DC Scanning Field Emission Microscope Integrated with Existing Scanning Electron Microscope

PDF Version Also Available for Download.

Description

Electron field emission (FE) from broad-area metal surfaces is known to occur at much lower electric field than predicted by Fowler-Nordheim law. Although micron or submicron particles are often observed at such enhanced field emission (EFE) sites, the strength and number of emitting sites and the causes of EFE strongly depend on surface preparation and handling, and the physical mechanism of EFE remains unknown. To systematically investigate the sources of this emission, a DC scanning field emission microscope (SFEM) has been built as an extension to an existing commercial scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDX/EDS) for ... continued below

Physical Description

583 Kilobytes pages

Creation Information

Wang, Tong; Reece, Charles E. & Sundelin, Ronald M. March 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electron field emission (FE) from broad-area metal surfaces is known to occur at much lower electric field than predicted by Fowler-Nordheim law. Although micron or submicron particles are often observed at such enhanced field emission (EFE) sites, the strength and number of emitting sites and the causes of EFE strongly depend on surface preparation and handling, and the physical mechanism of EFE remains unknown. To systematically investigate the sources of this emission, a DC scanning field emission microscope (SFEM) has been built as an extension to an existing commercial scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDX/EDS) for emitter characterization. In the SFEM chamber of ultra high vacuum ({approx}10-9 Torr), a sample is moved laterally in a raster pattern (2.5 mm step resolution) under a high voltage anode micro-tip for field emission detection and localization. The sample is then transferred under vacuum by a hermetic retractable linear transporter to the SEM chamber for individual emitter site characterization. Artificial marks on the sample surface serve as references to convert x, y coordinates of emitters in the SFEM chamber to corresponding positions in the SEM chamber with a common accuracy of {+-}100-200 mm in x and y. Samples designed to self-align in sample holders are used in each chamber, allowing them to retain position registration after non-in situ processing to track interesting features. No components are installed inside the SEM except the sample holder, which doesn't affect the routine operation of the SEM. The apparatus is a system of low cost and maintenance and significant operational flexibility. Field emission sources from planar niobium, the material used in high-field RF superconducting cavities for particle accelerator, have been studied after different surface preparations, and significantly reduced field emitter density has been achieved by refining the preparation process based on scan results. Scans on niobium samples at {approx} 140 MV/m are presented to demonstrate the performance of the apparatus.

Physical Description

583 Kilobytes pages

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACT-02-01
  • Report No.: DOE/ER/40150-2024
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 792659
  • Archival Resource Key: ark:/67531/metadc734340

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 7:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, Tong; Reece, Charles E. & Sundelin, Ronald M. DC Scanning Field Emission Microscope Integrated with Existing Scanning Electron Microscope, article, March 1, 2002; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc734340/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.