Report on the research conducted under the funding of the Sloan foundation postdoctoral fellowship in Computational Molecular Biology [Systematic study of protein-protein complexes] Final report

PDF Version Also Available for Download.

Description

A central question in molecular biology is what structural features are common at protein-protein interfaces and what energetic factors define the affinity and specificity of protein-protein association. Analysis of structural and mutational data on protein-protein interfaces revealed that protein-protein interfaces of different functional classes contain many more energetically important charged and polar residues than was previously thought. Since, in the context of protein folding studies, polar interactions are believed to destabilize the folded proteins, this observation raised the question as to the forces that determine the stability of protein complexes. To investigate this issue in detail, the authors developed a ... continued below

Physical Description

Medium: P; Size: 3 Pages

Creation Information

Sheinerman, Felix June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A central question in molecular biology is what structural features are common at protein-protein interfaces and what energetic factors define the affinity and specificity of protein-protein association. Analysis of structural and mutational data on protein-protein interfaces revealed that protein-protein interfaces of different functional classes contain many more energetically important charged and polar residues than was previously thought. Since, in the context of protein folding studies, polar interactions are believed to destabilize the folded proteins, this observation raised the question as to the forces that determine the stability of protein complexes. To investigate this issue in detail, the authors developed a number of partitioning schemes that allowed them to investigate the role of selected residues, ion pairs, and networks of polar interactions in protein-protein association. The methods developed were applied to the analysis of four different protein-protein interfaces: the ribonuclease barnase and its inhibitor barstar, the human growth hormone and its receptor, subtype N9 influenze virus neuraminidase and NC41 antibody, and the Ras Binding Domain of kinase cRaf and a Ras homologue Rap1A. The calculations revealed a surprising variability in how polar interactions affect the stability of different complexes. The finding that positions of charged and polar residues on protein-protein interfaces are optimized with respect to electrostatic interactions suggests that this property can be employed for the discrimination between native conformations and trial complexes generated by a docking algorithm. Analysis indicated the presence of SH2 domains in Janus family of non-receptor protein tyrosine kinases.

Physical Description

Medium: P; Size: 3 Pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG02-98ER62658
  • DOI: 10.2172/810580 | External Link
  • Office of Scientific & Technical Information Report Number: 810580
  • Archival Resource Key: ark:/67531/metadc734374

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Nov. 4, 2015, 2:35 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 23

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sheinerman, Felix. Report on the research conducted under the funding of the Sloan foundation postdoctoral fellowship in Computational Molecular Biology [Systematic study of protein-protein complexes] Final report, report, June 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc734374/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.