Pixel multichip module design for a high energy physics experiment

PDF Version Also Available for Download.

Description

At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

Physical Description

5 pages

Creation Information

al., Guilherme Cardoso et November 5, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

Physical Description

5 pages

Source

  • IEEE 2003 Nuclear Science Symposium, Portland, OR (US), 10/19/2003--10/24/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-03/360-E
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 817008
  • Archival Resource Key: ark:/67531/metadc734379

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 5, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 1, 2016, 5:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

al., Guilherme Cardoso et. Pixel multichip module design for a high energy physics experiment, article, November 5, 2003; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc734379/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.