The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

PDF Version Also Available for Download.

Description

Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct ... continued below

Physical Description

1 pages

Creation Information

McSweeney; Thomas; Winnard; Ross; B., Steven; Best et al. February 6, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

Physical Description

1 pages

Notes

INIS; OSTI as DE00808014

Source

  • Other Information: PBD: 6 Feb 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/808014 | External Link
  • Office of Scientific & Technical Information Report Number: 808014
  • Archival Resource Key: ark:/67531/metadc733983

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 6, 2001

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Feb. 10, 2016, 6:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

McSweeney; Thomas; Winnard; Ross; B., Steven; Best et al. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository, report, February 6, 2001; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc733983/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.