Prediction of Corrosion of Alloys in Mixed-Solvent Environments

PDF Version Also Available for Download.

Description

Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create ... continued below

Physical Description

vp.

Creation Information

A. Anderko, P. Wang, R. D. Young, D. P. Riemer, P. McKenzie and M. M. Lencka (OLI Systems Inc.) & Laboratory), S. S. Babu and P. Angelini (Oak Ridge National June 5, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte systems; (6) Development of fundamentals of a detailed kinetic model of general corrosion, which includes a detailed treatment of local chemistry changes near the metal/solution interface coupled with transport through a liquid layer and solid phases at the interface; (7) Development of parameters for OLI's kinetic model of general corrosion of common engineering alloys in aqueous systems with a variety of solutes. With this model, the users will be able to predict the effect of various process conditions (such as environment composition, temperature, pressure) on the general corrosion of alloys; (8)Comprehensive review of the fundamentals of the models by an Academic Review Panel, which was performed in conjunction with three annual review meetings; (9)Development and commercial release of the Corrosion Analyzer, a Windows software product that encompasses the thermodynamic model, a facility for generating stability diagrams and the model for predicting the rates of general corrosion of selected alloys in aqueous systems.

Physical Description

vp.

Notes

OSTI as DE00811533

Source

  • Other Information: PBD: 5 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/CH11019
  • Grant Number: FC07-00CH11019
  • Office of Scientific & Technical Information Report Number: 811533
  • Archival Resource Key: ark:/67531/metadc734578

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 5, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • July 25, 2016, 7:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

A. Anderko, P. Wang, R. D. Young, D. P. Riemer, P. McKenzie and M. M. Lencka (OLI Systems Inc.) & Laboratory), S. S. Babu and P. Angelini (Oak Ridge National. Prediction of Corrosion of Alloys in Mixed-Solvent Environments, report, June 5, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc734578/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.