Superconducting drift-tube cavity development for the RIA driver.

PDF Version Also Available for Download.

Description

This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, {beta}{sub GEOM} = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, {beta}{sub GEOM} = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities.

Physical Description

3 pages

Creation Information

Shepard, K. W.; Kelly, M. P. & Fuerst, J. D. September 23, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, {beta}{sub GEOM} = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, {beta}{sub GEOM} = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities.

Physical Description

3 pages

Source

  • 21st International Linear Accelerator Conference (LINAC 2002), Gyeongju (KR), 08/19/2002--08/23/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/PHY/CP-108724
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 801600
  • Archival Resource Key: ark:/67531/metadc734546

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 23, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 23, 2016, 8:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shepard, K. W.; Kelly, M. P. & Fuerst, J. D. Superconducting drift-tube cavity development for the RIA driver., article, September 23, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc734546/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.