Geochemically Homogeneous Tuffs Host the Potential Nuclear Waste Repository, Yucca Mountain, Nevada

PDF Version Also Available for Download.

Description

In evaluating a geological environment for the disposition of nuclear waste, the composition of the host rock is an important parameter in characterizing the natural system and its role as a barrier to migration of radionuclides. Emplacement drifts in a potential nuclear waste repository at Yucca Mountain, Nevada, would be constructed in the lower phenocryst-poor rhyolitic member ({approx}300 m thick) of the Topopah Spring Tuff, a felsic pyroclastic ash flow. The rhyolitic member, composed largely of microcrystalline quartz and alkali feldspar, contains localized secondary minerals including vapor-phase silica polymorphs and feldspar typically lining lithophysal cavities, and low-temperature calcite and opal ... continued below

Physical Description

2 pages

Creation Information

Peterman, Z.E. July 13, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In evaluating a geological environment for the disposition of nuclear waste, the composition of the host rock is an important parameter in characterizing the natural system and its role as a barrier to migration of radionuclides. Emplacement drifts in a potential nuclear waste repository at Yucca Mountain, Nevada, would be constructed in the lower phenocryst-poor rhyolitic member ({approx}300 m thick) of the Topopah Spring Tuff, a felsic pyroclastic ash flow. The rhyolitic member, composed largely of microcrystalline quartz and alkali feldspar, contains localized secondary minerals including vapor-phase silica polymorphs and feldspar typically lining lithophysal cavities, and low-temperature calcite and opal in cavities and fractures. Chemical analyses of Topopah Spring Tuff samples from outcrops and from core obtained by surface-based drilling have shown that the phenocryst-poor rhyolite member at Yucca Mountain is remarkably uniform in composition both vertically and laterally. To verify this geochemical homogeneity in samples collected directly from the repository block where emplacement drifts would be constructed, major and trace elements were analyzed for core samples obtained from 20 systematically spaced drill holes in a drift constructed across the repository block. Means and standard deviations of selected oxides and elements in weight percent indicate geochemical uniformity among these samples: SiO{sub 2}, 76.29 {+-} 0.32; Al{sub 2}O{sub 3}, 12.55 {+-} 0.14; FeO, 0.13 {+-} 0.05; Fe{sub 2}O{sub 3}, 0.97 {+-} 0.07; MgO, 0.12 {+-} 0.02; CaO, 0.50 {+-} 0.03; Na{sub 2}O, 3.52 {+-} 0.11; K{sub 2}O, 4.83 {+-} 0.06; TiO{sub 2}, 0.109 {+-} 0.004; ZrO{sub 2}, 0.016 {+-} 0.001; MnO, 0.068 {+-} 0.008; Cl, 0.017 {+-} 0.004; F, 0.038 {+-} 0.008; and CO{sub 2}, 0.011 {+-} 0.003. Means and standard deviations of selected trace elements, in micrograms per gram, also indicate small compositional variability: Ba, 51 {+-} 12; Cs, 4.2 {+-} 0.3; Li, 25 {+-} 9; Pb, 27 {+-} 1; Rb, 186 {+-} 9; Sr, 27 {+-} 3; Th, 26 {+-} 1; U, 3.9 {+-} 0.3. Geochemical uniformity of the host rock is a positive attribute in that it provides a uniform near-field chemical environment for the potential repository.

Physical Description

2 pages

Notes

INIS; OSTI as DE00805597

Source

  • Other Information: PBD: 13 Jul 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/805597 | External Link
  • Office of Scientific & Technical Information Report Number: 805597
  • Archival Resource Key: ark:/67531/metadc734284

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 13, 2001

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Feb. 11, 2016, 12:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Peterman, Z.E. Geochemically Homogeneous Tuffs Host the Potential Nuclear Waste Repository, Yucca Mountain, Nevada, report, July 13, 2001; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc734284/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.