Fireside corrosion of alloys for combustion power plants.

PDF Version Also Available for Download.

Description

A program on fireside corrosion is being conducted at Argonne National Laboratory to evaluate the performance of several structural alloys in the presence of mixtures of synthetic coal ash, alkali sulfates, and alkali chlorides. Candidate alloys are also exposed in a small-scale coal-fired combustor at the National Energy Technology Laboratory in Pittsburgh. Experiments in the present program, which addresses the effects of deposit chemistry, temperature, and alloy chemistry on the corrosion response of alloys, were conducted at temperatures in the range of 575-800 C for time periods up to {approx}1850 h. Alloys selected for the study included HR3C, 310TaN, HR120, ... continued below

Physical Description

vp.

Creation Information

Natesan, K.; Purohit, A. & Rink, D. L. June 11, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A program on fireside corrosion is being conducted at Argonne National Laboratory to evaluate the performance of several structural alloys in the presence of mixtures of synthetic coal ash, alkali sulfates, and alkali chlorides. Candidate alloys are also exposed in a small-scale coal-fired combustor at the National Energy Technology Laboratory in Pittsburgh. Experiments in the present program, which addresses the effects of deposit chemistry, temperature, and alloy chemistry on the corrosion response of alloys, were conducted at temperatures in the range of 575-800 C for time periods up to {approx}1850 h. Alloys selected for the study included HR3C, 310TaN, HR120, SAVE 25, NF709, modified 800, 347HFG, and HCM12A. In addition, 800H clad with Alloy 671 was included in several of the exposures. Data were obtained on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, mechanical integrity, and cracking of scales. Results showed that relationship of corrosion rates to temperature followed a bell-shaped curve, with peak rates at {approx}725 C, but the rate itself was dependent on the alloy chemistry. Several alloys showed acceptable rates in the sulfate-containing coal-ash environment; but NaCl in the deposit led to catastrophic corrosion at 650 and 800 C.

Physical Description

vp.

Source

  • 16th Annual Conference on Fossil Energy Materials, Baltimore, MD (US), 04/22/2002--04/24/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-107914
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 797898
  • Archival Resource Key: ark:/67531/metadc734346

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 11, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 24, 2016, 9:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Natesan, K.; Purohit, A. & Rink, D. L. Fireside corrosion of alloys for combustion power plants., article, June 11, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc734346/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.