Reactivity of high plutonium-containing glasses for the immobilization of surplus fissile materials

PDF Version Also Available for Download.

Description

Experiments have been performed on glasses doped with 2 and 7 wt % plutonium to evaluate factors that may be important in the performance of these high-Pu-loaded glasses for repository storage. The high Pu loadings result from the need to dispose of excess Pu from weapons dismantling. The glasses were reacted in water vapor to simulate aging that may occur under unsaturated storage conditions prior to contact with liquid water. They were also reacted with liquid water under standard static leach test conditions. The results were compared with similar tests of a reference glass (202 glass) containing only 0.01 wt ... continued below

Physical Description

8 p.

Creation Information

Bates, J.K.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Fortner, J.A.; Wolf, S.F. et al. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Argonne National Laboratory
    Publisher Info: Argonne National Lab., Idaho Falls, ID (United States)
    Place of Publication: Idaho Falls, Idaho

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experiments have been performed on glasses doped with 2 and 7 wt % plutonium to evaluate factors that may be important in the performance of these high-Pu-loaded glasses for repository storage. The high Pu loadings result from the need to dispose of excess Pu from weapons dismantling. The glasses were reacted in water vapor to simulate aging that may occur under unsaturated storage conditions prior to contact with liquid water. They were also reacted with liquid water under standard static leach test conditions. The results were compared with similar tests of a reference glass (202 glass) containing only 0.01 wt % Pu. In vapor hydration testing to date, at 2 wt % loading, the Pu was incorporated into the glass without phase separation, and reaction in water vapor proceeded at a rate comparable with that of the 202 glass. At wt % loading, a Pu phase separated and was not uniformly incorporated into the glass. The vapor reaction of this glass proceeded at a more rapid rate. This phase separation was manifested in the static leach tests, where colloidal phases of Pu-rich material remained suspended in solution, thereby increasing the absolute Pu release when compared to the 202 glass.

Physical Description

8 p.

Notes

INIS; OSTI as DE95013472

Source

  • International high-level radioactive waste management conference: progress toward understanding, Las Vegas, NV (United States), 1-5 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95013472
  • Report No.: ANL/CMT/CP--84882
  • Report No.: CONF-950570--31
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 80883
  • Archival Resource Key: ark:/67531/metadc734006

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 6, 2016, 5:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bates, J.K.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Fortner, J.A.; Wolf, S.F. et al. Reactivity of high plutonium-containing glasses for the immobilization of surplus fissile materials, article, June 1, 1995; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc734006/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.