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Exclusive annihilation pp̄ → γγ in a generalized parton picture
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Exclusive proton–antiproton annihilation into two photons at large s (∼ 10 GeV2) and |t|, |u| ∼ s
can be described by a generalized parton picture analogous to the “soft mechanism” in wide–angle
real Compton scattering. The two photons are emitted in the annihilation of a single fast quark
and antiquark. The matrix element describing the transition of the pp̄ system to a qq̄ pair can be
related to the timelike proton elastic form factors as well as to the quark/antiquark distributions
measured in inclusive deep–inelastic scattering. The reaction could be studied with the proposed
1.5 − 15 GeV high–luminosity antiproton storage ring (HESR) at GSI.

Compton scattering — both real and virtual — is one
of the main sources of information on the structure of the
nucleon. In particular, inclusive deep–inelastic scattering
can be viewed as a measurement of the imaginary part
of the forward virtual Compton amplitude, parametrized
by the quark and antiquark distributions in the nucleon.
More recently, exclusive processes have been considered,
which can be described in terms of generalized parton
distributions, namely deeply–virtual (DVCS) and wide–
angle real (WACS) Compton scattering. It has been ar-
gued that at values of s ∼ few GeV2 and |t|, |u| ∼ s
WACS is dominated by the “soft mechanism” [1, 2]. The
Compton scattering occurs off a single quark or antiquark
in the nucleon. Its emission and absorption by the nu-
cleon is described by double distributions which can be
related to the usual quark/antiquark distributions as well
as to the elastic form factors of the nucleon [1]. This
approach describes well the existing data [3], including
the spin asymmetry of the cross section measured re-
cently in the JLAB Hall A experiment [4]. The hard
scattering mechanism, in which the struck quark rescat-
ters via gluon exchanges of virtuality∼ t, is relevant only
at asymptotically large s and t and cannot account for
the measured cross section at JLAB energies [1].

The proposed high–luminosity 1.5−15 GeV antiproton
storage ring (HESR) at GSI [5] would offer an opportu-
nity to study the Compton process in the crossed channel,
namely exclusive proton–antiproton annihilation into two
photons, pp̄→ γγ. In this letter we argue that this pro-
cess at large s and |t|, |u| ∼ s can also be described in
a generalized parton picture. The two photons are pre-
dominantly emitted in the annihilation of a single “fast”
quark and antiquark originating from the proton and an-
tiproton. The new double distributions, describing the
transition of the pp̄ system to a qq̄ pair, can be related to
the timelike nucleon form factors; by crossing symmetry
they are also connected with the usual quark/antiquark
distributions in the nucleon. A similar approach based on
light–cone wave functions has been used for the processes
γγ → ππ [6] and γγ → BB̄ [7]. Exclusive pp̄ annihilation
was also studied in the diquark model [8].

The annihilation process p(p1) + p̄(p2)→ γ(q1) +γ(q2)
is characterized by the invariants s = 2(p1p2) > 0 (we
neglect the proton mass), t = −s sin2(θ/2) < 0, and
u = −s cos2(θ/2) < 0, where θ is the scattering an-
gle in the center–of–mass frame. We consider the region
where s is much larger than typical light hadron masses,
s ∼ 10 GeV2, and |t|, |u| ∼ s, which requires that θ be
sufficiently far from 0 and π (wide–angle scattering).PSfrag replacements

s

p1

p2

k1

k2

q1

q2

+ crossed

FIG. 1: The “handbag” contribution to pp̄ → γγ annihilation.

In QED, the annihilation process e+e− → γγ in-
volves the t (or u) channel exchange of a virtual elec-
tron/positron with spacelike four–momentum. In pp̄ →
γγ annihilation in QCD, the exchanged system contains
at least three quarks. At large momentum transfer such
an exchange is strongly suppressed by the nucleon wave
functions. In this situation, the most efficient way of ac-
complishing a large momentum transfer is the “handbag”
diagram, Fig. 1. The amplitude consists of two parts. In
the first part, the proton–antiproton system converts to
a quark–antiquark pair by exchanging a virtual qq (“di-
quark”) system. The nucleon wave functions restrict the
spacelike virtuality of this system to values of the order
of a hadronic scale, λ2, related to the size of the nucleon.
In the second part, the quark–antiquark pair annihilates
via exchange of a highly virtual quark/antiquark, much
like in QED e+e− → γγ annihilation. Neglecting trans-
verse momenta, we expand the momenta of the quark
and antiquark as

k1 = (1− x1)p1 + x2p2, (1)

k2 = x1p1 + (1− x2)p2. (2)

The variables x1 and x2 obey the “partonic” limits 0 <
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x1,2 < 1. The spacelike virtuality of the exchanged “di-
quark” system is −x1x2s. The restriction |x1x2s| < λ2

implies that for s� λ2 the value of either x1 or x2 must
be small, of the order λ2/s. This means that either the
annihilating quark or the antiquark are “fast”, carrying
the major part (∼ 1) of the proton or antiproton mo-
mentum. This in turn implies that the spacelike virtuali-
ties of the quark propagators connecting the photon ver-
tices in the graphs of Fig. 1, [−x1x2s + (1− x1 − x2)t] for
the direct and [−x1x2s + (1− x1 − x2)u] for the crossed
graph, are large in the kinematics of wide–angle scatter-
ing, |t|, |u| ∼ s. Thus, the parton picture of pp̄→ γγ ex-
clusive annihilation emerging from the “handbag” graph
is self-consistent. The inclusion of transverse momenta
would change this picture only quantitatively.

The so-called hard scattering mechanism would require
the rescattering of the active partons through gluon ex-
changes of virtuality t. In the case of WACS such contri-
butions, which are theoretically dominant in the asymp-
totic region |t| → ∞, are negligible compared to the sub-
asymptotic “handbag” contribution at all experimentally
relevant values (t ∼ few GeV2), the main reason being
that the hard contributions are numerically suppressed
by a factor of (αs/π)2 ≈ 1/100, see Ref. [1]. The same
can be expected for the annihilation channel.

The crucial ingredient in the calculation of the
hadronic amplitude is the matrix element describing the
amplitude for the conversion of the pp̄ system to a qq̄
pair. Following the treatment of WACS, we parametrize
this matrix element by “double distributions” [1, 9, 10],
in which the quark and antiquark momenta are mea-
sured in terms of the proton and antiproton momenta
in a symmetric fashion, using the average and difference,
p = (p1 + p2)/2 and r = p1 − p2:

k1 = (1 + α)p+ xr/2, (3)

k2 = (1− α)p− xr/2. (4)

The new variables x and α are related to the old ones
by x = 1 − x1 − x2, α = x2 − x1. We parametrize the
annihilation–type matrix elements of the quark bilinear
vector operators as (a denotes the quark flavor)

〈0| ψ̄a(−z/2)γσψa(z/2) |p1, λ1; p2λ2〉

= v̄γσu

∫ ∫

|x|+|α|<1

dx dα Fa(x, α; s) e−iα(pz)−ix(rz)/2

+ . . . . (5)

The matrix element of the axial vector operator (γσγ5)
is parametrized similarly with a double distribution
Ga(x, α; s). Here z is a light–like distance, and u ≡
u(p1, λ1) and v̄ ≡ v̄(p2, λ2) are the proton and antipro-
ton spinors. The double distribution Fa depends on the
spectral parameters x and α, as well as on s. Not shown
in Eq.(5) for brevity are components of the matrix ele-
ment of the type εσαβγ v̄γγγ5u, which play a role in main-

taining electromagnetic gauge invariance of the “hand-
bag” amplitude, similar to the kinematical twist–3 terms
in deeply–virtual Compton scattering [11]. For simplic-
ity we neglect components of the matrix element corre-
sponding to the Pauli and pseudoscalar form factors; they
should be included in a more complete treatment.

The new double distributions are related to the time-
like elastic form factors of the proton by

∑

a

ea

∫ ∫

|x|+|α|<1

dx dα Fa(x, α; s) = F1(s), (6)

where F1(s) is the Dirac vector form factor. A similar
relation holds for the function Ga(x, α; s) and the axial
form factor. Furthermore, in the limit s→ 0 one can use
crossing symmetry to relate the annihilation–type matrix
element (5) to the corresponding scattering–type matrix
element at t = 0, parametrized by the usual double dis-
tributions of WACS. In particular, this implies

1−|x|∫

−1+|x|

dα Fa(x, α; s = 0) = fa(x), (7)

where fa(x) is the usual unpolarized parton density in
the proton; in conventional notation fa(x) = θ(x)qa(x)−
θ(−x)q̄a(−x). In a similar way the double distribution
Ga(x, α; s) reduces to the polarized parton density.

To construct an explicit model for the double distribu-
tions we make the ansatz

Fa(x, α; s) = fa(x) ha(x, α) Sa(x, α; s). (8)

In the parton density, fa(x), we take into account only
the valence quark contribution, i.e., we assume it to be of
the form fa(x) = θ(x) qa(x); sea quarks could readily be
included. The factor ha(x, α) is a profile function, whose
integral over α from −1 + |x| to 1 − |x| is normalized to
unity, cf. Eq.(7). Finally, Sa(x, α; s) is a cutoff function
accounting for the s–dependence of the double distribu-
tion, defined such that Sa(x, α; s = 0) = 1. We model it
as (assuming x > 0)

Sa(x, α; s) = exp

{
− [(1− x)2 − α2]s

4x(1− x)λ2
a

}
, (9)

or, in terms of the original variables x1 and x2,

exp

[
− x1x2s

(x1 + x2)(1− x1 − x2)λ2
a

]
. (10)

Here λ2
a is a parameter of dimension mass squared. This

cutoff suppresses contributions in which the absolute
value of the virtuality of the exchanged “diquark” sys-
tem, |x1x2s|, is large, and also configurations in which
x1 + x2 tends to 1 (x tends to zero). For the double
distributions parametrizing scattering–type matrix ele-
ments in WACS, this cutoff function can be thought of
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as the result of an overlap integral of light–cone wave
functions [1, 2]. Such an interpretation is not possible in
the annihilation channel. Here, the cutoff function should
simply be regarded as an effective manner to restrict the
virtuality of the exchanged “spectator” system.

For an estimate of the pp̄→ γγ amplitude we use the
GRV94 LO parametrization of the valence quark den-
sities at a normalization scale of 1 GeV2 [12]. We ne-
glect small contributions from strange quarks. The pro-
file function we take to be of the form ha(x, α) = δ(α);
extended profiles have been suggested in Refs.[9, 10].
For simplicity we choose the cutoff function Sa(x, α; s)
to be the same for both u and d flavors. The parame-
ter λ2 ≡ λ2

u = λ2
d we determine by fitting the integral

over the model double distribution [see Eq.(6)] to the
data for the proton vector form factor. Fitting to the
form factor data in the spacelike domain [13] we obtain
λ2 = 0.7 GeV2. For large s the real part of the time-
like form factor is approximately two times as large as
that of the spacelike form factor for corresponding large
t, see Ref.[14] for a discussion. In order to account for
this effect we multiply the timelike form factors entering
the double distribution ansatz by a factor of 2. We stress
that this should be regarded as a purely phenomenolog-
ical improvement. The axial vector double distribution
Ga(x, α; s) is modeled analogously, using the GRSV95
LO parametrization for the polarized valence quark den-
sities [15]. For simplicity we use here the same cutoff
function as in the vector double distribution Fa(x, α; s).

With our model for the double distributions we can
compute the pp̄ → γγ amplitude from the “handbag”
graphs of Fig. 1. As the process is dominated by con-
figurations with small x1 and x2 (“fast” quark and an-
tiquark), we can simplify the qq̄ → γγ amplitude by ne-
glecting contributions of order x1x2; keeping them would
result in λ2/s–suppressed contributions to the pp̄ → γγ
amplitude which are beyond the accuracy of our approxi-
mation. In this way the annihilating quark and antiquark
are effectively put on mass shell, which makes it straight-
forward to maintain transversality of the amplitude (e.m.
gauge invariance). The result for the helicity–averaged
differential cross section is

dσ

d cos θ
=

2πα2
em

s

R2
V (s) cos2 θ +R2

A(s)

sin2 θ
. (11)

The information about the structure of the proton is con-
tained in generalized form factors

RV (s) ≡
∑

a

e2
a

∫ ∫

|x|+|α|<1

dx dα
Fa(x, α; s)

x
, (12)

and RA(s) defined by the corresponding integral over
the double distribution Ga(x, α; s). For RV ≡ RA ≡ 1
Eq.(11) would reduce to the Klein–Nishina formula for
the e+e− → γγ cross section in QED. Note that our par-
ton picture is applicable only to wide–angle scattering, so
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FIG. 2: The squared form factors R2
V (s) (solid line) and

R2
A(s) (dashed line), as calculated from the double distribu-

tion model, cf. Eq.(12).

the divergence of the expression in Eq.(11) in the limit
θ → 0 or π should be regarded as unphysical.

Eq.(11) shows that the contribution of the vector oper-
ator to the annihilation cross section, RV , is suppressed
at large scattering angle relative to that of the axial vec-
tor operator, RA, by a factor of cos2 θ. This is differ-
ent from WACS, where the contribution from the axial–
vector form factor is suppressed [1].

Compared to the elastic form factor, Eq.(6), the inte-
grand in Eq.(12) contains an additional factor 1/x, which
is the “remnant” of the quark propagator in the qq̄→ γγ
amplitude. Note that the integral nevertheless converges
at small x, as the cutoff function Sa(x, α; s) forces the
double distribution to vanish for x → 0, cf. Eqs.(8) and
(9). More generally, the properties of the double distri-
butions ensure that the integrals are dominated by large
values of x. The numerical results for the squared form
factors RV (s) and RA(s) are shown in Fig. 2.

The results for the form factors RV (s) and RA(s) turn
out to be insensitive to the precise value of the normaliza-
tion scale of the parton densities in the double distribu-
tion model, Eq.(8). This happens due to the correlation
of the λ parameter in the cutoff function with the nor-
malization scale of the parton densities [16]. Changing
the normalization scale one must change λ such as to re-
fit the form factor data, and the two changes compensate
each other in the integral Eq.(12). This fact is important
for the consistency of our approach.

In our simple model the timelike double distributions
are described by real functions. As a result, the pp̄→ γγ
amplitude is also real (the virtuality of the quark propa-
gators in the “handbag” graphs of Fig. 1 is always space-
like). A more refined treatment should include also the
“intrinsic” imaginary part of the double distributions,
which is related to the imaginary part of the timelike
proton form factor by Eq.(6).
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FIG. 3: The pp̄ → γγ cross section integrated over the range
45◦ < θ < 135◦, as a function of s.

It is interesting to estimate the counting rate for pp̄→
γγ annihilation expected for the proposed 1.5− 15 GeV
antiproton storage ring (HESR) at GSI [5]. With a
solid target the luminosity could be as high as L =
2 × 1032 cm−2 s−1. Since our parton picture applies
only in the kinematical region where |t|, |u| ∼ s, we in-
tegrate the differential cross section (11) over a range
δ < θ < π− δ, with δ > 0, excluding small scattering an-
gles. For s = 10 GeV2, a range of 45◦ < θ < 135◦ corre-
sponds to |t|, |u|> 1.5 GeV2, which seems to be a reason-
able boundary in view of the experience with wide–angle
Compton scattering [1]. The cross section integrated over
this fixed angular range (divided by 2 to account for the
identical particles in the final state) is shown in Fig. 3 as
a function of s. At s = 10 GeV2 our model predicts an
integrated cross section of 0.25× 10−9 fm2, correspond-
ing to a counting rate of 0.5× 10−3sec−1, that is O(103)
events per month. The process should thus be measur-
able with reasonable statistics.

To summarize, we have outlined a generalized parton
picture of exclusive pp̄ → γγ annihilation, based on the
“handbag” graph and certain assumptions about the soft
matrix element describing the conversion of the pp̄ sys-
tem to a qq̄ pair. The approximations made in the present
treatment can be refined in many ways, most notably by
including other components of the soft matrix element

(Pauli and pseudoscalar form factor), and transverse mo-
menta of the partons. Also, the picture proposed here
can be applied to polarization observables, as well as to
baryon–antibaryon production in γγ reactions.
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