OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

PDF Version Also Available for Download.

Description

SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were ... continued below

Physical Description

34 pages

Creation Information

White, Dr. Ralph E. March 31, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were obtained using impedance analysis and current-potential plots. The results indicated lower polarization resistance for oxygen reduction reaction in the case of Co-Ni-SS304 when compared to SS304. Also, the conductivity of the corrosion scales was considerably higher in case of Co-Ni-SS304 than the SS304. This study shows that modifying the current collector surface with Co-Ni coatings leads to the formation of oxide scales with improved barrier properties and electronic conductivity.

Physical Description

34 pages

Notes

OSTI as DE00808970

Source

  • Other Information: PBD: 31 Mar 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC26-99FT40714
  • DOI: 10.2172/808970 | External Link
  • Office of Scientific & Technical Information Report Number: 808970
  • Archival Resource Key: ark:/67531/metadc734581

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 31, 2001

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 1:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

White, Dr. Ralph E. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING, report, March 31, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc734581/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.