Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

PDF Version Also Available for Download.

Description

A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV ... continued below

Physical Description

611 Kilobytes pages

Creation Information

Gorelenkov, N.N.; Berk, H.L.; Budny, R.; Cheng, C.Z.; Fu, G.-Y.; Heidbrink, W.W. et al. July 2, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong stabilizing effect for JET. However, in ITER the beam energies needed to penetrate to the core must be high so that a diamagnetic drift frequency comparable to that of the alpha particles is produced by the beam ions which induces a destabilizing effect.

Physical Description

611 Kilobytes pages

Notes

INIS; OSTI as DE00807248

Source

  • Other Information: PBD: 2 Jul 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3717
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/807248 | External Link
  • Office of Scientific & Technical Information Report Number: 807248
  • Archival Resource Key: ark:/67531/metadc734236

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 2, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 15, 2016, 9:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gorelenkov, N.N.; Berk, H.L.; Budny, R.; Cheng, C.Z.; Fu, G.-Y.; Heidbrink, W.W. et al. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments, report, July 2, 2002; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc734236/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.