #1 

Figure 5-2 illustrates the change in the carbon content between the current carbon content and 

the desired content of 3%.  It should be noted that a stream of pig iron was added to the metal 

stream, as a disturbance, in place of part of the steel in the charge, as illustrated in  
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Figure 5-3.  The controller corrects for the disturbance by increasing the amount of steel in the 

charge.  Adjustments in oxygen enrichment and blast rate to maintain the temperature and melt 

rate are illustrated in Figures 5.8 and 9.  The temperature and melt rate obtained from individual 

measurements are shown in Figure 5-4 and Figure 5-6. Changes in the confidence in the fused 

values reflecting agreement between the different measurements are shown in Figure 5-5 and  

Figure 5-7.   

Figure 5-10 Control of %C during Run #2 
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Figure 5-11 Changes in MR during Run #2 

 

Figure 5-12 Changes in MR during Run #2 
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The second run aimed at showing the ability to quickly change the carbon content of the iron.  

Two set points for the carbon were desired.  The first set point was 3% and the second set point 

was 2.8%.  It should be noted that the first set point took longer to achieve than the second set 

point, as the cupola did not reach steady state when the controller was initially turned on.  The 

change in the Carbon content is shown in Figure 5-10.  The change in set points was also 

accompanied by a requested change in the melt rate as shown in  

 

Figure 5-11.   

Figure 5-12 shows the change in the temperature of the molten iron during the 

run.  Figure 5-13 shows the change in the metal stream going into the cupola as 

suggested by I3PSC along with a disturbance in the form of pig iron stream replacing 

part of the cast iron. 

The last run demonstrated the ability to drastically reduce the melt rate while 

maintaining the carbon content and the iron temperature within appropriate ranges.  

This was achieved by a change in the CMR prior to the reduction in the blast rate.  

The change in the CMR was accompanied by a change in the metal stream to 

compensate for the expected effect of the increase of CMR on the carbon content.  

The main reduction in the melt rate was produced by a drastic cut in the blast rate and 

oxygen enrichment.  It should be noted that the forward change in the CMR reduce 

the required decrease in the blast rate and keeps the metal temperature within the 
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desired range after such drastic cut in the blast rate and oxygen enrichment.  These 

changes are illustrated in Figure 5-14 to Figure 5-20.  Figure 5-14  shows the change 

in CMR in anticipation of the request for a change in the MR and the corresponding 

adjustments in the metal streams to compensate for that change. Figure 5-16 and 

Figure 5-17 show the change in the blast rate and oxygen enrichment to achieve the 

desired MR.  
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Figure 5-13 Metal Stream Changes control of %C for Run #2 
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Figure 5-14 Forward Change in CMR to Achieve Large Change in MR (Run #3) 

 

 

Figure 5-15 Changes in Metal Stream to compensate for Change in CMR 
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Figure 5-16 Changes in Oxygen Enrichment (SCFM) during Run #3 

Figure 5-17 Changes in Blast Rate (SCFM) during Run #3 
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Figure 5-18 Control of Melt Rate during Run #3 

 

 

Figure 16:  Changes in Molten Iron Temperature during Run #3 

 

 

 

 

 

 

 

Figure 5-19 Changes in Iron Temperature deg F during Run #3 
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Figure 5-20 Changes in % Carbon during Run #3 

Figure 5-21 and Figure 5-22 illustrate a different capability of the I3PSC.  As we 

mentioned earlier one of the modalities of I3PSC is a monitoring modality that can be 

directed to monitor the trends of specific variables.  This modality can also be 

directed to monitor for a set conditions on multiple variables including specified 

trends and absolute values.  In the case illustrated here, the monitoring modality 

detects the occurrence of a bridging condition in the cupola through the monitoring of 

two parameters, namely the cupola exit temperature and the cupola back pressure.  

These variables are easily measured and continuously monitored.  The two variables, 

as shown in Figure 5-21 and Figure 5-22, show a simultaneous increase during the 

marked window.  The simultaneous increase of both variables is a good indicator of 
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the occurrence of bridging in the cupola.  The operator could, thus, be alerted for the 

bridging and an action to alleviate the problem. 

 

 

Figure 5-21:  Detection of Bridging in the Cupola-Changes in Exit Temperature 
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Figure 5-22:  Detection of Bridging in the Cupola-Changes in Cupola Pressure 
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Appendix 5.A 

 

Figure 5-23:  Opening the Tap-hole at ALRC Cupola 

 

 

 

 

 

 

 

 

Figure 5-24:  Cupola Always Provides Operational Challenges 
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Figure 5-25:  An Overview of the ALRC Research Cupola 
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Figure 5-26:  Manual Sampling and Quick Analysis of Molten Iron 

 

 

Figure 5-27:  Manual Measurement of Temperature of Molten Iron 

 

Figure 5-28:  Optical Pyrometers for Continuous Measurements of Iron 

Temperature 
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Figure 5-29:  A Dip Thermocouple for Continuous Temperature Measurement 

 

Figure 5-30:  Charging Deck of the Cupola at ALRC 
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Figure 5-31:  Measurement of Melt rate, Chemical Composition, and Temperature  

 

Figure 5-32:  Remote Monitoring and Control of the Cupola during Demo Runs 
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Chapter 6 

6.1 Summary and Conclusions 

 

Section 1 of this report has reviewed major highlights of the project including the 

management activities, development of algorithms for multiple sensor fusion and 

integration of sensing and control, and demonstration runs on a cupola iron-melting 

furnace in Albany research center.  The project involved in addition to the algorithms 

development, the creation of a flexible software package based on object-oriented 

methodology that integrates the different components of the developed system.  The 

software package includes algorithms for offline analysis as well as online operation.  

Details regarding the use of software package are provided in Appendix A. 

The technical achievements of the project can be highlighted through the refereed 

journal and conference publications to interested professionals in the field of sensors and 

control as well as professionals within the metal casting industry.  Up to this point 

fourteen papers and seven theses, that were supported by the project, have been 

published.  The lists of papers and theses are provided in Appendices 1.A and 1.B.  Some 

of the technical details were not included in this report to protect the intellectual property 

of the participants. 
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The developed system (I3PSC) was tested in a series of demonstration runs.  

These runs have demonstrated the ability of the system to: 

1- be easily interfaced into an existing cupola foundry with its own data 

acquisition equipment, sensors and networks, 

2- be adapted to incorporate the available sensors and modalities, 

3- fuse the available information sources and provide a best estimate as well 

as a confidence measure on the estimate, 

4- monitor trends of individual variables as well as combination of variables 

and provide early warning on potential problems such as bridging that 

might be developing in the cupola, 

5- integrate sensing and control algorithms to provide a closed loop 

automatic control system that can aid in maintaining the important 

operational cupola parameters such as carbon content, melt rate and iron 

temperature with specified boundaries at various conditions of operation 

requirements.  Specific examples that were illustrated included the ability 

of the system to change the carbon content quickly during a run while 

maintaining the temperature and varying the melt rate.  Another example 

showed the ability of the system to plan a large reduction in the melt rate 

while maintaining the carbon content and the temperature within 

acceptable ranges, and 
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6- reduce the transition period to steady state operation by changing the 

initial charge setup in the cupola. 

The demonstration runs, the publications and the developed software package 

illustrate that the project have achieved the proposed objectives.  Full 

utilization of the developed algorithms, software and hardware within the scope 

of the industries of the future depends on other factors that are technical and 

economical.  The next section discusses these issues in more details. 
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6.2 Future Recommendations 

As we have mentioned earlier, the I3PSC system has achieved the technical 

objectives set at the start of the project.  The system was tested using a state of the art 

research cupola furnace.  It has not yet been adopted and tested by a commercial facility.  

Cupola foundries are in general conservative in adopting new technology especially 

under current economic conditions. Certain issues need to be considered towards 

achieving acceptance of the system in cupola foundries.  Although the I3PSC system was 

designed to be generic, certain modalities such as virtual sensors and the automatic 

controller need to be setup to address the specific needs of a foundry and thus would 

require the investment of time and resources. Sensors for monitoring of key parameters in 

a foundry such as temperature and chemical composition have to be installed and 

operated, if not already available.  A training period for personnel in the foundry would 

be necessary.  The investigators have used and continue to use professional meeting and 

personal contacts to increase awareness of the cupola foundries to the benefits of the 

I3PSC and the possible economic and environmental impact of its utilization. Avenues for 

support of the first industrial implementation of I3PSC in a cupola foundry using private 

as well as government funds are currently being explored.   

From a different perspective, I3PSC was intended to be generic and applicable to 

other applications that require the integration of sensing and control.  Thus, another 
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avenue to pursue is to seek funding for the adaptation of the developed system in other 

applications within the scope of the industries of the future.     
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A.1  I3PSC Online System User Manual 

The user can start I3PSC (Intelligent, Integrated, Industrial Process Sensing and 

Control) online system by running Cupola Interface.vi. The path is 

C:\I3psc\Application\Cupola Interface.vi. This VI’s front panel is as shown in Figure A-1.  

 

Figure A-1 I3PSC Online System Top-Level Menu 

Three options are listed in this menu, namely Set up application, Run and Quit. If you 

need to run I3PSC for a new application, you should double click on “Set up application”. 

The dialog as shown in Figure A-6 is popped up.  The procedure of setting up an 

application will be introduced in section 2. If the user wants to run an existing 

application, double click on “Run”. The dialog (Figure A-44) is popped up. The running 

of the system will be introduced in section 3. Double clicking on “Quit” will exit the 

I3PSC system. The complete flow chart of using I3PSC is given in Figure A-3. Figure A-4 

shows the procedure of setting up a new application and Figure A-5 shows the procedure 

for setting up a modality. The modalities that represent different system functions such as 

data acquisition, data fusions, controller, etc. are the components to build the system. As 

shown in Figure A-2, each modality contains a set of variables and each variable has an 

associated set of properties that get calculated by the application. This data structure is a 
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3-D parallepoid with modalities, variable, and properties representing of the axis. The 

time represents the 4th axis. 
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Figure A-2 Data Strucuture Model 
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Figure A-3 Top-level Procedure 
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Figure A-4 Procedure of Setting Up Application 
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Figure A-5 Procedure of Modality Setup 



A.1.1    Setup Application 

The main purpose of setting up an application is to setup the modalities to build a 

I3PSC system. I3PSC contains a generic interface in order to include different modalities 

required by the application. Planner, Controller, Plant, Virtual Sensor, Fusion, Monitor, 

and Expert are eight modalities that have already been given. A system can be built with 

these modalities. Every modality has several groups. Each group has input variables, 

output variables, and an execution engine. The information inside the system is organized 

as a data structure. Node is the basic component in the data structure. Modality, variable, 

and property are three elements of a node. All the nodes with the time form the four-

dimension data structure. Therefore, to build a system for a new application, the user 

needs setup the modalities, the variables in the modality, and the property of the 

variables. The user can setup these in the dialog shown in Figure A-6.  

Figure A-6 Application Setup Menu 

The main procedure of setting up a new application is followed: 

1.     Define Standard Grammar (refer to section A.1.1.1) 

2.     Create/Modify Standard Grammar (refer to section A.1.1.2) 

3.     Select Modalities & Variable & Interface (refer to section A.1.1.3) 

4.     Select Variable Properties (refer to section A.1.1.4) 

5.     Save Setup Information (refer to section A.1.1.5) 

6.     Modality Setup (refer to section A.1.1.6) 

7.     Done Setting Up (refer to section A.1.1.7) 
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A.1.1.1    Define Standard Grammar 

Standard Grammar is the basic reference to describe the structure of the data structure 

of the system. The structure of a standard grammar file is shown in Figure A-8. The 

following rules must be followed in order to run the system properly. 

1. The first row bears a descriptive name of the column or of the modality. The 

first six columns are fixed. They contain different information. Starting from 

column seven, the modalities appear. In the example shown in Figure A-8, the 

modalities are Planner, Controller, Plant, Virtual Sensor, Fusion, Monitor, and 

Expert. The order of the modalities in the standard grammar presents the 

execution order of the modalities in the system. So the modalities should be in 

a specified order. Up to eight modalities can be included in the system. 

2. The second row has “INPUT” which is a flag value to determine the start of 

the input variable in each modality. At the end of the list of input variables, 

there is a blank row and a row with “OUTPUT” which is a flag to determine 

the beginning of the output variable in each modality. 

3. The name in the first column is a globe name representing a variable, 

however, each modality can have a local variable name that corresponds to the 

variable in the first column of the standard grammar. This local variable name 

is used in the current implementation to interface the system to the DAQ. 

To define an existing standard grammar file, double click on “Define Standard 

Grammar” in Setup Menu (Figure A-6). The dialog in Figure A-7 will be opened. 

Figure A-7 Set Standard Grammar File 

    If the standard grammar file is stored in the default path shown in the file path 

controller, click “Read File” button will load the file into your setup. Otherwise, you 

need click “Let Me Find It” button to search and load the file. 



standard gramdescription default metric default metric default British default British Planner Controller Plant Virtual Senso Fusion Monitor Expert
INPUTS
coke in chargeweight of coke 4.672 kg 10.3 lbm -- -- -- -- -- -- --
coke ratio weight of coke 10 % 10 % coke ratio coke ratio CMR SP -- -- -- coke ratio
cupola diametdiameter of th 0.559 m 22 in -- -- -- -- -- -- --
cupola well di diameter of th 0.457 m 18 in -- -- -- -- -- -- --
blast rate volume of air 0.1339 m^3/s at 0C 300 scfm at 60F blast rate blast rate Blast Rate RP-- -- -- blast rate
Blower Freq. volume of air 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Blower Freq. -- -- -- --
pressure droppressure drop 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Blast Rate -- -- -- --
oxygen additiovolume of axy 0.003125 m^3/s at 0C 7 scfm at 60F O2_Enrich -- O2 Enrich -- -- -- --
O2 Flow Rate volume of axy 0.003125 m^3/s at 0C 7 scfm at 60F -- -- O2 Flow Rate -- -- -- --
blast tempera temperature o 699.82 K 800 F -- -- Blast Temp -- -- -- --
blast fraction fraction of bla 90 % 90 % -- -- -- -- -- -- --
actual BR actual volume 0.1339 m^3/s at 0C 300 scfm at 60F -- -- actual BR actual BR -- actual BR --
total oxygen inpercent oxyge 22.7 % 22.7 % -- oxygen additioO2 RP -- -- -- --
Time time correspo 7:00:38 AM 7:00:38 AM -- -- Time -- -- -- --

OUTPUTS
Offgas CO amount of car 12.746 mole% 12.746 mole% -- -- CO% -- -- Offgas C0 --
combustion efamount of CO 52.8 % 52.8 % -- combustion ef%CE -- -- %CE --
melt rate amount of iron 19.541 tonne/hr 21.4951 ton/hr melt rate melt rate Melt Rate Melt Rate Melt Rate melt rate melt rate
Kalman MR amount of iron 19.541 tonne/hr 21.4951 ton/hr -- -- -- Kalman MR -- -- --
Pyrometer Te metal tempera 2019.907 K 3177.8326 C Pyro._Temp tap temp Pyro._Temp Pyro._Temp Pyro._Temp tap temp metal tempera
Kalman PT metal tempera 2019.907 K 3177.8326 C -- -- -- Kalman PT -- --
2nd Pyrometemetal tempera 2019.907 K 3177.8326 C 2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete2nd Pyromete
Datacast Temmetal tempera 2020.907 K 3179.6326 F Bath Temp -- Bath Temp Bath Temp -- Bath Temp --
Spout Tempe metal tempera 2019.907 K 3177.8326 C Spout Temp. Spout Temp. Spout Temp. -- Spout Temp. Spout Temp. Spout Temp.
Final Carbon amount of car 3.69 % 3.69 % %C %C %C %C -- %C Final Carbon
Melt Rate 2 amount of iron 19.541 tonne/hr 21.4951 ton/hr -- Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2 Melt Rate 2
metal temperametal tempera 2019.907 K 3177.8326 C -- tap temp Pyro._Temp Pyro._Temp Pyro._Temp tap temp metal tempera
Final Carbon 2amount of car 3.69 % 3.69 % -- %C %C %C %C %C Final Carbon
radar level level 6 Foot radar -- radar radar radar radar radar radar
Cupola Exit metal tempera 2019.907 K 3177.8326 C -- -- Cupola Exit -- -- Cupola Exit --
Cupola Press pressure drop 0.1339 m^3/s at 0C 300 scfm at 60F -- -- Cupola Press -- -- Cupola Press --
Manual Melt Ramount of iron 19.541 tonne/hr 21.4951 ton/hr u24:Melt rate Manual Melt RManual Melt RManual Melt RManual Melt RManual Melt RManual Melt R

 

Figure A-8 Example of Standard Grammar 



A.1.1.2    Create/Modality Standard Grammar 

The Standard Grammar can be created or modified using this function.  Double click 

on “Create/Modality Standard Grammar” in Setup Menu (Figure A-6) will open the 

dialog shown in Figure A-9 clicking on button “Create New” will open the dialog 

(Figure A-10) to create a new standard grammar. Clicking on button “Modify Existing” 

will open the dialog in Figure A-11 to modify the existing standard grammar. 

 

Figure A-9 Create/Modify Standard Grammar 

 

Figure A-10 Create New Standard Grammar 
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Figure A-11 Modify Existing Standard Grammar  

There are three same tabs on these two dialogs. On the “Modality Options” tab, the 

user can create a new modality or delete an existing modality. On the “Variables 

Options” tab, the user can create a new variable or delete an existing variable in a 

modality. On the “Save Options” the user can exit this function with or without saving 

the new or modified standard grammar. 

A.1.1.3    Select Modalities & Variable & Interface 

    In this option, the user can select the modalities that need to be included in the 

I3PSC system. Also the variable and the interface related to the modalities can be 

selected. The interface of Select Modalities & Variable & Interface is in Figure A-12. All 

modalities appearing in the Standard Grammar File appear in the Modalities window. 

Once the modalities are selected, they become available for the creation of modality 

groups. The variables in the modality can also be selected. If that variable exists in other 

modalities, they are also automatically selected. For each modality, the modality interface 

VI path is also selected. This interface VI associated with that modality will be called 

when I3PSC starts running. Click “Continue” button to close the window after selecting 

the modalities, variables and interfaces. 
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Figure A-12 Modalities, Variables and Interfaces Selection 

A.1.1.4    Select Variable Properties 

    The user can select variable properties in the dialog shown in Figure 5. Highlight 

the properties in the parameter list to be added to the data, and then click on “Add to 

List” button. The “Return to Menu” button will close this dialog. 

 

Figure A-13 Select Variable Properties 
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A.1.1.5    Save Setup Information 

     After you select the modalities, variables and interface for this system in Figure 

A-12, you should save the setup. These setup information will be used in the following 

Modality Setup discussed here later. Just double click on the Save Setup Information on 

Setup Menu (Figure A-6) to save the setup information.. 

A.1.1.6    Modality Setup 

    Once all the modalities needed for system are selected, the Modality Setup option 

(Figure A-6.) allows you to set up various properties of these modalities like defining 

groups of the modality (e.g. multiple fusion groups), defining properties of variables in 

the modality, etc. The Modality Setup window is shown in Figure A-14. 
 

 

Figure A-14 Modality Specific Setup 

     In this window, the “Modalities" indicator shows all the modalities which you’ve 

already selected previously.  

    The following steps are taken to setup the modalities: 

1. Click on “Define” button to Declare Model Setup File (section A.1.1.6.1) 



 

 

181

181

2. Select the modality setup VI and then click “Run Setup VI” (section A.1.1.6.2) 

to run the modality setup VI. For each modality several setup VIs need to be run. 

Table 1 shows the Setup VIs that need to be run for each modality.   

3. The “Return to Menu” button will exit modality setup and close the dialog in 

Figure A-14. 

Table 1. Setup VI s of Modalities 

Setup VIs Planner 
Modality 

Controller 
Modality 

Plant 
Modality 

Virtual 
Sensor 

Fusion 
Modality 

Monitor 
Modality 

Modality groups.vi r r r r r r 
SensorParameters.vi   r r r  
Planner setup.vi r      
Monitor setup.vi      r 
Charge setup.vi  r     
Controller setup.vi  r     

A.1.1.6.1    Declare Model Setup File 

    Click “Declare Model Setup File” button on the Modality Specific Setup dialog 

(Figure A-14) will open the dialog shown in Figure A-15.  The VIs that perform the 

modality setup are defined here. The setup VIs required by every modality are list in 

Table 1. Each VI's are selected by clicking the "Look Up" button.  The names of these 

VI's will be appeared in the pull-down menu in the Modality Specific Setup dialog 

(Figure A-14). 

 
 

Figure A-15 Declare Model Setup File 

A.1.1.6.2    Run Setup VI  

    Click “Run Setup VI” button on the Modality Specific Setup dialog (Figure A-14) 

will run the modality setup VI selected in the list box.   
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    As shown in Table 1, Modality Groups VI and Sensor Parameters VI are two main 

modality setup VIs that are required by most of the modalities. Modality Groups.vi is 

used to define groups in a modality and to delete or update the groups in the modality. 

Sensor Parameters.vi is used to setup the parameters of the sensors. These two setup 

procedures will be introduced in the following section A.1.1.6.2.1 and section 

A.1.1.6.2.2. The rest setup VIs will also be introduced in section A.1.1.6.2.3.  

A.1.1.6.2.1.    Modality Groups 

    The dialog of Modality Groups.vi is shown in Figure A-16. 
 

                            

Figure A-16 Modality Groups Main Menu. 

     Two functions are offered in this dialog, namely Define Modality Parameters and 

Delete/Update Modalities. Define Modality Parameters can define a new group in the 

modality and Delete/Update Modalities can modify the existing group in a modality.  

A.1.1.6.2.1.1    Define Modality Parameters 

Double clicking the "Define Modality Parameters" option opens an dialog shown in 

Figure A-17. This dialog allows the user to add variables that form the inputs and outputs 

of the modality and add them as a group and also to create multiple such groups. The user 

has to select the variable, its associated modality and property and then click the "Add 

Variable" button to add that "node" to the modality. Once all the input and output 

variables are added, this set is classified as a "Modality Group".  
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Figure A-17 Select Variables in Group 

 
 

 

 

 

 

 

 

      

 

Clicking on the "Add Group" button in Figure A-17 dialog will open another dialog 

as shown in Figure A-18. This interface allows the user to split all the variables selected 

in the modality into input and output variables.  

 

Figure A-18 Split Variables into Input and Output Variables. 

NOTE: 
     Whenever you add a node with “value” property, a node which has “trend”

property is added automatically. If you only need “value” property node you can delete

the “trend” property node. The procedure of deleting a node is double clicking “Delete /

Update Modalities” in dialog shown in Figure A-16. Then click the button on each

popped up dialogs in the following order: "Modify Modality" (as shown in Figure

A-22), "Change Variable List" (as shown in Figure A-23). Double clicking on the

variable, you can “Delete” it on the dialog in Figure A-24. 
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    Once "Done", a dialog to name the created group appears. This dialog also allows 

the parameters of the group to be added and the path of the engine VI to be defined. This 

dialog is as shown in Figure A-19. 

Figure A-19 Add Group Parameters 

In this dialog, the user can name a group, define the path of the engine VI, and 

give the variables associated with that group. The detail explanations are as follows:  

1. While defining the group name for a fusion modality group, a suffix is attached to 

indicate what kind of Standard Deviation (STD) value will be used estimating the 

fusion value. The format is “GroupName@max”. “@max” means using the 

maxim STD value. “@min” means minimum STD value and “@mean” means the 

average STD value. The default mode is “mean”. 

2. Each modality can be executed on different computer. The computer is identified 

by IP address. In the “Path & IP of VI that executes this group” control, you 

can enter the IP address of the computer and the path of that engine VI on that 

computer. The format is Path::IP. For example, if the engine VI is on machine 

149.149.0.1 and its path is C:\I3PSC\Fusion\Modality\Fusion\MultipelSensor 

Fusion.vi, the path will be C:\I3PSC\Fusion Modality\Fusion\MultipelSensor 

Fusion.vi::149.149.0.1. 
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3. While defining the group in this modality, the variables associated with this group 

will be given. These variables are Threshold, Trend Influence Factors, Weight of 

Expected Value, and Weight of Previous Fused Confidence. Threshold means the 

number of points to ignore at the beginning of run. Trend Influence Factor is a 

number of 0-1 that determines how much the trend effects the confidence 

calculation. Weight of Expected Value is a weight factor that determines the 

effect of expected value calculated using previous fused value and trend on the 

fused results. Weight of Previous Fused Confidence is a factor from 0 to 1 that 

determines the effect of previous fused confidence over the current confidence.  

  

Once all the parameters are added, click on "OK" button to add this group to the 

modality. The dialog in Figure A-17 will show back for adding more groups.  

A.1.1.6.2.1.2    Delete/Update Modalities 

    Click "Delete / Update Modalities" in Figure A-16. The dialog as shown in Figure 

A-20 is popped up to delete or update the details in the existing modality groups.  

 

Figure A-20 Delete / Modify Modality 

    The "Groups of Modality" list box on the left of the screen lists all the groups of 

the modality created earlier. Selecting one of them, displays the details of that modality 

group in the "Modality Details" indicator. The user is provided with an option of either 

deleting the group as such ("Delete Modality") or modifying the contents of the group 

("Modify Modality"). If click "Delete Modality" an alert confirmation dialog is popped 
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up to request the user to confirm whether he wants to delete the group. The alert dialog is 

as shown in Figure A-21. 

 

 

Figure A-21 Delete Confirmation Alert 

 “Modify Modality” option allows the user to change the details of the modality 

groups. The dialog of “Update Group” is as shown in Figure A-22. 

 

Figure A-22 Update Modality Group Details 

    The "Change Variable List" option allows the user to change the variable list of 

the group. The interface is shown in Figure A-23. Double clicking on any of the variables 

in the list opens an interface as shown in Figure A-24 which allows the user to change the 

variable. 

 

Figure A-23  Change Variable List 



 

 

187

187

 

 

Figure A-24 Change Variable 

    In case the user wants to add more variables to either the input or the output of the 

modality, then the user clicks the "Add more input variables" or "Add more output 

variables" button in Figure A-23. The dialog in Figure A-17 is shown again to add the 

input/output variables.  

    When the user selects the "Change Parameters" option in Figure A-22., an 

interface as shown in Figure A-25 appears. This interface allows the user to change the 

parameters associated with the Modality Group. The contents in this dialog are same as 

the contents in Figure A-19.  

 

Figure A-25 Change Parameters of Modality Group 
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A.1.1.6.2.2.    Sensor Parameters Setup 

    Sensors monitoring the plant are subjected to self-validation tests to ensure the 

reliability of the data being read by them. These self-validation tests require the creation 

of fuzzy FIS files. Also other sensor parameters such as Standard Deviation, etc need to 

be defined for each sensor. The "Sensor Parameters.vi" is programmed for assigning such 

sensor parameters. The dialog for setting up sensor parameters is as shown in Figure 

A-26. 

 

Figure A-26 Sensor Parameters Setup 

    The "Variables in Modality" list box shows the list of sensors in the modality. To 

setup the parameters, double clicking on any of the variables. This opens a dialog as 

shown in Figure A-27.   

 

Figure A-27 Sensor Parameters Interface 

      Clicking on the “Self-Confidence Measure", a dialog shown in Figure A-28 

allows the user to set up self-validation by creating FIS file or by assigning self-



 

 

189

189

confidence. If the user chooses to create a FIS file a dialog as shown in Figure A-29 

appears. The user can create the FIS file.  

 

Figure A-28 Sensor self-confidence menu 

 

 

Figure A-29 Create Self-validation Fuzzy FIS File 

 
    Double-clicking the "Standard Deviation Measure" in Figure A-27, a dialog, as 

shown in Figure A-30, is opened to calculate the standard deviation values from history 

data or to assign the standard deviation value. 
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Figure A-30 Standard Deviation Option Menu 

    If the user selects to calculate the Standard Deviation from historical data, a dialog 

as shown in Figure A-31 appears for calculating the standard deviation. 

 

Figure A-31 Standard Deviation Calculation 

A.1.1.6.2.3.    Other Specific Setup  
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There are three more modality setup VIs, namely trend monitor setup, charge setup, 

and planer setup which are used to setup the specific modalities. 

A.1.1.6.2.3.1    Trend Monitor Setup 

    The Trend Monitor engine requires some parameters for its operation. The "Trend 

Monitor setup.vi" is programmed for assigning such parameters needed for calculating 

the trend. The dialog of Trend Monitor Setup VI is as shown in Figure A-32.   
 

    

Figure A-32 Interface for setting up trend monitor parameters 

 The interface shows the list of all groups and the variables in a group of the trend 

monitor modality. All groups of this modality are listed in the menu ring "Monitor 

Modality Names". When a particular group is selected all variables in that group get 

listed in the list box below the menu ring. Double-clicking on any one of the variables, 

the dialog in Figure A-33 is shown. The user can setup parameters of the trend monitor 

engine. The window length indicates the number of sample points to be used to calculate 

the trend. Slow changing variables can be assigned a longer window length. The Trend 

Monitor also provides with an option wherein it throws an alert when certain trends are 

encountered. The "Available Cases" list box lists all the possible trend cases and allows 

the user to add cases to be watched out by using the "Add" and "Remove" button. The 

added cases appear in the "Cases to be watched out for". The "Preview" shows the trend 

of the variable for the case selected.   
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Figure A-33 Assign Parameters for trend monitor 

    The "Assign Defaults" button in the Figure A-32 dialog allows the user to setup 

the default parameters. The interface is exactly the same as shown in Figure A-33. 

A.1.1.6.2.3.2    Charge setup 

 

 

Figure A-34 Setup Charges 
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This VI is designed to setup the number of charges that were in the furnace. The 

dialog is as shown in Figure A-34. The the user can define the number of charges, 

average time between charges, CMR, SCR, and Expected %C SP in this dialog.  

A.1.1.6.2.3.3    Planner setup 

 

Figure A-35 Planner Setup 

The planner setup VI produces the dialog in Figure A-35 to setup the planner. 

Highlight on Create New Heat Plan then click on Run to create a new plan. The dialog in 

Figure A-36 is used to add a new plan. User can add the start and stop time, the start up 

time, the steary burn period, the transition and the shutdowm by highlight the menu and 

clicking Run.   
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Figure A-36. Add new plan  

In the dialog shown in Figure A-37, user setups the start and stop data and time.  The 

startup points can be setup in the dialog in Figure A-38.  
 

 
 

Figure A-37 Setup the start and stop time of a plan 
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Figure A-38 Add startup routine 

 The steady burn period is setup in the dialog showm in Figure A-39. Figure A-40 

is the dialog to setup the transition. In Figure A-41 user can setup the shut down time. 

 

 

Figure A-39. Set up steady burn routine 
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Figure A-40. Add transition 

 

  
 

Figure A-41. Add shutdown time 

 
 
 

A.1.1.6.2.3.4    Controller setup 

Controller setup is used to setup the parameters of the controller variables which are 

listed in the menu box in Figure A-42. Highlight the controller variable then click on OK. 

The parameters setup dialog will popped up as shown in Figure A-43.  
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Figure A-42. Controller setup 

 

 
 

Figure A-43. Setup the cotrollel parameters 
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A.1.1.7    Done Setting Up 

After setting up all the modalities for the new application, double click Done Setting 

Up will save all the modality setup and close the application setup window (Figure A-6). 

The system returns back to the top-level menu (Figure A-1).  



A.1.2    I3PSC Running 

After setting up the new application, double click “Run” on the panel shown in 

Figure A-1. The dialog of I3PSC Running (Figure A-44) is popped up.  

 

Figure A-44 I3PSC Running 

In this dialog, 

1. “Desired Sample Interval” is the sample interval of the system. The default value is 

60 seconds.  

2. “Start” will active the run of all modalities.  

3. If you want to monitor the system on another computer, you can type that machine’s 

IP address in the “GUI Machine Name”. 

4. Press “Write Data to File” will record all the running data into an Excel file and this 

file will be opened after you “Stop” the running.  

5. In the “Modality File Name” box, the user can check all the setup modalities that are 

executing.  

6. While the system is running, the user can setup the modality using the procedure 

mentioned in section A.1.1.6 and then press “Update” button to update the modality 

setup. For example, using “Update”, the user can add a new variable into a fusion 

group even the system is still running.  
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7. The user can select the variables to be written in the Excel file using the VI whose 

path is C:\i3psc\Datastructure\classes\Data Structure Export to Excel-New.vi. The 

variables in the Selected Parameters array will be written.   

Figure A-45  Excel File Setup 

While running I3PSC’s, the Cupola Operation Monitor window will be popped up. 

The user can monitor the real running situation of the controlled cupola furnace by this 

monitor. At the same time, several other dialogs will be popped up depending on the 

modalities you set. For example, the Controller Options dialog is popped up if you set 

controller modality in the system.  

A.1.2.1  Cupola Operation Monitor 

    At the beginning of I3PSC’s running, Cupola Operation Monitor is popped up. You 

can monitor the real time running situation of the controlled cupola furnace by this 

interface. The front panel of the monitor is shown in Figure A-46.                                                              

 

Figure A-46 Cupola Operation Monitor 
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     There are two tabs for variable monitor and one tab for trend monitor. On each 

variable monitor tab, four variable waveform windows are arranged. You can select 

multiple variables in one window to monitor. Select the X axis node first. All the 

waveform on the same window must use the same X axis node. Pull down the menu in 

X1 Data list box to select X axis node. The default X axis node is Time-Plant-Raw value 

node. Then, Click on the blue “Y1 Data” button. A YI data setup window will popped 

up. This window is shown in Figure A-47. 

 
                                                               

Figure A-47 Setup Variable to Monitor  

    Select the Y nodes in the Y data list box. Then click on “ADD” button to add it 

into the selected variables list. If you want to delete the selected variables, please select 

the variable in the selected variables list box then click on “REMOVE” button.  After 

you select variables need to be monitored for this window, click on OK button to return 

back the Cupola Operation Monitor.   

    Use the same procedure to select the variables you want to monitor in other 

windows. There are three display modes, namely whole data, shifting window and fixed 

segment. Whole data is the default mode that will display the complete data of the 

running. Shifting window only displays the latest data with the data length defined in 

Window L1. Fixed segment display the fixed length data statically. The length of the 

fixed segment is defined by the start point and window length. The Start Point controller 

only displayed while the fixed segment display mode is selected.  
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Figure A-48 Trend Monitor 

On the trend monitor tab (Figure A-48) you can select the variable, whose trend will 

be monitored. At most four trend monitor windows are arranged on the right side of the 

window. 

Also, two situation diagnostics can be set up in the same tab.  Click on the blue Select 

Parameters button. The dialog to setup the diagnostics in Figure A-49 is shown. The 

results of the diagnostics will be displayed by the LED on the Cupola Monitor window. 

The bright LED indicates the alert situation is happening. On this window you select the 

diagnostic input nodes using “ADD”. “REMOVE” can delete the parameter you’ve 

selected. In the Name box you can name your diagnostic. This name will be display on 

the upper right corner of the Cupola Operation Monitor with the diagnostic alarm led. 
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    Figure A-49 Setup Diagnostic Parameters 

A.1.2.2  Change the Control Option Here 

    If a controller is set in the system, the dialog of Change the Control Operation Here 

is popped up during the running and it will stay on the desktop. So you can change the 

control operation at any time. There are four tabs on the Change the Control Option Here 

dialog.  

 

 

Figure A-50 Change Controller Option – Outputs of Controller 
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The first tab is as shown in Figure A-50. It displays information regarding the 

controller output. It also allows the user to override the controller suggestions by 

choosing to operate in the manual mode. To change the setting from Manual to 

Automatic or the reverse. The user presses the Change button, then selects the desired 

setting, then press the update button. If the value of the controller output is to be changed, 

the user enters the desired value at the appropriate control. The check box charge is used 

to indicate that a charge is added to the furnace. The charge number and time is displayed 

in the two indicators as marked on top of the indicator. The two controls CMR and SCR 

are used to manually enter the actual coke to metal ratio and steel to cast ration that went 

in the latest charge added to the furnace. The T/MR Importance Scalar values determines 

is used by the controller to determine how to adjust the BR and Oxygen since the desired 

values for both parameters might not be achievable simultaneously. A higher value would 

favor one parameter over the other. The indicators at the bottom of the screen display 

important parameters regarding the charges. The control #Charges to Fill Cupola 

indicates the average number of charges that can fill the cupola. 

 

The second Tab (Figure A-51) displays a set of parameters used by the controller 

including the desired set points or temperature, melt rate and the future SP values for the 

same parameters as well as Carbon. This is important for parameters that require 

adjustment of charges to avoid the delay resulting from the melting time through the 

furnace. The delay time is estimated approximately as the time it takes to melt the 

number of charges inside the furnace. The set of controls marked with Nominal indicate 

the starting steady state operation values. The controls marked with scalar are adjustable 

parameters that can be changed if the response of the controller is not satisfactory. The 

user is given the option of overriding the confidence values calculated by the senor fusion 

and supplying a constant value. The is done using the switch marker "Assign. Conf./Calc. 

Conf.". Finally the user can override reading coming from the fusion modality and pass 

to the controller another set of readings by using the Manual Readings selector.  
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Figure A-51 Change Control Option – Set Points 

The third Tab (Figure 3-9) ,  is used by the user to set minimum and maximum values 

for different parameters in the system. The array marked with K is used to supply the 

expected steady state gain matrix of the cupola. This is calculated experimentally or using 

the AFS model. The vector array marked Tau supplies the time constant that can be used 

with the matrix K to form a dynamic linear model for predicting cupola response. The 

controls marked with update are used to indicated how often the controller updates the 

corresponding parameter. The number supplied is given in terms of the number of 

samples. The Confidence Effect Control set of parameters are used to increase sensitivity 

to the confidence values within a certain range. The power control is a parameter that 

determines how fast the confidence effect over the controller rolls off as the confidence 

deviates from the high level. 
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Figure A-52. Change Controller Option – Other Parameters 

The fourth tab (Figure 3-10) displays a history of the charge that has been added to 

the furnace including the charge number, time, the coke to metal ratio, steel to cast ratio 

as well as the set point for Carbon that was desired at the time the charge was added, the 

predicted value of carbon when this charge reaches the melting zone and the actual value 

of Caron measure when this charge reaches the melting zone. 
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Figure A-53. Change Controller Options – Charge Setup 
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A.2    I3PSC Offline System User Manual 

Offline Analysis is concerned with producing Neural Network data sets, doing 

correlation studies, and interrogating models offline.  It consists of tools to setup and 

process the data sets, and other tools to view the results in graphical format. 
 

 

Figure A.54 Offline Analysis Menu Screen – Offline GUI.vi 

  

A.2.1    Single Run 

 
 This application allows the users to set a single set of inputs, pick a model to 

process those inputs with, and view the outputs.  The model is run only once, with one set 

of inputs.  This is useful for seeing quick numerical results, and testing to see that a 

model is reporting results correctly.  The values for the inputs can be changed at this 

point.  Pressing “Return to Main Menu” closes the window and returns control to the 

offline menu for this and all the other VIs described here. 
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Figure A.55 Single Run – Single Run Interface.vi 

A.2.2    Single Variable Correlation 

 This application is used to vary a single parameter, while holding all other 

parameters constant.  It is useful for making a large number of iterations on a single 

variable.  The other applications can be configured to accomplish much the same tasks, 

but it seems to be useful nonetheless.  The varied parameter is selected from the list, the 

default value and unit are displayed for reference, so the user knows an approximate 

value.  The slider in this and the other correlation applications are set to display 1/3 the 

default value as the lower bound, and 3 times the default as the upper bound.  That does 

not mean that values outside of those bounds can not be set.  It also does not guarantee 

that the bounds make any physical sense.  For example, in figure 7, the upper bound for 

the blast fraction is set at 270%, which does not make sense because the blast fraction 

cannot surpass 100%.  Care should be made to insure appropriate data ranges. 
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Figure A.56 Single Variable Correlation – Correlation.vi 

 

A.2.3    Multi-Variable Correlation 

 The Multi-Variable Correlation application queries the selected numerical model 

for every possible combination within the input range.  As a result, the number of model 

runs increases exponentially as variables are added and iterations per variable are 

increased.  The number of runs necessary (n) for a complete set is given by the number of 

variables selected (v), and the number of iterations per variable (i), n = iv.  In figure 8, six 

variables are selected and set to run six times each, resulting in 46,656 model runs.  On 

an average computer this would take about one month.  Keeping the total number of 

iterations below approximately 10,000 allows for completion in about a week. 
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Figure A.57 Multi-Variable Correlation – Multi Variable Correlation.vi 

  
 

A.2.4    Nominal-Multiple Correlation 

 A nominal valued, multiple variable correlation refers to the variation of one 

parameter while all other parameters are held at their default value.  A correlation in this 

manner allows the user to see the results of a change in one variable as all the others are 

held constant.  There is also a cost advantage to this manner of correlation in that more 

variables can be selected and the number of iterations per variable can be increased 

without the exponential relationship.   The number of runs is simply the product of the 

number of variables and the number of iterations. 
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Figure A.58 Nominal Multiple Correlation – Nominal Multi Correlation.vi 

 

A.2.5    View Single Variable Graphs 

 
 All of the correlation applications create tab-delimited spreadsheet files.  They are 

assigned the file extension .xls for easy importation to Microsoft Excel.  A list of these 

files in the output directory path (declared at setup) is displayed in the list box.  To view 

the contents of a file select the file and press “Read New File.”  To view a single variable 

correlation, you must use the “View Single Graphs” option, otherwise, the data is not in 

the correct format.  The file will still be read, but it won’t make any sense.   

For the single variable correlation, the input variable is displayed, and the available 

outputs are shown in the list box.  When a variable is selected, the graph is displayed.  

When done press “Close Window” and the application will close. 
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Figure A.59 View Single Variable Correlation Graph – View Output Graphs.vi 

A.2.6    View Multi-Variable Graphs 

 
 A multi-variable correlation has a vast amount of information in its database.  

This graph viewer is designed to cut small slices out of the data and display it on the 

graph.  There are two graphs.  The input variable is displayed above the graph and the 

output variable is displayed to the left.  Any combination of inputs and outputs can be 

selected from the ring boxes.  All of the input variables are shown to the right of the 

graphs, along with the values for each variable that were used in the correlation.  This 

allows the user to “tinker” with the various inputs and view what happens to the variable 

being graphed. 
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Figure A.60 View Multi-Variable Corr. Graphs – View Multi Graph.vi 

A.2.7    View N/M Correlation Graphs 

 
 The nominal-value multi-variable correlation creates a spreadsheet file that shows 

the relationships between varying a large number of inputs and outputs.  The graph 

application is set up like a matrix.  The columns of graphs are all associated with the 

input parameter shown at the top of the column.  The rows are associated with the outputs 

shown on the left side of the row.  This configuration creates a four-by-four matrix of 

graphs, showing the user the trends of many variables at once.  File selection is the same 

as before. 
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Figure A.61 View N/M Correlation Graphs – View Nominal Graphs.vi 
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A.3    Online Analysis 
 

 

Figure A.62 Online Analysis Menu – Online Menu.vi 

 

The online menu is used to interrogate the models in a real time situation.  The 4-D 

array data structure is setup and populated by the online analysis functions.  The 4-D 

array is stored in a data file that any of the applications (data collection, sensor fusion, 

controller, interrogator, etc.) on the cupola network will be able to access.  A setup file is 

also created that defines what information is stored, and its location in the data structure.  

A third file is maintained that keeps count of how many data points have been collected 

and how many have been processed.  This is done so that each separate application can 

access the information it needs regardless of where the application is running. 

A.3.1    Online Setup 

 
 The online setup menu requires the user to input the current run name.  Setup then 

creates the three files discussed in the previous section with the run name as the file 



 

 

217

217

name.  The extensions are .dsc for the data structure file, .dsv for the data structure 

variable list, and .dsi for the data structure counter file.   

 The data <run name>.dsv file is initialized with the setup data that was chosen 

during setup, this file should not be modified by any other applications.  The <run 

name>.dsc file is initialized with zeroes in the proper dimension sizes according to how 

many modalities, variables, and variable properties were selected.  The time dimension is 

initialized to five, and expanded dynamically as the data points are collected.  The 

counter file is initialized to zero. 

 

Figure A.63 Online Setup – Online Setup.vi 

A.3.2    Simulate Data Collection 

If the data is being collected from an existing data file, this option is selected.  The 

current data file is displayed in the path field.  If that needs to be changed, press the 

“Declare Data File” button and declare the text file with the sensor information and data.  

The selected modalities are shown in a listbox, select the modality that holds the sensor 

information that will map the text file data into the standard grammar.  Next press the 

“Declare Run Name” button.  Select the run name that was created for the current run.  

Once this is done the “Collect Data” button becomes enabled, press it and the data is read 

from the text file into the data structure and written to the data structure file.  The counter 

file is also updated to indicate how many rows of data were collected.  While data is 

being collected, all the buttons are disabled.  Once the process is complete, they are 
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enabled.  You can collect data from another file or return to the previous menu at this 

point. 

 

Figure A.64 Simulate Data Collection – Simulate Online Data Collection.vi 

 

A.3.3    Analyze Collected Data 

 This function interrogates the models with the data that has been collected.  The 

data comes either from a text file as described in the previous section, or it is being 

collected from a cupola in real time.  Once again, be sure the correct modality is selected 

and declare the run name first.  To start interrogating the models, press the “Run Model 

Analysis” button.  The VI keeps track of how many data sets it has processed, and 

compares that number to the counter in the counter file.  If there are data sets that have 

not been processed, the VI reads the next data set into the standard grammar and runs it 

through the models. When a data set has been analyzed, the analysis VI increments a 

counter.  If there is no additional data to analyze, the VI waits and checks again a little 

later.  When there is no more data to collect, either the cupola run is over or there is no 

more data from the text file, press Return to Menu to end the analysis and close the VI. 
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Figure A.65 Figure 24 – Analyze Collected Data – Online Analysis Computations.vi 

A.3.4    View Results 

 The results of the analysis are viewed with this VI.  Declare the run name as 

before, then press “View Data.”  The data is read in to the arrays and the variables and 

modalities are displayed in the ring boxes above the graph.  Any combination of inputs, 

outputs, parameters, and modalities can be selected.  Up to three lines of data can be 

placed on the graph.  If you want to select a different run, for instance if you want to see 

how a previous run looked, press the “Reset Data” button, and declare a new run name 

and continue as before. 
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Figure A.66 View Results – View Data Structure.vi 

A.4    Model Interfaces 

A.4.1    AFS Model Interface 

 The AFS Model is currently the most important model available, much of the 

previous work was designed with the AFS model in mind, although the interrogator 

should be easily applied to any model.  If used properly, the AFS model interface 

requires no user intervention in order to run.  This is because of the potentially large 

number of model runs involved in a correlation analysis.   
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Figure A.67 AFS Model Interface Screen – AfsModel.vi 

When the model runs, a DOS window opens and displays some error information 

about the numerical approximation.  The DOS window should be set to close upon 

execution, this is done by opening a DOS window, selecting the properties button, and 

checking the box marked “close on exit.”  This is to avoid having 400 DOS windows 

open at the end of a correlation.   

A.4.1.1    AFS Setup 

 There are a few parameters that must be defined at setup in order for the AFS 

model to work.  This is done using the “Additional Model Specific Setup” option on the 

Setup menu.   

A.4.1.1.1    Define AFS File Paths 
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Figure A.68 Define AFS File Paths – Define Afs File Paths.vi 

The Fortran executable file needs to be fully declared at this point.  The fortran file is 

called from the DOS prompt, therefore the file path needs to be compatible with DOS 

rules.  The path to the executable should not have any spaces in it, DOS does not handle 

directory names with spaces in them.   

The AFS model creates a large number of data files, the second field defines where 

they will be written.  This may or may not be the same directory where the other data 

files were placed (the Excel files and data structure files).  You may want to choose a 

different directory to keep the files organized. 

 There will be combinations of inputs that cause the numerical model to be non-

convergent.  The AFS Model interface waits for the numerical model to finish writing the 

output files before reading the values, if the model hangs so will the interface.  To avoid 

this situation, the interface times out after a set time limit.  That time limit is set here, and 

is dependent on the machine processor speed.  A little experimentation should be done in 

order to determine the best setting for each individual computer.  For a 300 MHz PC, 

150-200 seconds seemed necessary, for an 800 MHz PC, 100 seconds is sufficient. 

A.4.1.1.2    Charge Selection 

The AFS model can accept up to 10 charge materials.  There are numerous conditions 

that these materials must meet in order for the model to run correctly.  The following 
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procedure is the best that I can come up with for allowing the user to vary the charge 

material.   

 The first step is to use the original model interface (the AFS interface) to define 

the charges to be used (See the documentation with that program for information on how 

to do this).  Run the AFS model using the new charge makeup, then print the cin.264 file 

that is created.  The file that our interface creates must exactly match the other. 

A.4.1.2    Metal Selection Option Menu 

 

Figure A.69 Material Selection Options – Metal Data GUI.vi 

A.4.1.2.1    Create Material Property Files 

Select the first option to open a screen that creates a new metal.  This screen has 

fields for all the variable names that the AFS model needs.  Use the cin.264 file to fill in 

the data for one charge material at a time.  It is easiest to copy and paste the data from 

another application so that the spacing remains correct.  Be sure to double check that all 

the numbers are correct for the metal that is being declared.  When all the data is correct 

for the material, press the green “Save File” button.  If there are more metals to declare, 

fill in the fields as before, otherwise press “Done.” 
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Figure A.70 Material Property File Creation – Create Metal Properties.vi 

A.4.1.2.2    Material Selection 

 Once all the metals are created, the second option allows the user to select the 

metals that will be used.  At the upper left of the screen there is a field that says “Search 

Pattern.”  If  you use a common parameter when declaring your metal names (such as 

ALRC for the Albany Research Cupola), you can use that key to filter out the material 

files that you won’t be using.  Select the materials from the lists in the same order that 

they appear in the cin.264 file or else the AFS model won’t execute properly. 
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Figure A.71 Material Selection – Metal Selection.vi 

A.4.1.2.3    Set Metal Mass 

The one parameter that can be varied from the original cin.264 file is the metal mass.  

Use this option to change the mass of each material.   

 

Figure A.72 Set Metal Mass – Set Metal Mass.vi 

A.4.2    AFS Preprocessor 

The AFS model has some interesting input parameters that do not correspond directly 

to commonly used industry terms.  A preprocessor was written that converts the common 

industry terms (a list is included below) to the eccentric terms required by the AFS 
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model.  If both variables are chosen for inclusion in the database, or in a correlation, the 

user is asked to choose which variable to use as the input value.  If this proves to be a 

hindrance, perhaps a more elegant solution can be reached.  The figure shows the option 

screen, pressing the button by the desired variable selects that variable and the 

corresponding value is passed along as an input. 

 

Figure A.73 Conflicting Variable Resolution – Fix Variable Conflicts.vi 

The list of conflicting variables is: 
AFS Model Variable Common Industry Variable 
normalized mass of air in blast blast rate 
normalized oxygen addition in blast oxygen addition rate 
coke in charge coke ratio 
amount of moisture in air relative humidity 

 

The AFS Model creates a large list of output files, most of them are not relevant to 

the model interrogator so the majority are deleted at the end of the run.  

A.5    Real Sensors Interface 
 

 The Real Sensors modality does not have a set interface.  It is intended to be used 

during online analysis to “map” data in the sensor text file produced at the Albany cupola 

to the correct location within the standard grammar.  The standard grammar is then sent 

to both the AFS model, and soon to the Neural Net model.   
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Unfortunately, most of the values in the sensor data file are expressed in British units; 

the AFS model requires metric units.  The conversions are made by referring to the 

“Default British Unit” field in the standard grammar. Sub-VIs are called to make the 

conversion based on the name of the unit.  For example if the British unit is F, for degrees 

Fahrenheit, the function F.vi is called.  This function converts from degrees Fahrenheit to 

Kelvin, the default metric unit.  That is why the unit field must always be filled, if it is 

empty <blank>.vi is called, and that file can not exist.  The conversion VIs are in fact 

quite simple to create, so if a new variable (with a new unit) is added to the standard 

grammar, a sub-VI by that name should be created to handle the conversion.  All the unit 

conversion VIs are stored in DataAnalysis\Online Analysis\Unit Convert directory.   

 

Figure A.74 An example unit conversion – F.vi 

 

Figure A.75 An example unit conversion diagram – F.vi 
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1Year 1 Accomplishments  

1.1 Overview 

During the year 1999, the I3PSC Hardware Team completed much of the 

background work needed to begin the implementation of the Signal Processing System 

Hardware portion of the project. We first examined the literature available that was 

pertinent to our work, which included learning the software tools we needed and the 

signal processing methods and hardware implementation techniques available. We also 

researched the possible system organizations, communication requirements, and 

commercial boards available for the embedded microcomputer (CPU), data acquisition 

interface (DAQ), and programmable logic (FPGA – Field Programmable Gate Array) 

needed for computationally intensive tasks. 

After making decisions about our functional and cost requirements, we then 

selected and purchased the appropriate commercial boards: one CPU, one DAQ, and four 

FPGA boards. Basic testing and familiarization work was done on the CPU and FPGA 

boards, while the DAQ board has not yet been tested. 

At this time, the overall system consists of two algorithms, Self-Validation and 

Sensor Fusion. The Self-Validation algorithm, whose hardware implementation is now in 

progress, inputs the raw time-temperature measurements from sensors, derives some 

characteristic quantities and filtered outputs, and then applies fuzzy logic to determine a 

self-confidence value for each sensor. The Sensor Fusion algorithm, whose hardware 
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implementation work has not yet begun, combines the filtered inputs and self-confidence 

values from several sensors into one robust value. 

As the first step toward hardware implementation, we analyzed, validated, and 

refined the Self-Validation algorithms that were supplied by the Intelligent Algorithms 

Team. The algorithms were divided into two sections for our convenience, specifically 

referred to as the fuzzy logic and preprocessing portions. Work is proceeding on 

evaluating the execution timing of the Self-Validation algorithms to assist us in choosing 

the optimal functions for hardware implementation versus software implementation. 

The Self-Validation algorithms were supplied to the Hardware Team in the form 

of high level Matlab and Excel code. We decided to first implement them in faster, 

lower-level C-language code, mostly using fixed point arithmetic, and then convert 

portions to even faster fixed-point hardware implementations in programmable logic on 

the FPGA boards. After some optimizations and debugging effort, the C-coded versions 

of the fuzzy logic and preprocessing portions were successfully verified against the 

original Matlab and Excel results. 

The CPU board will eventually have to communicate in three ways:  

1. To the host computer for the user's interface to the system, 

2. To the DAQ board for data acquisition from the sensors, and 

3. To the FPGA boards for signal processing computations. 

The CPU-to-Host interface consists of an error detecting/correcting serial 

communication protocol and its implementation as C code executing on the CPU board 

and on the host computer. The protocol has been specified and a limited version of the C 

code has been written and verified. Work on the other two communication interfaces has 
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not yet begun. The following figure shows the Signal Processing System Hardware and 

its interfaces. 

 

Over the next two years, the Hardware Team will complete the project's hardware 

implementation. The Self-Validation algorithm will be implemented and tested in 

programmable logic. The Sensor Fusion algorithm will be analyzed, re-written, and 

implemented in programmable logic. The communication interfaces to the FPGA board 
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and DAQ board will be designed and tested, thus completing the entire 

hardware/software system. 

1.2 Literature Search 

The Hardware Team conducted a lengthy literature search in different software 

and hardware areas. The I3PSC project requires knowledge in many software and 

hardware areas, some of which are outside the Hardware Team areas of expertise.  

In order to prepare us for the hardware implementation of the software 

algorithms, the hardware group members needed to educate themselves about fuzzy 

logic, neural networks, and data acquisition. This educational process included studying 

and understanding the basic definitions, terminology, and some of the theories and 

algorithms in the fuzzy logic, and neural networks areas. The features of the two basic 

types of fuzzy logic, Mamdani and Sugeno, were studied. The advantages and 

disadvantages of various neural networks implementation techniques, their learning 

processes, and their operation were also studied. The group members used all available 

resources in obtaining information. These resources included published papers, books, 

and the World Wide Web.  

The group members studied and acquired experience in using some of the 

software commonly used in the fuzzy logic and the neural networks areas such 

MATLAB, the fuzzy logic toolbox using MATLAB, and the neural network toolbox 

using MATLAB. The group also studied the use of LabView software, which is often 

used with Data Acquisition Cards (DAQs). 

On the hardware side, the group searched the published literature about hardware 

implementations of fuzzy logic and neural networks, especially those implementations 
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using reconfigurable logic. The methods and techniques used in some of these 

implementations were studied and summarized for future use. The group also studied the 

data books of programmable logic devices with concentration on the logic families 

produced by Xilinx and Altera. The study educated the group, especially the graduate 

students, about the state of the art families of field programmable logic arrays (FPGAs) in 

terms of their logic capacities, features, structure, interconnection, and speed. The 

programmable logic device study was complemented by another search of commercially 

available FPGA boards. These boards were evaluated based on their logic capacity, 

speed, external RAM availability, the width of their interface busses, and cost.  

The Hardware Team also searched the published literatures about serial and 

parallel communication protocols. The study helped the group understanding the features, 

requirements, capabilities, and limitations of various communication protocols. Based on 

this study, a serial communication protocol was designed to control the traffic between 

two computers.  

We researched the commercially available microprocessor boards. These boards 

were evaluated based on the type and speed of the microprocessor, the size of RAM 

available on board, the type and size of their external buses, the software used in 

downloading programs onto the board, and their cost.  

We also researched commercially available DAQ cards. These cards were 

evaluated based on their sampling rate, number of input channels, number of output 

channels, programmability, and cost. 

The studies about FPGA boards, microprocessor boards, and DAQ boards helped 

the Hardware Team in preparing the specification list for purchasing these devices. 
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1.3 Hardware Component Acquisitions 

We selected, purchased, and tested an appropriate CPU board, DAQ board, and 

four FPGA boards for this project. Following are their descriptions. 

 

1.3.1 CPU Board  

We wanted a compact, inexpensive, and fully PC-compatible (which eases 

software development) CPU board based on the common PC/104 bus. After considerable 

research, we decided to purchase a microprocessor board, the  SBC2586-166 with options 

2586OPT30-8, 2586OPT25, BO/BC3.1 from Micro/Sys, with these primary features: 

 

PC/104 8-bit and 16-bit bus compatible 

Pentium 166MHz processor 

2 serial ports 

1 EPP/ECP parallel printer port 

512 KB flash ROM 

8 MB dynamic RAM 

8 MB flash disk 

DOS-compatible BIOS 

MS-DOS 5.0 software 

Borland C++ 3.1 software and book 
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After receiving the board, we studied its documentation and performed a basic 

operational test on the unit by connecting its monitor port to a PC and downloading some 

small programs for execution. It passed all the tests and is working well at this time. 

1.3.2 DAQ Board 

We wanted a compact, reliable, 12-bit accuracy DAQ board for interfacing to the 

analog sensors and controllers of the cupola.  After searching through numerous sources, 

we decided to purchase a data acquisition system, the DaqBook/112 with optional 

DBK11A from IOtech, Inc., with these principle features: 

 

Link to PC via standard or enhanced (EPP) parallel port 

12-bit analog resolution 

100 KHz sample rate 

8 differential or 16 single-ended analog inputs 

Expandable to 256 inputs 

2 analog outputs 

Programmable gain of 1, 2, 4, or 8 per input channel 

4 digital inputs and outputs 

Operate on 10 to 20 VDC power source 

AC adapter 

Packaged in suitable stand-alone enclosure 

Screw terminal card with 40 terminal blocks for analog I/O 

Drivers for Windows and DOS using C or C++ 

Driver for Labview 
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DaqView and PostView data acquisition software 

 

We received this board, but it has not yet been tested or interfaced to the rest of 

the system. 

1.3.3 FPGA Boards 

We purchased four X240 FPGA boards from Associated Professional Systems 

(APS). Each of these boards is equipped with one Xilinx XLA4085 FPGA chip that has a 

logic capacity of 180K gates. On each of these boards, there are two 128Kx8 SRAM 

(Static Random Access Memory) chips. The boards are PC/104 16-bit compatible. The 

FPGA on each board can be configured from a PC/104 bus, an EPROM, or a parallel port 

using a Xilinx Xchecker cable. Each board also has a socket for standard clock oscillator. 

The documentation that came with these boards included an application example program 

in C and example FPGA configuration data. The example code allows the user to 

download the configuration data onto the FPGA chip mounted on the board and to test 

the on-board SRAM.  

Using modified versions of the example code, each of the four boards was tested. 

An ISA (Industry Standard Architecture) carrier board was used to connect the X240 

board to the ISA bus of a PC. Three FPGA boards passed the initial test. The failed 

FPGA board was sent back to the manufacturer where it was repaired. Upon its return, 

the board was tested successfully. 

The four FPGA boards were then mounted on top of each other, using the PC/104 

bus, to create the FPGA system. The provided example code was modified to allow the 

user to communicate with all the FPGA boards. The new program allows the user to 
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specify any of these boards as the target for downloading and also to specify which test to 

perform. The program was used successfully to test the FPGA system. 

1.4 Analysis and Validation of Algorithms 

The algorithms for self-validation of sensor data were obtained from the 

Intelligent Algorithm Group in the form of Matlab and Excel files.  A sample set of 

Matlab files are shown in the Appendices. The algorithms were then analyzed and 

validated for the purpose of successful implementation in hardware.  The following 

sections discuss more in detail about the self-validation fuzzy logic and preprocessing 

algorithms applied to the sensor data. 

 

1.4.1 Self-Validation Fuzzy Logic 

Fuzzy logic is a convenient way of mapping an input space to an output space.  

Fuzzy inference is the process of formulating the mapping from a given input to an 

output using fuzzy logic.  The Matlab Fuzzy Logic Tool Box supports five parts of the 

fuzzy inference process that includes 

 

• Fuzzification of the input variable  

• Application of the fuzzy operator 

• Performing the implication operation 

• Aggregation of outputs 

• Defuzzification 
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Fuzzy logic is used for self-validation of the sensor data.  A FIS file (text file) 

specifies the inputs and outputs of the fuzzy logic system, the type of fuzzy logic, the 

range and shape of membership functions, and every other detail about the fuzzy logic 

system (see Appendix).  Self-validation using fuzzy logic on sensor data is used to 

determine the confidence level of the input signals.   

The following paragraphs discuss changes and enhancements we made to the 

algorithm: fixed-point considerations, changes made to membership functions, and 

changes in the choice of the aggregation method. 

The raw input signal values (see Appendix) are currently represented as floating 

point numbers in a data file (later they will be input one-at-a-time from the DAQ as 

fixed-point numbers).  This representation is simplest for the Intelligent Algorithm Team 

in formulating algorithms and implementing them using Matlab, as Matlab supports 

floating-point arithmetic for maximum accuracy.  However, as far as hardware 

implementation is concerned, these numbers have to be converted into fixed-point 

numbers, as ultimately the output from the DAQ Board is in fixed-point. Using fixed-

point numbers also reduces the number of calculations to be carried out in the FPGAs, 

thereby making it less complicated and less expensive. 

Some of the membership functions provided by the Intelligent Algorithm Team 

exhibited very sharp rising and falling edges.  As small variations in floating-point 

numbers cannot be represented adequately in fixed-point, such sharp transitions in inputs 

might produce large errors. So the transitions were widened to represent changes in input 

more accurately using fixed-point numbers. 
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The fuzzy logic method adopted for aggregation was the Sugeno method.  This 

method was chosen over the Mamdani method, as it is much less complicated and easier 

to compute.  Specifically, the Sugeno ‘constant’ method was adopted for processing over 

the ‘linear’ method, as it requires fewer parameters to be specified in the FIS file and it is 

also much easier to compute with no loss in accuracy. 

 

1.4.2 Self-Validation Preprocessing 

The fuzzy logic code was written to accept preprocessed inputs, consisting of 

median-filtered temperature, variance of temperature, and rate of change of temperature.  

However the raw data that is available to us consists of values of time and temperature 

measured from the sensors.  Initially, the Intelligent Algorithms Team did the 

preprocessing in an Excel spreadsheet.  It was then converted to Matlab code (see 

Appendix for an example Matlab M file), which we had to convert to C code.  The 

paragraphs below discuss our changes and enhancements to the preprocessing algorithm: 

fixed-point considerations and changes made in the algorithm to simplify it. 

For reasons previously specified, the code was changed to use only fixed-point 

numbers.  The input signal values, which are floating point numbers at this time, are 

converted into fixed-point numbers before the preprocessing is carried out. 

The preprocessed values derived from the raw input data (time and temperature) 

are the median-filtered temperature, rate of change of temperature, and the variance of 

the temperature.  These values are determined using the following formulae: 
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Originally, one of the preprocessed results was standard deviation (instead of 

variance).  However, it was changed to variance, since it is relatively complicated and 

expensive to evaluate the square root of a number (needed for standard deviation) in a 

hardware implementation. 

1.4.3 Self-Validation Execution Timing  

The processing time of the Self-Validation (SV) code can be reduced if a part of 

the code is implemented on FPGAs. Parts of the code that have longer processing times 

are being identified. The following two methods are being used to determine the 

processing time for the code, namely hardware-based timing measurement and theoretical 

timing analysis. 

1.4.3.1 Determination of Timing with Hardware Timer 

First, we tried to calculate the processing time using a standard hardware timer 

chip called a Programmable Interval Timer (PIT). C code was written to configure the 

operating modes of the PIT. We achieved partial success in this method. However it had 

several problems. First, the processing time measurements need a resolution of a few 

microseconds. The PIT could not measure with such fine resolution. Second, the code 
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was running in the Microsoft WINDOWS environment. Background processes and 

parallel processing are an integral part of this operating system. The relatively random 

time periods consumed by these processes could not be separated from the actual code 

timing. The final timing results from multiple runs had a variation of up to 70% of the 

average value. 

A time consuming solution would have to be developed to eliminate these 

problems. We decided that the complexity of the solution was not worthwhile. So the 

Hardware Team decided to drop this hardware-timing method, and try the following 

theoretical timing method instead. 

1.4.3.2 Determination of Theoretical Timing 

Theoretical timing, which measures the number of clock cycles required by the 

system to process the given code, is determined by looking up every instruction’s 

execution time in the microprocessor data book. The main goal of performing this 

theoretical timing analysis is to compute the average time required (in clock cycles) for 

processing the SV code.  

In order to do this, the code was split into three types of blocks that perform 

computations. This would help in calculating the average number of clock cycles 

required for processing the code for a given set of inputs. So the code was divided into 

straight-line blocks, conditional blocks, or procedure blocks. 

A straight-line block consists of statements through which the control flows 

without any branching to other blocks. For instance, assignment statements, equations, 

and initializations form part of straight-line blocks. 
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A conditional block includes conditional branches and multiple execution paths. 

Based upon the results of the decisions made in these conditions, program control flows 

through different paths of execution. As the average execution time is required, a certain 

weight was associated with each of these blocks. The weight associated depends on the 

probability that a particular path of execution is followed. Generally, we assumed all 

branches had equal probability and equal weight. 

A procedure block, either a subroutine or a function, is called by other statements 

elsewhere in the code. The number of clock cycles taken for a call and return from the 

procedure block was included in the calculations. 

An assembly language file of the SV C code was generated. This was the 

equivalent assembly language code for every line in the C code. The number of clock 

cycles required by the instructions was then found from the instruction set description in 

the Pentium Microprocessor data book. 

An MS Excel file was created to document the results (see Appendix). It shows 

the number of clocks consumed for the execution of every block defined in the code. The 

total processing time for the code is the sum of the individual block clock cycle counts.  

It was found that each input to the Mamdani-style fuzzy logic code required 

55,000 clock cycles and each input to the Sugeno-style fuzzy logic code required 15,000 

clock cycles. 

1.5 Self-Validation Software Implementation 

1.5.1 Self-Validation Fuzzy Logic Code 

An introduction to the concept of fuzzy logic was presented earlier in this report. 

The design and implementation of the fuzzy logic code for Self-Validation began with 
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the literature search for fuzzy logic theory and implementations, and with the study of the 

Matlab Fuzzy Logic Toolbox. Matlab provides a very good, general purpose C-code 

implementation of fuzzy logic that closely resembles their Fuzzy Logic Toolbox. Our 

initial version was derived from the Matlab C code, corrected and simplified for our 

needs, keeping only a subset of the membership, implication, aggregation, and 

defuzzification functions. Some of the original code that applied only to its use within 

Matlab was also eliminated, greatly simplifying the code and increasing its speed and 

reliability. 

Next, the floating-point code was replaced with fixed-point code, which is more 

suitable for hardware implementation in FPGAs. The fixed-point code uses only the four 

basic arithmetic functions on fixed-point data words of 8, 16, 24, and 32 bits. 

Both the Mamdani and Sugeno methods were implemented, even though the 

project teams have since decided to use only the Sugeno method. We have determined 

that the less computationally intensive Sugeno method is quite adequate for our 

application, and thus we intend to only use this method in the future. 

At this point, the results from both the floating-point and fixed-point versions of 

our code were compared to the original Matlab results. We found that the floating-point 

code produced exactly the same results as Matlab, while the fixed-point code gave results 

within 1% of the Matlab results. This accuracy is both reasonable and acceptable for our 

needs. 

Finally, the fuzzy logic source code was reorganized by splitting it into two files, 

called setup.c and exec.c. The setup file performs the entire house keeping activity. All 

activities that are performed only once, like reading the input data file and FIS file, and 
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printing the results, were grouped into setup.c. The exec file consists of functions that 

perform the mathematical operations on the input data. This code will be repeatedly 

executed during normal system operation. Functions in the exec file are most likely to be 

implemented in FPGAs, while all of the functions in the setup file will continue to be 

executed as code on the CPU board. 

The current version of the code was tested using our preprocessed input data 

(discussed in the next section).  The output of the fuzzy logic code (see Appendix) was 

compared with that of the Matlab Fuzzy Logic Tool Box (see Appendix).  It was 

observed that most of the results were compatible with < 2% error, but some input 

sequences resulted in errors as high as 40%.  The cause of the small errors is due to the 

usage of fixed-point numbers instead of the floating-point numbers used in Matlab.  This 

error is acceptable for our purposes. But the large errors are due to problems in the fuzzy 

logic membership function definitions and how they relate to the fixed-point arithmetic, 

which are currently being reconsidered. We fully expect to fix the problems causing these 

large errors. 

 

1.5.2 Self-Validation Preprocessing Code 

The algorithm devised by the Intelligent Algorithm team for processing the raw 

input values to determine the preprocessed input values was coded.  The raw input values 

represented using floating point numbers were converted into fixed-point numbers.  The 

preprocessing was then carried out on these values to generate fixed point preprocessed 

input values. 
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The code was successfully implemented using fixed-point arithmetic using a 

floating point scaling factor.  Scaling factors are constants determined from the range of 

the floating-point numbers.  These factors are used to determine the fixed point 

equivalent for the floating-point number.  A new method has been devised for 

implementing fixed-point arithmetic using a fixed-point scaling factor.  The 

implementation of the above method is now in progress. 

The Matlab floating-point output results (see Appendix) were compared with the 

ones generated by the fixed-point code (see Appendix).  The results were found to be 

compatible with < 2% error, which is within expected error bounds. 

 

1.6 Communication Software Development – the CPU-to-Host Interface 

 

The CPU-to-host interface consists of a serial communication line connecting the 

CPU board to the host PC, and the associated communication software. Using standard 

PC-type RS232 serial ports, it is intended to run at the maximum standard speed of 

115200 bits per second. The host PC is the user’s interface to this entire signal processing 

system. The purpose of the CPU-to-host interface is to transfer control commands from 

the host PC to the CPU board for execution, and to transfer status and computed results 

back from the CPU board to the host PC. To make this interface robust, a special error 

detecting/correcting communication protocol was designed, based on a combination of 

pre-defined message blocks, character counts, checksums, handshaking, and 

retransmission requests. 
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A preliminary version of this communication software has been written. The C 

code was written initially to implement the complete communication protocol. But then 

changes were made in the code to enable the receiver to wait for the sender or vice versa 

for an infinite length of time without timing out.  The purpose of including this change 

was to temporarily avoid error reports due to certain error conditions. The testing was 

carried out first between 2 PCs, and then between a PC and the CPU board. Only limited 

success could be achieved regarding the implementation of the protocol.  It was observed 

that the code properly supported serial communication only up to a bit rate of 9600 bits 

per second.  The expected bit rate of 115200 could not be achieved.  More work will be 

done to improve this code to reach full speed using the complete protocol. 

 

1.7 Summary 

 

The Hardware Team has successfully begun development of the I3PSC Signal 

Processing System. We completed the literature search, developed the system 

architecture, and purchased a CPU board, DAQ board, and multiple FPGA boards to 

build the system. We analyzed and refined the first of the system algorithms created by 

the Intelligent Algorithms Team to enhance its suitability for hardware implementation. 

This Self-Validation algorithm, consisting of two major functions (preprocessing and 

fuzzy logic) was first implemented entirely in C code and then tested successfully for 

compatibility with the original Matlab version. The effort to measure the code’s 

execution time is almost complete at this time. This is needed to determine which 

functions are most computationally intensive and thus need to be executed on the FPGA 
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hardware. Finally, a preliminary version of the CPU-to-Host interface has been designed 

and tested. 

During the first few months of 2000 (contract year 2), the Hardware Team plans 

to complete the remaining details of the software implementation and timing analysis of 

the Self-Validation algorithm, and begin its implementation on the FPGA boards. By the 

end of 2000, we plan to perform similar algorithm analysis, software implementation, 

timing analysis, and FPGA hardware implementation of the Sensor Fusion algorithm. 

The remaining interfaces, CPU-to-FPGA and CPU-to-DAQ, will also be developed and 

tested during this year. The effort in 2001 (contract year 3) will be centered on refining 

the signal processing system and demonstrating its operation within a working cupola 

environment. 

As discussed earlier, there have been some failures encountered and numerous 

bugs have been fixed. Most of the development has taken longer than expected, due to 

unexpected problems and complications that have arisen. But we are confident in our 

ability to overcome the problems and feel that we are definitely on the road to successful 

completion of this project.  

 

2Year 2 Accomplishments  

2.1 Overview 

During the year 2000, the I3PSC Hardware Team completed the hardware design 

and testing of the self-validation algorithm and began working on both the hardware 

implementation of the multi-sensor fusion algorithm and the communication protocols of 
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the ultimate form of the hardware system. In the next few sections we will present the 

details of all tasks performed by the hardware group in the second year (2000).  

2.2 Communication Protocols 

As stated earlier, the final project will have three different communication 

protocols. Currently the group is working on the user PC and the FPGA board 

communication protocol. The work done can be summarized as follows. 

 

2.2.1 Develop low-level communication protocol 

A low-level communication protocol that controls the communication between 

the User PC and the CPU Board has been designed.  According to this communication 

protocol all information passes between the User PC and the signal processor in the form 

of messages.  For generality and versatility, a single message consists of 0 or more bytes 

of information/data preceded and followed by certain message control bytes.  Byte #1 

usually represents the function code, which defines the message class and meaning of 

data.  Byte #2 and #3 specify the length of the data block, which could be 1-255 or 1-

65535.  The information following these bytes in finally followed by the error detection 

byte, which is the checksum of all other bytes.   

2.2.2 Write and test the low-level communication code for initialization, transmit 

and receive 

The developed low-level communication code was written in C and was tested 

between two CPUs.  The system was initialized to operate at a particular baud rate and 

then it was used to transmit and receive a string of data.  The system was tested 

successfully for various baud rates including the operation baud rate of 115200bps. 
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2.2.3 Define specifications for high-level communication protocol details for MS-

SV program for User Interface 

Following the low-level communication protocol, a high-level communication 

protocol was designed.  This protocol specifies the format of the messages that are 

exchanged between the user PC and the CPU board.   The sequence of the messages has 

also been decided upon.  The protocol has been appended with a time-out facility to 

restart the system or continue from the point just before failure.  This task is 100% 

complete. 

 

2.2.4 Outline method for modification of SV code  

 

The outline for modifying the SV code to include the CPU end of the high-level 

communication protocol has been completed.  The new routines that have to be now 

included in the C program are being written. This task will be completed soon. 

2.3 Develop a Library of Basic Fixed-Point Arithmetic Functions 

As previously stated, the code uses the four basic arithmetic functions on fixed-

point data words of 8, 16, 24, and 32 bits. To meet these computational requirements of 

the hardware implementation, a VHDL library of the four basic operations was 

developed. This library includes adders/subtractors, multipliers, and dividers. These 

operations were designed as functions so that they can be utilized through function calls. 

Different designing techniques of these arithmetic units were utilized. The following 

types were developed for adder/subtractors: 
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Ripple carry adders 

Carry-Look ahead adders 

Look-up table adders 

All of these designs were developed for 8,16,32-bit ranges. Pipelined version of 

each of these types was also implemented. Different designs of the dividers units were 

also developed. These designs include:  

Divider using Shift/subtract algorithm 

Divider using single register algorithm 

These two designs were developed for 24-bit/16-bit, 16-bit/8-bit. In addition, the 

following techniques of multipliers designs were implemented. 

Array multiplier 

Pipelined array multiplier 

Dadda-Wallace multiplier 

Pipelined Dadda-Wallace multiplier 

The multipliers were developed for 8-bit by 8-bit inputs.  

All the designs in the VHDL library were coded, simulated, and synthesized. 

These designed were optimized for the hardware implementation of the SV algorithm on 

the XC4085XLA FPGA chip. A bit maps for the best designs were then generated, 

downloaded onto the FPGA chip, and successfully tested.  

2.4 Implementation of the SV Preprocessing Algorithm 

The modified preprocessing algorithm was written with fixed-point code. The 

code was successfully tested and evaluated with data from the Intelligent Algorithms 

group. The code was then reorganized and split between the setup and execution file 
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codes. A new input files were created for the signal-Validation code. After fixing 

numerous implementation problems, the code was successfully tested and its results were 

validated. Finally, the process was completed after inserting appropriate documentation 

to the code.  

2.5 Develop Architecture of SV Signal Processor Hardware 

2.5.1 Select SV procedures for the hardware implementation 

We decided to implement in the FPGA hardware all the procedure in the 

execution code that performs computations on the outputs from the preprocessing stage. 

These procedures include FisEvaluate(), FisComputeInputMFValue(), FisTrapezoidMF(), 

FisComputeFiringStrength(), FisArrayOperation(), FisMin(), and 

FisComputeTSKRuleOutput(). These procedures compute the membership functions of 

the input parameters; i.e. convert crisp inputs to fuzzy inputs, apply the inputs to the 

fuzzy rule set, aggregate the outputs of each rule, and compute the outputs. The output of 

each preprocessed set represents the computed confidence in the corresponding sensor 

measurement. 

2.5.2 Separate constants from true Variables 

An analysis study of all the code's variables showed that some of the variables are 

calculated or defined in the setup part and their values do not change during the execution 

part. Hence they will be implemented once in the setup, not during the execution in 

hardware. 

2.5.3 Simplify the fuzzy logic procedures 

To simplify the fuzzy logic code for the hardware implementation, variables that 

do not change during the execution were converted into constants. In addition, all error 
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checking and Mamdani code has been removed from the fuzzy logic code. The error 

checking code was not needed if the Fuzzy Inference Structure (FIS) file, which is the 

input file to the setup part, is correct. The Mamdani code was not needed since we choose 

to implement Sugeno type code. After the verification of the code revision, it was tested 

successfully. 

2.5.4 Create Block Diagrams 

A block diagram for each function was created.  They are used to determine the 

requirements for sequence of events during execution. They are also help to determine 

how to group functions into hardware blocks, and which sequential functions are 

reusable. These block diagrams for the hardware-implemented functions are shown in the 

Appendix. 

2.5.5 Define Data Structure and Organization 

The data structure of the FIS parameters for all sensors that are calculated during 

the set up phase, and the intermediate results need to stored on the on the FPGA board's 

SRAM. The data structure and their organization within the SRAM have been defined. A 

register file was also designed to store the commands 

 

2.5.6 Define finite state machine controllers 

 

The different states of a Finite State Machine (FSM) controller were defined.  The 

FSM is used to control all the timing details for the operation of the entire design. The 

defining ASM chart is shown in the Appendix. 
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2.6 Develop Hardware Design of SV Signal processor 

2.6.1 Code Hardware Blocks in VHDL 

Each block of code was coded in VHDL using the data flow graphs to help guide 

the sequencing of operations. All arithmetic operation was done through function calls to 

the entities of the arithmetic functions library. The coding was done in a way that allows 

pipelining and parallelism of operations. 

 

2.6.2 Simulate Each Entity Code Separately 

Each code was simulated separately to ensure its proper functionality. Special 

debugging codes were inserted to allow monitoring of internal signals during simulation. 

After fixing all the code problems, the blocks were synthesized to check the amount of 

logic blocks needed for their implementations. The number of clock cycles needed for 

each block was recorded. The arithmetic functions were modified to the exact number of 

bits needed in the implementation.  

 

2.6.3 Design of the system interfaces 

The system interfaces include a bus interface, a memory interface and a register 

file. The FPGA-bus interface represents the connection between the PC and the FPGA 

boards connected to the PC/104 bus. Different signals are used to select one of the FPGA 

boards and to communicate (read from or write to) with either the processes on the FPGA 

boards or with the on-board memory. The memory interface connects the on-board 

memory with the FPGA processes or the host machine. 
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2.6.4 Design of the FSM 

The design of an efficient FSM requires intimate knowledge of the sequence of 

operations and the number of clock cycles needed for each operation. It coordinates the 

use of both the address and data buses and memories by the FPGA processes and the host 

machine and controls all the system’s activities. The controller also issues various load, 

store and Read/Write enable signals.  

 

2.6.5 Add All Blocks to Top-Level VHDL Entity 

After successfully testing all the signal validation system components, they were 

integrated with the top-level VHDL entity. The top-level entity acts as the main function 

in a C code. The entire hardware code was simulated and synthesized successfully. A bit 

map file representing the hardware design was then generated. 

 

2.6.6 Download, Test, and Debug Top-Level SV Signal Processor 

The C code was modified clean up the preprocessing steps and to include 

functions that download the hardware design onto the FPGA, to load the system 

parameters onto memories on the FPGA boards, to read from the on-board memories, to 

send data to the FPGA processes and read their results. Some of the signal validation 

code was replaced with FPGA communication tasks. These tasks include send data, send 

command, and get result Self Confidence. The modifications were done in many stages. 

In the early stages, A C code was developed to allow testing the on-board memories by 

writing data onto them and then reading their contents. Currently, the system uses 64 
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bytes of on-board memory per sensor and requires about 50 cycles to process each 

preprocessed set of inputs. 

2.7 Develop Multi-sensor SV Algorithm 

The Self-validation system was originally tested for data acquired from a single 

sensor. However, in the Cupola system, more than a single sensor’s data would be 

actually fed into the self-validation system.  So the single sensor self-validation system 

was expanded to be a multi-sensor self-validation system.  For the testing purpose, the 

multi-sensor self-validation system accepts the input values of several sensors as a single 

file where the various sensors’ data points are presented as separate columns of 

temperature and time values.  The self-validation system operates on one set of data for 

one sensor and determines the self-confidence value for that sensor.  It then reads the next 

set of data for the next sensor and determines the self-confidence for that sensor.  The 

output of this system is a set of self-confidence values for the different input data of the 

various sensors. The system was tested successfully and it can now handle up to 50 

sensors. The code will be modified to accept data directly from the sensors instead of a 

data file. 

2.8 Develop Multi-Sensor Fusion Algorithm 

The Hardware Group Team received the Multi-sensor fusion (MSF) algorithm 

from the Intelligent Algorithms group in the form of three of MATLAB files and 4 Excel 

files. The MATLAB files represent MSF code. These files are: 

feeddata.m - Serves as the front end file that reads the data from a txt file and 

feeds it point by point to the sensor fusion function  
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ValueConf.m - This is the function that does the multiple sensor fusion. It takes 

data at every instant from feeddata.m file and returns the Fused Value and its confidence 

at that instant.  

checkindex.m - this function is called by ValueConf.m and it checks whether the 

maximum value returned by the max function is indeed at the center the trapezoid. Max 

function in Matlab returns the maximum value and the index of its first occurrence.  

The Excel files are data files. These files are:: 

TestInput1.txt and TestOutput1.txt - One set of Inputs and Expected Outputs  

TestInput2.txt and TestOutput2.txt - Another set of Inputs and Expected Outputs  

TestInput3.txt and TestOutput3.txt - Another set of Inputs and Expected Outputs  

The *.wk1 files can be used to test the m files as the *.m files read the *.wk1 files 

 

The Hardware Group studied, analyzed, and validated the MATLAB code for the 

purpose of understanding its functionality and the enable the development of the 

hardware implementation code.  The algorithm is simple and generic for 'n' sensors. It 

reflects the degree of agreement among sensors, measure the reliability of the measured 

estimate, and hence minimizes the effect of failed sensors. A sensor's median reading that 

a deviate sharply from the centroid of the 'n' membership functions of the sensors 

readings is assigned a lower confidence. For sampling period, the algorithm reads the 

median filtered temperature and the corresponding confidence of each of the n sensors 

(from the outputs of the self-validation algorithm). Using the sensor reading, the system 

uses also the historical variance measure of the sensors. For each sensor, the algorithm 

calculates the four parameters of a trapezoid membership function such that the area of 
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each of the trapezoid is the same (one unit). The trapezoids are symmetrical around the 

sensor reading. The heights of all trapezoids are added together and the position of the 

maximum height is computed. The value of the normalized area within 3±  standard 

deviations is considered as the overall confidence. On the mean time, the algorithm group 

converted the MATLAB files into a floating-point C code. All sections of code that apply 

only to the MATLAB implementation, including redundant error checking, were 

removed from the floating-point C code. The C code was tested successfully and 

produces comparable results to that of the MATLAB code. 

2.9 MSF C Code Optimization 

Careful examination of the MSF code revealed that the many of the computations 

performed by the MSF algorithm were not ultimately required. For example, The code 

calculated the areas before and after the maximum height of the overall graph resulted 

from adding the trapezoids of all sensors by dividing the total range of the trapezoids into 

a fixed number of steps and calculating the areas between each step.  A large saving in 

the computational requirements could be achieved by computing the areas as the sum of 

triangles and rectangles. The areas of trapezoids triangles and rectangles were calculated 

using basic algebra laws. In addition to be faster and less demanding in terms of 

computational resources, the new method was more accurate also; it avoided many of the 

round off errors. 

Three versions of The MSF C code were developed to optimize and adapt the 

floating-point code for the hardware implementation. In the first version, the code was 

enhanced through the following modifications: 
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The calculation of the height sensors’ trapezoids has been optimized. This version 

assumed that the number of fused sensors data is three (constant). 

All the static values like number of sensors, number of samples, std_deviation, 

were made as dynamic values that are read from an input file.  The entire code has been 

optimized by removing redundant calculations. All needed value were calculated once at 

the beginning of the code execution, and used as many times as needed. 

The third version was enhancements included replacing all data structures to 

arrays (for faster computations). The code for three sensors was also modified to limit the 

number of points considered to 13 (4 * n + 1) instead of the original 86 points. This has 

resulted in a significant saving of the computational requirements of the code. 

Each of these versions was coded, and tested. The results obtained form the last 

version have a maximum error of 2%, which is acceptable for our application.  

2.10 Develop the MSF fixed-point code 

As explained before, the floating-point code is not suitable for the hardware 

implementation. In the final MSF version, the code was implemented as a fixed-point 

code of 8, 16, 24, and 32 bit resolutions. The code was also optimized such that the 

calculation of any variable is done only once. However, to reduce the accumulation of 

round off errors, some intermediate variables were calculates every time it is needed. In 

addition, the number of sensors considered was coded as a dynamic variable whose value 

is read at the beginning of the execution cycle. The code was also modified to handle a 

maximum of 10 sensors. The fixed-point code was tested successfully and produced 

results within the acceptable margin of error. 
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2.11 Hardware implementation of the MSF code 

The reorganized and optimized sensor Multi-sensor fusion was partitioned into 

modules and a data flow graphs of all these modules were created. Currently, we are 

working on measuring the execution time for each block and to translate these data flow 

graphs into VHDL code.  

2.12 Summary 

During the year 2000, the Hardware Team completed the FOGA implementation 

of the signal validation code. Currently the group is working on the hardware 

implementation of the multi-sensor fusion algorithm. The group is also working on 

designing the communication protocols of the final system so that the FPGA system can 

be connected to the microprocessor board. The group is confident that they will 

accomplish all the project goals in a timely fashion. 
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3Year 3 Accomplishments  

3.1 Overview 

During the final year, extended from 2001 through the first half of 2002, the 

I3PSC Hardware Team completed most of the project hardware and software as it was 

initially envisioned. 

The multi-sensor Self-Validation (SV) algorithm was designed, simulated, and 

fully implemented in the FPGA hardware, with significant speedup over a standard 

microprocessor implementation. The Multi-Sensor Fusion (MSF) algorithm was designed 

and simulated for the FPGA. A new Virtex FPGA board was purchased and utilized in 

the system. The CPU board was programmed and tested as the interface between the Host 

PC and the FPGA board. New serial communication protocols and software were 

developed and tested. An overall top-level controlling application was created for the 

system user in Labview on the Host PC. Details of these accomplishments are given in 

the following subsections. 

3.2 SV Implementation 

The multi-sensor Self-Validation processor was first simulated and validated, 

using VHDL and Xilinx tools. Next it was successfully implemented on the original 

FPGA board and then revised to work on the new Virtex FPGA board. The complete 

system (consisting of the Host PC running Labview code, the CPU board running C code, 
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and the FPGA with the SV processor implemented with VHDL code) was debugged and 

successfully tested. 

3.3 SV Speedup 

The final speedup calculated for the Self-Validation processor on the FPGA was 

found to be significant. Processing on the FPGA takes only 50 clock cycles versus 15782 

clock cycles on a Pentium microprocessor, giving a speedup of 315. Of course the total 

processing time also depends on the clock frequency, which is higher on the Pentium, but 

this is still an important accomplishment for the hardware team. 

3.4 MSF Implementation 

The Multi-Sensor Fusion (MSF) processor was fully developed, simulated, and 

validated for the original FPGA board. All the VHDL modules were developed. These 

modules include: 

Area_Top_R10.vhd: This module calculates the area to the right and left of the 

centroid for every sensor (up to 10 sensors). Each sensor calculations requires 6 clock 

cycles as follows: 

Clock #1: The points of the trapezoid for a sensor are selected. Description of this 

operation is given in inp_mux module. 

Clock #2a: The local controller compares the 4 points with the centroid and 

calculates the internal control signals sel, sel_Com. Description of this operation is given 

in the control module.  

Clock #2b: the 8bit by 8bit multiplier is used. 
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 Clock #3: The 16*8 multiplier multiplies the output of 8bit by 8bit multiplier 

with constant (102). 

Clocks #4, 5: The 24bit /16bit divider divides the product from 16*8 multiplier 

with square of std. of the sensor. 

 Clock #6: The quotient of the previous operation is accumulated by the 

accumulator. 

Total number of cycles needed by this multiplier = 6 * no. of sensors. 

Busifc.vhd: This module contains the PC/104 bus interface for the FPGA signal 

process. It defines the connections between the PC/104 bus, memory interface, register 

file, and the SV/MSF processor. 

Centroid.vhd: This module is used to compute the centroid of all sensor 

trapezoids. The module has an accumulator to add all the sensor data values. The centroid 

is calculates as the result of dividing the resultant sum by the no. of sensors. The divider 

is implemented in the pdiv16_8 module. The centroid is executed in parallel with val_sen 

module. All the sensor data, read in the val_sen module, are added by the accumulator in 

this module. 

Conf_control.vhd: This module is used to generate control signals for the self-

confidence process. 

Control.vhd: This module is a local controller of the datapath of the area module.  

It performs the six comparisons needed to determine the location of the centroid with 

respect to the trapezoid points of all sensors. 

Div_8.vhd: This module is an 8bit / 8 bit divider 

Div_16_8.vhd: This module is a 16bit / 8 bit divider. 
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Div_16_16.vhd: This module is a 16bit / 16 bit divider. 

Div24_16UNS.vhd: The module performs unsigned division of 24 bit / 16 bit. A 

quotient of 8 bits is generated. 

fus_con_top.vhd: This module  is used to calculate  the fused confidence, which 

is the area within a span of 3 * min. STD on either side of the fused value.  The operation 

of this module requires 6 clock cycles as follows: 

Clock #1: The 4 points of the trapezoid for a sensor are selected.  

Clock #2a: The local controller compares the 4 points with the limits of 

evaluation start conf and end conf. Local controller calculates the internal control signals 

selfuscon, selmul. The conf_control module describes this operation. 

Clock #2b: The 8bit*8bit multiplier performs multiplication. 

Clock 3: The 16bit*8bit multiplier multiplies the output of 8*8 multiplier with the 

constant 102 

Clocks  #4, 5: The 24bit/16bit divider divides the product from 16*8 multiplier 

with square of std. of the sensor.  

Clock 6: Appropriate fus_conx is selected based on the condition satisfied. The 

resulted quotient is accumulated by the accumulator. 

Total no. of clock cycles needed for this module = 6 * no. of sensors + 1. 

The extra clock is used to divide the accumulated result with the number of 

sensors to calculate the fused confidence. 

Inp_mux.vhd: This module calculates the start_base, end_base, start_top, and 

end-top points of the trapezoid of each sensor. It also calculates the height of each of 

these trapezoids. A 40 by 1 8-bit multiplexer is used to select the element of the trap 
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array. The module contains the multiplexers to select the various points of the trapezoid 

and the points of the array. It takes 2 clock cycles to perform a single selection. 

Memifc.vhd: The module contains memory access signals and bus address 

decoders. This file was modified in order to use the Virtex BlockRAMs as the memory. 

The MSF process can access 256 words starting at address 1000-10FF.  

MSF_Control.vhd: This module generates timing control signals needed for all 

datapath circuits. It also generates control signals to interface with the system’s memory 

and bus. 

MSF_top.vhd: This module is the top-level module of the MSF code. It calls all 

other MSF modules including the memory interface and the bus interface. 

MSF_top_d.vhd: This module is the debugging version of the above MSF top-

level module. 

Mux8B_2X1.vhd: This module is an 8-bit 2 to 1 multiplexer. 

Mux8B_7X1.vhd: This module is an 8-bit 7 to 1 multiplexer. 

Mux8B_10X1.vhd: This module is an 8-bit 10 to 1 multiplexer. 

Pdiv16_b.vhd: This module is used to select the inputs of the 16bit/8 bit divider 

from two possible cases. An 8 bit 2 to 1 multiplexer is used for this purpose. The 

controller signals for the multiplexer are generated by the master controller. 

Pdiv24_16.vhd: This module has a 24-bit/ 16-bit divider.  This divider is used 

called by two modules, the area module and the fus_conf module.  

Pmul16_8.vhd: This module has a 16-bit by 8-bit multiplier and a 2 by 1 

multiplexer. The MSF code requires 2 instantiation of a 16-bit by 8-bit multipliers. The 2 

by 1 multiplexer is used to select one set of these inputs for multiplication. 
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Pmul8_8.vhd: This module has an 8-bit by 8-bit multiplier and a 4 by 1 

multiplexer. The MSF code requires 4 instantiation of an 8-bit by 8-bit multipliers. To 

reduce the code size, one multiplier is used to perform the 4 multiplication operations. 

The multiplexer is used to select the inputs to the multiplier out the possible 4 sets of 

inputs.  

Rearr_un_par.vhd: This module is used to sort all sensors’ data points in 

ascending order using the odd-even sort method. The C code of this method can be found 

at http://www.cs.rit.edu/~atk/Java/sorting/sorting.html. 

Reg_16.vhd: This is a 16 bit register with enable and reset inputs. 

Reg_8.vhd: This is an 8 bit register with enable and reset inputs. 

Sen_val.vhd: This module is used to validate the confidence of a sensor. It 

operate as follows: 

Clock #1a: Read the confidence of sensor x from memory. (Done by the 

controller) 

Clock #1b: Load the conf into CONF_A register. 

Clock #2a: Read sensor data, and std. deviation from memory for sensor x. 

Clock #2b: Load the sensor data and sensor std deviation into SDATA_A and 

SSTD_A respectively. 

Clock #3a: Read the confidence of sensor x+1 from memory. (Done by the 

controller) 

Clock #3b: Load the conf into CONF_B 

Clock #3c: Start execution process for values in Set A registers that includes 

CONF_A, SDATA_A, SSTD_A registers 
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Clock #3d: Send sstd to the 8*8 multiplier. 

Clock #4a: Read sensor data, and std. deviation from memory for sensor x+1.  

Clock #4b: Load the sensor data and sensor std. deviation into SDATA_B and 

SSTD_B respectively. 

Clock #4c: Read the value on sq_std bus (from multiplier) and continue 

processing of data. 

Clock 5a: Start execution process for values in Set B registers that include 

CONF_B, SDATA_B, SSTD_B registers. 

Clock #5b: Send sstd to the 8bit*8bit  multiplier. 

Clock #5c: Load the output values corresponding to the set A into the output 

registers. 

Clock #6: Read the value on sq_std bus(from multiplier) and continue processing 

of data. 

Clock #7a: Read the confidence of sensor x+1 from memory. (Done by the 

controller). 

Clock #7b: Start execution process for values in Set B registers. 

Clock #7c: Send sstd to 8*8 multiplier. 

Clock #8a: Read sensor data, and std. deviation from memory for sensor x+1.  

Clock #8b: Load the output values corresponding to the set B into the output 

registers. 

Clocks 5 through 8 are repeated for each of the remaining sensors.  
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Span.Vhd: This module calculates the span of area in the sum trapezoid to 

determine the fused confidence. The fused confidence is the area on either side of 

centroid in the sum trapezoid for a span of 3 times the minimum standard deviation. 

TopMSF.vhd: This is the top -evel module. It generates all the needed control 

signals for other modules. 

Trap2max.vhd: Prior to starting this module 2 clock cycles are spent for the 

selection of these points by the inp_mux. The operation of this module is as follow. For 

all the forthcoming cycles the selection of points is performed in parallel with the 

execution of trap2max. 

Clock #1: Set inputs to 8bit *8bit multiplier and perform the multiplication. 

Clock #2a: Reset all the registers by asserting Clr_hsum. 

Clock #3_4a: Set inputs to 16bit/8bit divider. Perform division. 

Clock 3_4b: The height for the 0th sensor at trap (index) is stored in the 

accumulator register. 

Step #3_4c: Store the accumulated height in the h_sum array at index location 

specified by the index input. 

Clock #5-8a: Calculate the height for the 1st sensor at trap (index).  

Clock 5_8b: Compare the current h_sum with the previous h_sum and store the 

max. h_sum's index and value. 

Repeat clocks 5 through 8 for all the remaining sensors. 

Clock #9-12: Calculate the height for the 2nd sensor at trap (index). 

Repeat clocks 1-12 for all the forthcoming index points. 

At Clock clkx = 12*(h_start - h_end)+4 perform the following: 
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Step clkx+1: Store the index of the higher h_sum in max_ind. 

Clock clkx+2: Access the trap element with index max_ind+1 and store it in 

trap_mx0. 

Clock clkx+4: Access the trap element with index max_ind-1 and store it in 

trap_mx1. 

Clock clkx+6: Access the trap element with index max_ind. 

Clock clkx+7a: Calculate the mean of trap(max_ind+1) and trap (max_ind) and 

trap(max_ind-1) and trap (max_ind). 

Clock clkx7b: Select the mean of the element that is closer to trap (max_ind).  

Number of clock cycles used in this module = 12*(h_start - h_end)+11. 

The TopMSF project was created for the implementation of the MSF code with 

bus interface (Busifc) and memory interface (Memifc).  

The MSF code was then enhanced to run on the new Virtex FPGA board, and 

again simulated successfully. However, it was not implemented and tested on the Virtex 

FPGA board with rest of the system due to insufficient time available at the end of the 

project period. 

3.5 MSF Block diagrams 

Block diagrams for all the VHDL modules were created. These diagrams were 

used to optimize the reuse of primitive components such as the multipliers and the 

dividers. They were also used to show the sequence of operation for each module. These 

block diagrams include: 

Area Comp: This diagram represents the comparison between the left and right of 

the sensors’ centroid. 
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AreaP1- AreaP4: These four diagrams illustrate the computation of trapezoid 

area. 

Centroid: This diagram illustrates the calculation of the centroid. 

Dividers: This diagram shows the components needed for the division operation 

and the sequence of their use. 

Fcp1-Fcp5: These five diagrams show the sequence of calculation needed to 

compute the fused value. 

Inpmux: This diagram illustrates the use of multiplexers to choose between 

different input sets to the dividers or the multipliers 

Multipliers: This diagram shows the design of multipliers with different bit-width. 

Rearrange: This diagram pictorially shows the sort operation of the N*4 +1 points 

in an ascending order. It calls the sort module to perform the sort operation. 

Sort: This diagram shows the details of the sort operation. 

Traphtp1-Traphtp5: These five diagrams show the calculation of the height of the 

trapezoids. 

Ue: This module shows the design of a comparator unit. 

Validatep1 – Validatep4: these four diagrams are used to show the sequence of 

Validating sensors’ data. 

 

 

3.6 Virtex FPGA Board (APS V240) 

The original FPGA board (APS X240) with the Xilinx XC4085 device (about 

80,000 gates) was found to be too small to hold the rather large MSF processor and the 
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smaller SV processor. So we purchased a replacement FPGA board (APS V240) with a 

much larger device, the Xilinx Virtex XCV800 with approximately 800,000 gates. As a 

result, some significant changes had to be made to our system design to accommodate the 

new device and its improved features. The device download and configuration code on 

the CPU board was rewritten and tested with the new FPGA, whose configuration details 

were different from the old FPGA. Since the new FPGA had a significant amount of fast 

on-chip memory, we decided to eliminate the external memory chips, which caused a 

significant redesign of the memory system and its interface with the SV and MSF 

processors. Several other smaller changes were also implemented successfully on the new 

Virtex board. 

3.7 CPU Board 

We learned all the details necessary to effectively utilize the CPU board on this 

project. As discussed earlier, it interfaces to the Host PC via one serial line for all 

command, status, and raw data. We also interfaced with a monitoring laptop PC, using 

another serial line, to allow us to effectively download and debug the CPU code (written 

in C). We revised the setup and communication portions of the SV and MSF code to run 

on the CPU board. We implemented the high-level communications protocol with the 

Host PC as presented elsewhere. Of course, the CPU board directly controls the Virtex 

FPGA board, passing low-level commands and raw data to it and receiving back the 

processed SV data at each sample time. It essentially calls on the FPGA as a high-speed 

hardware-based subroutine implementing the signal processing algorithms. 
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3.8 Communication 

A sophisticated error-detecting and correcting high-level communication protocol 

was defined and implemented over the serial communication line between the Host PC 

and the CPU board, running at the full 115,200 bps speed. The line passes all commands, 

status, input data and output data between the Host PC and the CPU board. This protocol 

allows the system to automatically recover from transient communication errors and 

continue normal operation. 

3.9 Host PC Application 

Control and communication with the CPU board and FPGA were implemented as 

a Labview application on the Host PC, giving a simple and effective interface to the 

system operator. This application fully supports all aspects of both the SV and MSF 

downloading and processing tasks. Each step in the process may be executed 

independently, simplifying debugging and reducing the total execution time. 

3.10 Summary 

3.10.1 Work Completed 

During this I3PSC project, the Hardware Team successfully completed most of its 

planned work, but had insufficient time to finish a few portions.  

The team began with a literature search to study the possible signal processing 

methods, software tools and hardware devices available. We selected and purchased 

appropriate hardware (CPU Board, FPGA boards, DAQ board) and found effective ways 

to utilize them. An overall system architecture was created. We developed software 
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implementations of the two major algorithms, Self-Validation and Multi-Sensor Fusion to 

verify their proper operation. We replaced the original floating-point arithmetic with 

fixed-point versions for efficient hardware implementation. A library of fixed-point 

arithmetic routines was created in VHDL. We designed and implemented a sophisticated 

communication structure to tie together all the system elements.  

Many enhancements were made to the original algorithms to enhance their 

performance in hardware. We developed detailed architectures for their implementation 

into hardware. We partitioned the algorithms into two sections: one section contained 

computationally-intensive portions destined for hardware implementation, and the other 

section continued to be implemented in software running on a standard microprocessor. 

The hardware portion of the SV and MSF processors was implemented in VHDL 

and simulated. Two new subsystems were designed specifically for the FPGA, including 

a PC-104 bus interface and a memory block. Finally, the SV processor was fully 

implemented and tested on the FPGA, utilizing all of the system components. 

In addition to the technical contributions of this project, several graduate students 

(MS) benefited from this project through the financial support for their work on the 

project. Sobha Sankaran was a key contributor to the detailed design and implementation 

of the Self-Validation software and hardware. Srikala Vadlamani was a key designer of 

the Multi-Sensor Fusion software and hardware under the supervision of Dr. Mahmoud. 

Jie (Ellen) Chen was responsible for implementing the control and communication 

software on the Host PC to interface with the CPU board for both SV and MSF. Each of 

these students contributed significantly to the development of the I3PSC hardware 

system. 
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3.10.2 Future Recommendations 

We recommend that the following tasks, be undertaken to fully utilize the results 

of the current project. 

Complete implementation and testing of the MSF processor on the FPGA board, 

controlled by the CPU board. 

Then combine both processors (SV and MSF) on the same FPGA, running 

simultaneously. 

Complete the hardware/software interface between the CPU Board and the Data 

Acquisition System (DAQ) to allow direct, autonomous acquisition and processing of the 

Cupola data without burdening the Host PC. 

Test the completely integrated system with the Cupola and live data. 
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Appendices 

A.1 Self-Validation Example using Matlab 

A.1.1 Matlab M File (SV4.m) 

 
% SV4.m 
% Self Validation V4 
% RLH - Modified to print out data for in_out.txt file 
 
% Reading the three signal data from wk1 file  
a=wk1read('TpDt1'); 
 
% Reading the FIS file to use it to find the self confidence of the  
% sensor readings 
fis=readfis('sv4.fis'); 
 
% Read the temperature and the time from the file and seperating  
% them into individual data points  
% and creating the three inputs required, to the fuzzy system. 
sz=size(a); 
for j=1:sz(1) 
   % The Preprocessing required on the raw data to form the three input  
   % to the fuzzy System. 
      % Getting Change in time 
   if j == 1 
      ch_in_time = a(j,1); 
   else 
      ch_in_time=a(j,1)-a(j-1,1); 
   end 
    
   % Finding the current median and previous median temperature - to find 
   % the change in temperature value leading to the calculation of one 
   % of the input = rate of change in Temperature 
  if (ch_in_time == 0)  
 temp(1)=a(j,2); 
 temp(2)=a(j,2); 
 temp(3)=a(j,2); 
 temp(4)=a(j,2); 
 temp(5)=a(j,2); 
 temp(6)=a(j,2); 
   else 
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 temp(6)=temp(5); 
 temp(5)=temp(4); 
 temp(4)=temp(3); 
 temp(3)=temp(2); 
 temp(2)=temp(1); 
 temp(1)=a(j,2); 
   end 
 
   prev_temp=median(temp([2:6])); %Previous Median Temperature. 
   curr_temp=median(temp([1:5])); %Current Median Temperature. 
       
   % Setting the current median temperature as one of the input to the  
   % fuzzy system = Median Temperature 
   med_temp(j)=curr_temp;   
       
   % Finding the second input = rate of change in temperature 
   ch_in_temp=(curr_temp-prev_temp); 
   if (ch_in_time == 0) 
 rate_of_ch(j)=0; 
   else 
 rate_of_ch(j)=(ch_in_temp)/(ch_in_time); 
   end 
       
   % finding the Variance of the five value with respect to the  
   % median  = the third input to Fuzzy system 
   var=0; 
   for l=1:5 
      var=var+((temp(l)-curr_temp)^2); 
   end 
   vr(j)=(var/5); 
       
% End Preprocessing 
% Execute Fuzzy Logic next 
 
   % Getting the Self confidence from the fuzzy system 
   conf(j)=evalfis([med_temp(j) rate_of_ch(j) vr(j)],fis); 
            
end 
 
figure, plot(a(:,2)) 
title('Raw Temperature'); 
figure, plot(med_temp) 
title('Median-Filtered Temperature'); 
figure,plot(rate_of_ch) 
title('Rate of Change'); 
figure, plot(vr) 
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title('Variance'); 
figure,plot(conf) 
title('Confidence'); 
 
echo on 
diary in-out.txt 
% RLH 11/18/99  
% Execute sv4.m using sv4.fis and TpDt1.wk1 raw input data 
%------------------------------------------------------------ 
date 
 
% Number of data points: 
sz(1) 
 
%------------------------------------- 
% Raw data input (time, temp): 
a 
 
%------------------------------------- 
% Pre-processed data (Filtered Temp, Rate of Change, Variance): 
 
[transpose(med_temp) transpose(rate_of_ch) transpose(vr)] 
 
%------------------------------------- 
% Output self-confidence: 
 
transpose(conf) 
 
%------------------------------------- 
% Rules: 
 
showrule(fis) 
 
%------------------------------------- 
% Make plots of fis file: 
figure,plotmf(fis,'input',1) 
title('Temperature input MF'); 
figure,plotmf(fis,'input',2) 
title('Rate-of-Change input MF'); 
figure,plotmf(fis,'input',3) 
title('Variance input MF'); 
figure,plotfis(fis) 
%------------------------------------- 
%------------------------------------- 
diary off 
echo off 
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A.1.2 Matlab FIS File (SV4.fis) 

 
[System] 
Name='SV4' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=12 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='wtaver' 
 
[Input1] 
Name='Temp' 
Range=[0 1500] 
NumMFs=3 
MF1='low':'trapmf',[0 0 672.95 677] 
MF2='ideal':'trapmf',[672.96 677 781.9 785.94] 
MF3='high':'trapmf',[781.9 785.94 1500 1500] 
 
[Input2] 
Name='Rate_of_Ch' 
Range=[-3.5 3.5] 
NumMFs=3 
MF1='Very_P':'trapmf',[0.26 0.35 3.5 3.5] 
MF2='Very_N':'trapmf',[-3.5 -3.5 -0.35 -0.26] 
MF3='Small':'trapmf',[-0.35 -0.26 0.26 0.35] 
 
[Input3] 
Name='var' 
Range=[0 2025] 
NumMFs=3 
MF1='Constant':'trapmf',[0 0 0 4.0804] 
MF2='Normal':'trapmf',[1.0201 4.0804 184.4164 251.2225] 
MF3='High_Noise':'trapmf',[184.4164 251.2225 2652.25 2756.25] 
 
[Output1] 
Name='self_confidence1' 
Range=[0 1] 
NumMFs=4 
MF1='V_low':'linear',[0 0 0 0.1] 
MF2='low':'linear',[0 0 0 0.5] 
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MF3='high':'linear',[0 0 0 0.75] 
MF4='V_high':'linear',[0 0 0 1] 
 
[Rules] 
3 0 0, 2 (1) : 1 
1 0 0, 2 (1) : 1 
2 3 2, 4 (1) : 1 
2 1 0, 2 (1) : 1 
2 2 0, 2 (1) : 1 
0 0 1, 2 (1) : 1 
1 1 0, 1 (1) : 1 
1 2 0, 1 (1) : 1 
3 2 0, 1 (1) : 1 
3 1 0, 1 (1) : 1 
0 0 3, 2 (1) : 1 
0 0 1, 2 (1) : 1 

A.1.3 Raw Data Input File (RawIn.txt) 

 
0 779.2346227 
56 779.6359885 
118 779.1388128 
176 776.3767261 
238 771.7933885 
295 769.1202064 
359 765.8402284 
416 761.098934 
475 759.6134492 
537 755.3356674 
599 748.8223216 
659 746.9354711 
715 747.0019339 
779 744.2286262 
837 740.3850099 
899 733.484972 
959 729.9123854 
1017 731.322776 
1079 724.1163191 
1135 717.5365106 
1197 712.771911 
1255 709.5169645 
1319 706.4234273 
1376 698.6740478 
1439 692.4645316 
1496 690.1521471 
1559 684.3051548 
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1618 680.5815166 
1675 679.3756931 
1738 675.8635272 
1795 678.1759117 
1857 681.270312 
1914 681.9936334 
1977 687.0741467 
2035 693.6850286 
2098 699.1591393 
2154 702.9526927 
2216 711.3554784 
2279 717.8610558 
2335 724.1016455 
2398 730.0004269 
2454 736.1995853 
2516 742.0802406 
2579 754.6399668 
2636 761.786003 
2694 765.5182727 
2757 769.7865598 
2814 775.2563547 
2877 778.4569227 
2935 776.5441776 
2998 776.2334429 
3055 780.2635 
3118 780.1469745 
3175 774.2689087 
3238 777.0335849 
3296 774.5727382 
3359 773.5749344 
3416 767.3619656 
3479 768.4978738 
3536 767.0926621 
3594 764.5662159 
3657 760.6639053 
3716 756.6286692 
3778 755.7171806 
3836 754.2765798 
3898 748.0687899 
3955 746.5332423 
4018 743.229096 
4075 740.0242123 
4138 730.3577719 
4195 730.4389082 
4258 722.5548769 
4315 720.7940466 
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4378 713.5910424 
4435 710.0771502 
4494 709.150988 
4557 699.3032857 
4615 695.9775606 
4678 688.4638216 
4735 681.8917815 
4798 678.0239969 
4856 678.0093234 
4944 680.8007572 
4975 683.0898366 
5035 684.0997246 
5094 694.8338841 
5154 693.0462961 
5217 698.3149765 
5274 699.6347361 
5336 709.5661641 
5394 716.8192312 
5456 720.3288077 
5514 727.5723801 
5576 737.6488177 
5633 739.3267854 
5696 748.6263861 
5753 759.2077677 
5816 763.4113184 
5873 775.0069037 
5936 781.3752399 

A.1.4 Matlab Input/Output File (sv4_in-out.txt) 

 
% RLH 11/18/99  
% Execute sv4.m using sv4.fis and TpDt1.wk1 raw input data 
%------------------------------------------------------------ 
date 
 
ans = 
 
18-Nov-1999 
 
% Number of data points: 
sz(1) 
 
ans = 
 
   100 
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%------------------------------------- 
% Raw data input (time, temp): 
a 
 
a = 
 
  1.0e+003 * 
 
         0    0.7792 
    0.0560    0.7796 
    0.1180    0.7791 
    0.1760    0.7764 
    0.2380    0.7718 
    0.2950    0.7691 
    0.3590    0.7658 
    0.4160    0.7611 
    0.4750    0.7596 
    0.5370    0.7553 
    0.5990    0.7488 
    0.6590    0.7469 
    0.7150    0.7470 
    0.7790    0.7442 
    0.8370    0.7404 
    0.8990    0.7335 
    0.9590    0.7299 
    1.0170    0.7313 
    1.0790    0.7241 
    1.1350    0.7175 
    1.1970    0.7128 
    1.2550    0.7095 
    1.3190    0.7064 
    1.3760    0.6987 
    1.4390    0.6925 
    1.4960    0.6902 
    1.5590    0.6843 
    1.6180    0.6806 
    1.6750    0.6794 
    1.7380    0.6759 
    1.7950    0.6782 
    1.8570    0.6813 
    1.9140    0.6820 
    1.9770    0.6871 
    2.0350    0.6937 
    2.0980    0.6992 
    2.1540    0.7030 
    2.2160    0.7114 
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    2.2790    0.7179 
    2.3350    0.7241 
    2.3980    0.7300 
    2.4540    0.7362 
    2.5160    0.7421 
    2.5790    0.7546 
    2.6360    0.7618 
    2.6940    0.7655 
    2.7570    0.7698 
    2.8140    0.7753 
    2.8770    0.7785 
    2.9350    0.7765 
    2.9980    0.7762 
    3.0550    0.7803 
    3.1180    0.7801 
    3.1750    0.7743 
    3.2380    0.7770 
    3.2960    0.7746 
    3.3590    0.7736 
    3.4160    0.7674 
    3.4790    0.7685 
    3.5360    0.7671 
    3.5940    0.7646 
    3.6570    0.7607 
    3.7160    0.7566 
    3.7780    0.7557 
    3.8360    0.7543 
    3.8980    0.7481 
    3.9550    0.7465 
    4.0180    0.7432 
    4.0750    0.7400 
    4.1380    0.7304 
    4.1950    0.7304 
    4.2580    0.7226 
    4.3150    0.7208 
    4.3780    0.7136 
    4.4350    0.7101 
    4.4940    0.7092 
    4.5570    0.6993 
    4.6150    0.6960 
    4.6780    0.6885 
    4.7350    0.6819 
    4.7980    0.6780 
    4.8560    0.6780 
    4.9440    0.6808 
    4.9750    0.6831 
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    5.0350    0.6841 
    5.0940    0.6948 
    5.1540    0.6930 
    5.2170    0.6983 
    5.2740    0.6996 
    5.3360    0.7096 
    5.3940    0.7168 
    5.4560    0.7203 
    5.5140    0.7276 
    5.5760    0.7376 
    5.6330    0.7393 
    5.6960    0.7486 
    5.7530    0.7592 
    5.8160    0.7634 
    5.8730    0.7750 
    5.9360    0.7814 
 
 
%------------------------------------- 
% Pre-processed data (Filtered Temp, Rate of Change, Variance): 
 
[transpose(med_temp) transpose(rate_of_ch) transpose(vr)] 
 
ans = 
 
  779.2346         0         0 
  779.2346         0    0.0322 
  779.2346         0    0.0341 
  779.2346         0    1.6676 
  779.1388   -0.0015   12.3681 
  776.3767   -0.0485   18.3832 
  771.7934   -0.0716   23.5097 
  769.1202   -0.0469   26.9804 
  765.8402   -0.0556   21.4902 
  761.0989   -0.0765   24.4485 
  759.6134   -0.0240   35.1455 
  755.3357   -0.0713   32.9003 
  748.8223   -0.1163   33.1492 
  747.0019   -0.0284   16.0921 
  746.9355   -0.0011   10.7600 
  744.2286   -0.0437   29.0435 
  740.3850   -0.0641   43.1687 
  733.4850   -0.1190   36.0950 
  731.3228   -0.0349   28.1443 
  729.9124   -0.0252   40.3018 
  724.1163   -0.0935   51.5034 
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  717.5365   -0.1134   64.0739 
  712.7719   -0.0744   40.4590 
  709.5170   -0.0571   40.4093 
  706.4234   -0.0491   60.9554 
  698.6740   -0.1360   57.7605 
  692.4645   -0.0986   61.0663 
  690.1521   -0.0392   40.7508 
  684.3052   -0.1026   27.7856 
  680.5815   -0.0591   25.8352 
  679.3757   -0.0212    7.9057 
  679.3757         0    3.7637 
  679.3757         0    4.8436 
  681.2703    0.0301   14.6033 
  681.9936    0.0125   35.5197 
  687.0741    0.0806   49.8494 
  693.6850    0.1181   59.2496 
  699.1591    0.0883   67.8309 
  702.9527    0.0602   78.6293 
  711.3555    0.1500   84.8290 
  717.8611    0.1033   90.1782 
  724.1016    0.1114   76.5131 
  730.0004    0.0951   73.3023 
  736.1996    0.0984  111.8839 
  742.0802    0.1032  145.3136 
  754.6400    0.2165  133.4396 
  761.7860    0.1134  103.4643 
  765.5183    0.0655   49.0632 
  769.7866    0.0678   37.4642 
  775.2564    0.0943   27.3302 
  776.2334    0.0155    9.5115 
  776.5442    0.0055    3.8494 
  778.4569    0.0304    2.9445 
  776.5442   -0.0336    6.4174 
  777.0336    0.0078    5.6818 
  777.0336         0    6.7649 
  774.5727   -0.0391    7.6432 
  774.2689   -0.0053   11.1846 
  773.5749   -0.0110   15.4671 
  768.4979   -0.0891   13.1891 
  767.3620   -0.0196    9.5560 
  767.0927   -0.0043    9.9518 
  764.5662   -0.0428   20.0147 
  760.6639   -0.0629   19.4620 
  756.6287   -0.0696   17.1302 
  755.7172   -0.0147   17.1748 
  754.2766   -0.0253   21.2207 
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  748.0688   -0.0985   24.5630 
  746.5332   -0.0269   23.1204 
  743.2291   -0.0524   42.0565 
  740.0242   -0.0562   47.5914 
  730.4389   -0.1521   63.5263 
  730.3578   -0.0014   49.1593 
  722.5549   -0.1239   41.2988 
  720.7940   -0.0309   52.5718 
  713.5910   -0.1221   32.8590 
  710.0772   -0.0558   48.8266 
  709.1510   -0.0160   58.2177 
  699.3033   -0.1563   68.3216 
  695.9776   -0.0583   87.8930 
  688.4638   -0.1193   65.2264 
  681.8918   -0.1133   54.3268 
  680.8008   -0.0124   15.0831 
  680.8008         0    4.3865 
  680.8008         0    6.3251 
  683.0898    0.0388   33.9988 
  684.0997    0.0168   41.4333 
  693.0463    0.1420   42.0253 
  694.8339    0.0314   30.7168 
  698.3150    0.0561   33.6416 
  699.6347    0.0228   87.8179 
  709.5662    0.1602   78.7328 
  716.8192    0.1251   95.1722 
  720.3288    0.0566   96.1207 
  727.5724    0.1271   81.5600 
  737.6488    0.1599  104.9680 
  739.3268    0.0294  124.5435 
  748.6264    0.1476  107.5099 
  759.2078    0.1856  154.9003 
  763.4113    0.0667  138.6848 
 
%------------------------------------- 
% Output self-confidence: 
 
transpose(conf) 
 
ans = 
 
    0.5000 
    0.5000 
    0.5000 
    0.5759 
    1.0000 
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    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    0.9262 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
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    0.9454 
    0.7652 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
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    1.0000 
    1.0000 
    1.0000 
 
%------------------------------------- 
% Rules: 
 
showrule(fis) 
 
ans = 
 
If (Temp is high) then  
(self_confidence1 is low) (1)                                                   
If (Temp is low) then 
(self_confidence1 is low) (1)                                                    
If (Temp is ideal) and (Rate_of_Ch is Small) and (var is Normal) then  
(self_confidence1 is V_high) (1) 
If (Temp is ideal) and (Rate_of_Ch is Very_P) then  
(self_confidence1 is low) (1)                       
If (Temp is ideal) and (Rate_of_Ch is Very_N) then  
(self_confidence1 is low) (1)                       
If (var is Constant) then  
(self_confidence1 is low) (1)                                                
If (Temp is low) and (Rate_of_Ch is Very_P) then  
(self_confidence1 is V_low) (1)                       
If (Temp is low) and (Rate_of_Ch is Very_N) then  
(self_confidence1 is V_low) (1)                       
If (Temp is high) and (Rate_of_Ch is Very_N) then  
(self_confidence1 is V_low) (1)                      
If (Temp is high) and (Rate_of_Ch is Very_P) then  
(self_confidence1 is V_low) (1)                     
If (var is High_Noise) then  
(self_confidence1 is low) (1)                                             
If (var is Constant) then  
(self_confidence1 is low) (1)                                               
 
 
%------------------------------------- 
% Make plots of fis file: 
figure,plotmf(fis,'input',1) 
title('Temperature input MF'); 
figure,plotmf(fis,'input',2) 
title('Rate-of-Change input MF'); 
figure,plotmf(fis,'input',3) 
title('Variance input MF'); 
figure,plotfis(fis) 
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%------------------------------------- 
%------------------------------------- 
diary off 



 70

A.2 Self-Validation Code Documents 

A.2.1 Theoretical Timing Analysis Spreadsheet (Sugeno) 

 

                                 TIMING CALCULATIONS FOR EXEC.C (Sugeno)

COMMENT
Naming Convention: The first alphabet in the block names denote the block type.
             C denotes Conditional block
             S denotes Straight line block
             I denotes Iteration block
The functions are listed in the order in which they appear in exec.c.
NOTE: fisPrintVariables is not included here as it dosen't include any computations.
FUNCTION NAME : fisTrapezoidMf

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock cycles Weighted Clockcycles
Col1 Col2 Col3 Col 1*2*3

S1 1 1 1 10 10
C1 1 1 1 13 13
C2 1 1 1 13 13
C3 1 1 1 13 13
C4  1/3 0.33 1 6 1.98
C5  1/3 0.33 1 6 1.98
C6  1/3 0.33 1 57 18.81
C7  1/3 0.33 1 6 1.98
C8  1/3 0.33 1 6 1.98
C9  1/3 0.33 1 55 18.15
P1 1 1 1 27 27

Grand Total: 120.88

# of times the function is called = 7

FUNCTION NAME: fisArrayOperation

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S2 1 1 1 3 3
I1 1 1 3 43 129
I1_P1 1 1 1 41

Grand Total: 132

# of times the function is called = 1

FUNCTION NAME: fisComputeInputMfValue

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I14 1 1 (1+1+1) 3 1714.05 1714.05
I14_I15 1 1 (3+ 2+ 2) 7 231.88 1522.05
I14_I15_P5 1 1 1 1 169.88

Grand Total: 1714.05

# of times the function is called = 1

FUNCTION NAME: fisComputeTskRuleOutput

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I16 1 1 1 146 146
I16_I17 1 1 4 36 144
I16_I17_S8 1 1 1 34

Grand Total: 146
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# of times the function is called = 1

FUNCTION:fisComputeFiring Strength

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

I19 1 1 16 11820
I19_C18  1/2 0.5 1 205 201.375
I19_C18_I20  1/2 0.5 3 193 289.5
I19_C18_I20_S9  1/2 0.5 1 10 5
I19_C18_I20_C19  1/2 * 1/3 0.165 1 23 3.795
I19_C18_I20_C20  1/2 * 1/3 0.165 1 10 1.65
I19_C18_I20_C21  1/2 * 1/3 0.165 1 17 2.805
I19_C18_I20_S10  1/2 0.5 1 16 8
I19_C18_P6  1/2 0.5 1 160 80
I19_C22  1/2 0.5 1 205 537.375
I19_C22_I20  1/2 0.5 3 193 289.5
I19_C22_I20_S11  1/2 0.5 1 10 5
I19_C22_I20_C23  1/2*1/3 0.165 1 23 3.795
I19_C22_I20_C24  1/2*1/3 0.165 1 10 1.65
I19_C22_I20_C25  1/2*1/3 0.165 1 17 2.805
I19_C22_I20_S12  1/2 0.5 1 16 8
I19_C22_P7  1/2 0.5 1 160 80
I19_S13 1 1 16 21 336
I21 1 1 16 70 1120

Grand Total: 12940

# of times the function is called = 1

FUNCTION:fisEvaluate

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S15 1 1 1 1 1
P11 1 1 1 1731.05 1731.05
P12 1 1 1 1872.75 12954
S16 1 1 1 1 1
I30 1 1 16 46 736
I30_P13 1 1 1 44 44
C30  1/2 0.5 1 17 8.5
C30_I32 1 1 1 15 15
C32 1 1 1 351 351
C32_P14 1 1 1 26 163
C32_I33 1 1 1 170 1792
C32_I33_I34 1 1 16 50 800
C32_I33_I34_C33  1/2 0.5 1 7 3.5
C32_I33_I34_C34  1/2 0.5 1 29 14.5
C32_I33_S18 1 1 1 3 3
C32_I33_I34 1 1 16 48 768
C32_I33_C33 1 1 1 33 33
C32_I33_C34 0 0 0 0 0
C33 0 0
C33_I35_P15 0 0
C33_I35_P16 0 0
C34 0 0

Grand Total: 15782.55
# of times the function is called = 1

Setup functions called by exec.c

FUNCTION: fisMin

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3



 72

 S17 1 1 1 19 19
Grand Total: 19

# of times the function is called = 3

FUNCTION: fisMax

BLOCK NAME PROBABILTY WEIGHT # OF ITERATIONS Clock Cycles Weighted Clockcycles
Col 1*2*3

S17 1 1 1 19 19
Grand Total: 19

# of times the function is called = 3

 

A.2.2 Preprocessed Output File (sv4_pp.txt) 

 
779.412  0.000   0.000 
779.412  0.000   0.000 
779.412  0.000   0.000 
779.412  0.000   1.730 
779.412  0.000  13.149 
776.471 -0.051  17.647 
771.765 -0.071  23.875 
769.412 -0.039  26.990 
765.882 -0.060  22.145 
761.176 -0.076  25.260 
759.412 -0.028  34.602 
755.294 -0.067  32.180 
748.823 -0.115  31.834 
747.059 -0.025  15.917 
747.059  0.000  10.727 
744.118 -0.046  28.374 
740.588 -0.057  43.253 
733.529 -0.119  35.986 
731.176 -0.037  29.066 
730.000 -0.021  40.138 
724.118 -0.094  50.173 
717.647 -0.110  62.976 
712.941 -0.071  40.138 
709.412 -0.060  40.138 
706.471 -0.046  61.592 
698.823 -0.133  57.785 
692.353 -0.101  62.630 
690.000 -0.039  41.176 
684.118 -0.101  27.336 
680.588 -0.055  24.913 
679.412 -0.018   7.266 
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679.412  0.000   3.460 
679.412  0.000   4.498 
681.176  0.028  14.187 
681.765  0.009  35.640 
687.059  0.083  51.211 
693.529  0.115  60.554 
699.412  0.094  67.474 
702.941  0.055  76.817 
711.176  0.145  83.045 
717.647  0.101  90.311 
724.118  0.115  79.239 
730.000  0.094  76.125 
736.471  0.101  112.111 
742.353  0.101  143.253 
754.706  0.211  129.412 
761.765  0.110  101.384 
765.294  0.060  49.135 
770.000  0.074  37.024 
775.294  0.090  27.336 
776.471  0.018   8.997 
776.471  0.000   3.114 
778.235  0.028   2.422 
776.471 -0.030   5.882 
777.059  0.009   5.190 
777.059  0.000   6.228 
774.706 -0.037   6.920 
774.118 -0.009  10.035 
773.529 -0.009  15.225 
768.235 -0.092  14.187 
767.647 -0.009   8.651 
767.059 -0.009   9.689 
764.706 -0.039  20.415 
760.588 -0.064  19.377 
756.471 -0.069  17.993 
755.882 -0.009  16.609 
754.118 -0.030  20.069 
748.235 -0.092  24.567 
746.471 -0.030  23.183 
742.941 -0.055  40.138 
740.000 -0.051  45.329 
730.588 -0.149  61.592 
730.588  0.000  51.211 
722.353 -0.129  43.253 
720.588 -0.030  52.941 
713.529 -0.119  31.142 
710.000 -0.055  47.405 
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709.412 -0.009  59.862 
699.412 -0.159  69.896 
695.882 -0.060  90.657 
688.235 -0.119  65.052 
681.765 -0.110  52.941 
680.588 -0.011  14.187 
680.588  0.000   3.460 
680.588  0.000   5.536 
682.941  0.039  33.218 
684.118  0.018  40.484 
692.941  0.138  41.522 
694.706  0.030  29.758 
698.235  0.055  33.218 
699.412  0.018  90.657 
709.412  0.161  81.661 
717.059  0.131  98.616 
720.588  0.055  95.502 
727.647  0.122  79.931 
737.647  0.159  103.806 
739.412  0.030  125.952 
748.823  0.149  108.304 
759.412  0.184  156.055 
763.529  0.064  136.332 

A.2.3 Self-confidence output file (sv4_outx.txt) 

 
0.501960814 
0.501960814 
0.501960814 
0.501960814 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
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1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
0.501960814 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
0.501960814 
0.501960814 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
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1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
0.501960814 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
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A.3 Hardware Block Diagrams 

The following notes help in understanding the block diagrams. 

 

1. All names that start with a 'B', 'P' are signals that connect with BUS Interface and 

Processor Interface respectively.   

2. 4 block diagrams are used to describe the FPGA H/W. They are listed below 

a. Top level (Top.vsd) 

b. Memory Interface (Memifc.vsd) 

c. Bus Interface (BusIfc.vsd) 

d. Register file (RegFile.vsd) 

3. The Memory Interface depicts the 2 port Interface between RAM and Processor , 

RAM and CPU. 

4. The Bus Interface connects PC/104 Bus to Memory and SP and contains 8 x 16 

Register File. 

5. The Top Level shows the connections between the three modules. 

6. The internal signals that connect the 3 modules, namely PC104 ifc, 2 Port Mem 

Ifc and Signal Processor application, are marked as 1,2 and 3. The signals that 

constitute each of these groups are listed here. 

a. (BMxxx) -> BMAI, MAI, BMDoutI, BMModeI, BMR_n_I, BMW_n_I, 

BMCe_n_I, BMDWeI, and MDinI. 

b. (PBxxx) -> PBA_I, PBD_I, PBR_n_I, PBW_n_I, PBRF_I. 

c. (PMxxx) -> PMA_I, PMDout_I, PMR_n_I, PMW_n_I, PMCe_n_I, and 

PMDWe_I. 
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7. The following equations define the signals used in the Regfile block diagram 

a. RFen=(RF * RFAdReg(2)') 

b. RFtoBus=(RF * BR_n') 

c. RFtoProc=(PBRF * PBR_n') 

d. PBen=(PBRF * PBA(2) * PBW_n') 

8. The following equations define the signals used in the BusIfc block diagram 

a. BMR_n = (BR_n' * BMwrite' * Mem * BMmode)' 

b. BMW_n=(BW_n' * BMwrite * Mem * BMmode)' 

c. BMDWe=(BMwrite * Mem * BMmode) 

d. MDrd=(BR_n' * BMwrite' * Mem * BMmode) 

e. BMce_n=(Mem * BMmode)' 

f. BDout=(BR_n' * BrdSel)  

g. BDin=(BR_n * BrdSel) 
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A.4 FSM Controller ASM Charts 

A.4.1 Self-Validation Controller ASM Charts 
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A.5 Timing Diagrams 

A.5.1 Self-Validation Timing 
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A.6 MSF Hardware Block Diagrams 
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