ARIES-ST STUDIES REPORT FOR THE PERIOD JANUARY 1, 1998 THROUGH DECEMBER 31, 1998

PDF Version Also Available for Download.

Description

During 1998, the General Atomics (GA) ARIES-Spherical Torus (ST) team examined several critical issues related to the physics performance of the ARIES-ST design, and a number of suggestions were made concerning possible improvements in performance. These included specification of a reference plasma equilibrium, optimization about the reference equilibrium to achieve higher beta limits, examination of three possible schemes for plasma initiation, development of a detailed scenario for ramp-up of the plasma current and pressure to its full, final operating values, an assessment of the requirement for electron confinement, and several suggestions for divertor heat flux reduction. The reference equilibrium was ... continued below

Physical Description

Medium: X; Size: 31 pages

Creation Information

CHAN, V.S.; LAO, L.L.; LIN-LIU, Y.R.; MILLER, R.L.; PETRIE, T.W.; POLITZER, P.A. et al. April 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During 1998, the General Atomics (GA) ARIES-Spherical Torus (ST) team examined several critical issues related to the physics performance of the ARIES-ST design, and a number of suggestions were made concerning possible improvements in performance. These included specification of a reference plasma equilibrium, optimization about the reference equilibrium to achieve higher beta limits, examination of three possible schemes for plasma initiation, development of a detailed scenario for ramp-up of the plasma current and pressure to its full, final operating values, an assessment of the requirement for electron confinement, and several suggestions for divertor heat flux reduction. The reference equilibrium was generated using the TOQ code, with the specification of a 100%, self-consistent bootstrap current. The equilibrium has {beta} = 51%, 10% below the stability limit (a margin specified by the ARIES-ST study). In addition, a series of intermediate equilibria were defined, corresponding to the ramp-up scenario discussed. A study of the influence of shaping on ARIES-ST performance indicates that significant improvement in both kink and ballooning stability can be obtained by modest changes in the squareness of the plasma. In test equilibria the ballooning beta limit is increased from 58% to 67%. Also the maximum allowable plasma-wall separation for kink stability can be increased by 30%. Three schemes were examined for noninductive plasma initiation. These are helicity injection (HICD), electron cyclotron heating (ECH)-assisted startup, and inductive startup using only the external equilibrium coils. HICD startup experiments have been done on the HIT and CDX devices. ECH-assisted startup has been demonstrated on CDX-U and DIII-D. External coil initiation is based on calculations for a proposed DIII-D experiment. In all cases, plasma initiation and preparation of an approximately 0.3 MA plasma for ARIES-ST appears entirely feasible.

Physical Description

Medium: X; Size: 31 pages

Notes

Oakland Operations Office, Oakland, CA (US); INIS

Source

  • Other Information: PBD: 1 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-98ER54411
  • DOI: 10.2172/808766 | External Link
  • Office of Scientific & Technical Information Report Number: 808766
  • Archival Resource Key: ark:/67531/metadc734334

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 6:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

CHAN, V.S.; LAO, L.L.; LIN-LIU, Y.R.; MILLER, R.L.; PETRIE, T.W.; POLITZER, P.A. et al. ARIES-ST STUDIES REPORT FOR THE PERIOD JANUARY 1, 1998 THROUGH DECEMBER 31, 1998, report, April 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc734334/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.