Abstract

The proposed 1-MW spallation neutron source upgrade calls for a 2-GeV rapidly-cycling synchrotron (RCS) with an intensity of 1.04x10^{14} protons per pulse [1]. The potential exists for the excitation of collective, intensity-dependent transverse instabilities. These can normally be controlled by introducing a betatron tune shift or spread, where care is exercised to avoid single-particle resonance effects. Adjusting the chromaticity using sextupoles to vary the head-to-tail phase shift is compared to introducing Landau damping by octupoles. An option for a feedback system is also examined. The momentum spread used for the transverse analysis was obtained from the requirements for longitudinal stability [2].

I. INTRODUCTION

The head-tail effect has been observed at other low energy, rapidly-cycling synchrotrons: the 500-MeV IPNS [3], KEK Booster [4], and ISIS [5]. Therefore, it is analyzed in some detail for the IPNS Upgrade. An estimation of the coupling impedance, which characterizes the interaction between the beam and its surroundings, is given first. The head-tail instability, driven by the resistive wall and kicker impedance, is discussed next using Sacherer's bunched beam formalism [6]. Further discussion of damping transverse instabilities considers the coating beam stability criterion. The requirements for stability are dominated by the impedance due to space charge effects. It is found that passive means, which include minimizing the coupling impedance and introducing a tune shift or spread, are sufficient to ensure stability. Finally, the requirements for an active feedback kicker are given as an option.

II. COUPLING IMPEDANCE ESTIMATION

The transverse coupling impedance is estimated by using the standard approximations [7]. The impedance is dominated by space charge effects. The rf shield, extraction kickers, and the beam position monitors (BPMs) also contribute to the impedance. The kickers are traveling-wave structures with a characteristic impedance of 3.28 Ω. The impedance due to other components, such as vacuum ports and bellows, is expected to be negligible because these are isolated from the beam by the rf shield. The contribution to the transverse impedance due to the rf cavity higher-order modes was found by URMEL-T calculations to be negligible. The coupling impedance of interest for instability analysis corresponds to the frequencies \(\omega = (p + v)\omega_0 \), or about 1 MHz for the RCS, where \(p \) is a negative integer near \(v \), the horizontal or vertical tune. The results are summarized in Table 1 and correspond to injection energy (400 MeV), unless otherwise noted. The space charge impedance is purely capacitive, while the others are inductive and include a resistive term.

III. HEAD-TAIL INSTABILITY

In the absence of a tune spread, the growth rate for the head-tail instability, assuming a time dependence of \(\exp(j\Omega_mt) \), is given by the imaginary part of [6]

\[
\Omega_m = \frac{j}{1 + m} \frac{c I Z_1'(\omega_p)}{4\pi v\nu(E/e)} F_m^r, \\
\text{where } F_m^r = \frac{1}{B} \sum_p h_m(\omega_p - \omega_\xi) \\
\text{is a form factor and } m \text{ is a mode number denoting the number of nodes along the bunch. This expression assumes that the instability is dominated by the contribution from the impedance at a single frequency, } \omega_p = (p + v)\omega_0. \text{ The total growth involves a convolution of this impedance with the envelope (form factor) of the bunch spectra, } h_m, \text{ which are }
\]

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Re((Z_1)) (kΩ/m)</th>
<th>Im((Z_1)) (kΩ/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space charge (injection)</td>
<td>-</td>
<td>-2800</td>
</tr>
<tr>
<td>Space charge (extraction)</td>
<td>-</td>
<td>-1500</td>
</tr>
<tr>
<td>Rf shield</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Extraction kickers</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>BPMs</td>
<td>0.003</td>
<td>110</td>
</tr>
</tbody>
</table>

To minimize the impedance due to space charge, the vacuum chamber is constructed with a special rf shield, similar in principle to that used at ISIS [1,2]. The shield consists of a Be-Cu wire cage which follows the beam envelope. The space charge impedance is calculated using the standard assumption of a uniform, round, unbunched beam of radius \(a \) in a vacuum chamber of radius \(b \). The geometrical factor is given by \(g_a = \frac{1}{a^2} - 1 \). Compared to a fixed-radius rf shield, this contour-following scheme reduces the transverse space charge impedance by 35% at injection and 10% at extraction.

A number of corrections to the geometrical factor have been proposed to account for the wires and the more realistic elliptical beam cross section. The electrostatic fields due to a uniform beam propagating inside a round rf-screening wire cage have been derived by T. Wang [8]. A second correction, derived by H. Okamoto, takes into account the varying elliptical shape of beam in a smooth, metallized vacuum chamber without wires and with a fixed radius [9]. Wang's method results in a +15% correction in the transverse impedance and Okamoto's method results in a -20% correction [10]. Until a rigorous derivation is performed for a contour-following wire rf shield, the above corrections are treated as an uncertainty.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
shifted by the chromatic frequency, \(\omega_\xi = (\xi/\eta) \omega_0 \). The chromaticity is \(\xi = (\Delta v/v)/(\Delta p/p) \) and \(B \) is the ratio of bunch length to ring circumference.

For the RCS at 400 MeV, the form factor for \(m = 0 \) has a half-width of about 2 MHz, and the form factor for \(m = 1 \) peaks around 1 MHz. The chromaticity is normally corrected to zero in order to avoid a large betatron tune spread in the large-momentum particles. When the chromaticity is zero, the bunch spectra are centered at zero frequency, where the rf shield and kicker impedances are important.

In the vertical plane, the largest instability growth due to the rf shield and kicker impedances occur when \(p = -6 \) and \(-7 \), respectively. Figure 1 shows the impedances and the frequency, \(\omega_\xi \), for the two values of \(p \). The BPM impedance does not contribute significantly to the growth. The growth rates of the first few head-tail modes are given in Table 2 for the corrected and natural chromaticities at the end of injection. The impedance and the frequency giving the largest growth are also listed. Similar results are found for the horizontal plane.

\[
(\Delta v)_{\text{thresh}} = \frac{c I_{\text{pk}} |Z_\perp|}{4\pi \nu_0 (E/e)}.
\]

Since the impedance is dominated by space charge effects, this expression is equivalent to the coherent Laslett tune shift (due to image charges only.) For the RCS, the expected growth rates (Table 2) are of the order of the synchrotron frequency, \(\omega_s \); therefore, we use the peak current, \(I_{\text{pk}} \), to be conservative.

The results for the threshold tune spread are presented in Table 3 for the vertical plane at 400 MeV and 2 GeV. The impedance is taken from Table 1.

Table 3: Threshold tune spread according to the coasting beam stability criterion

<table>
<thead>
<tr>
<th>time in cycle (ms)</th>
<th>(\text{Im} Z_\perp) (M(\Omega)/m)</th>
<th>((\Delta v)_{\text{thresh}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.7</td>
<td>0.06</td>
</tr>
<tr>
<td>25</td>
<td>1.4</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The threshold tune spread can be met using the chromatic contribution and/or the octupolar contribution. Our strategy requires that each term satisfy the stability criterion independently, if possible.

First, we consider a solution using the chromatic term only, where \(\Delta v_\xi = (p - v) \eta + v_\xi (\Delta p/p) \). Using the condition \(\Delta v_\xi \geq (\Delta v)_{\text{thresh}} \) and the natural chromaticity, with \(p = 6 \) (vertical plane), the required momentum spread becomes:

\[
\frac{\Delta p}{p} \geq \begin{cases}
0.8 & \text{400 MeV} \\
0.6 & \text{2 GeV}
\end{cases}
\]

This is to be compared to a \(\Delta p/p \) of about 1% obtained from the longitudinal tracking study. Conversely, using the \(\Delta p/p \) from the tracking, the required chromaticity becomes:

\[
\frac{\Delta \nu_\xi}{\nu_0} = \begin{cases}
0.8 & \text{400 MeV} \\
0.6 & \text{2 GeV}
\end{cases}
\]
Next, we consider a solution using octupoles only with the chromaticity corrected to zero. The required octupole tune spread is \(\Delta v_{\text{oct}} \geq \Delta v_{\text{thresh}} \), where \(\Delta v_{\text{oct}} = (\beta_y a_y^2 / 32 \pi) k_{\text{oct}} \), and \(k_{\text{oct}} = (B''/Bp) \) is the octupole strength. Using a beta-function, \(\beta_y \), of 12 m and beam size, \(a_y \), of 0.07 m at 400 MeV and 0.04 m at 2 GeV, the integrated octupole strength per super-period (=4) required for stability is given by

\[
k_{\text{oct}} \geq \begin{cases}
24 \text{ m}^{-3} & \text{400 MeV} \\
44 \text{ m}^{-3} & \text{2 GeV}
\end{cases}
\]

This assumes that the octupoles are located at each defocusing quadrupole (QD). The approximate limiting value of the octupole strength at injection is shown in a plot of the dynamic aperture in Figure 2. The dynamic aperture with full-strength sextupoles and no octupoles is also shown.

![Dynamic Aperture at QF](image)

Figure 2: Dynamic aperture at a focusing quadrupole (QF).

V. BEAM FEEDBACK SYSTEM

Active beam feedback is an option to suppress or damp the head-tail instability. A typical feedback system consists of a beam position detector, processing electronics and a delay unit, a power amplifier, and a deflection kicker. Other considerations for the system include noise sensitivity and maintaining synchronicity with the rapidly-varying revolution frequency. Only the kicker strength is analyzed. The parameters of the feedback system have not been optimized, nor have space limitations been studied.

Assuming an instability rise time of 1 msec and a revolution period of 1 ps, the instability amplitude growth is

\[
\Delta x / x_0 = \tau_{\text{rev}} / \tau_{\text{growth}} = 10^{-3}
\]

where \(x_0 \) is the minimum detected beam deviation, assumed to be 0.5 mm. The electric field, \(E_k \), for the kicker can be written as:

\[
E_k \geq 10^{-3} \frac{x_0}{\beta_y} \frac{2B^2 (E_B/e)}{l}
\]

where \(E_B \) is the beam energy and \(l \) is the length of the kicker. This gives 230 V/m for a 0.5 m kicker length at 400 MeV, and 950 V/m at 2 GeV, using the average value \(\beta_y = 6 \text{ m} \). It is customary in practice to allow a factor of 5 to 10 increase in the electric field.

VI. SUMMARY

An analysis of transverse instabilities in the RCS for the IPNS Upgrade is performed, including an estimation of the coupling impedance. The results show that stability is achievable through a choice of the chromaticity between the natural value and zero or through the addition of octupoles. Beam feedback is also an option. It has long been observed in other low-energy accelerators that the current required in the correction octupoles is found to be less than that predicted by the theory [4,11]. In other studies, the head-to-tail phase shift and form factors observed are not consistent with the theory [5]. Further refinement of the theory for bunched beams is required.

The authors would like to thank E. Crosbie for the dynamic aperture calculation and figure.

REFERENCES