Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.

PDF Version Also Available for Download.

Description

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming ... continued below

Physical Description

7 pages

Creation Information

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D. & Ahmed, S. January 11, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

Physical Description

7 pages

Source

  • AIChE 2002 Spring National Meeting, New Orleans, LA (US), 03/10/2002--03/14/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-106610
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 793071
  • Archival Resource Key: ark:/67531/metadc734333

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 11, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 11, 2016, 2:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D. & Ahmed, S. Catalytic autothermal reforming of hydrocarbon fuels for fuel cells., article, January 11, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc734333/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.