Positron-Emission Tomography in Schizophrenia Research

Edited by
Nora D. Volkow, M.D.
Alfred P. Wolf, Ph.D.

PROGRESS IN PSYCHIATRY
Number 33

David Spiegel, M.D.
Series Editor
Chapter 5

The Use of Positron-Emission Tomography in Identifying and Quantitating Receptors Involved in Schizophrenia

David J. Schlyer, Ph.D.

Schizophrenia is a devastating mental disorder that is the focus of a great deal of research. Some symptoms of the disease, such as auditory hallucinations and delusions, can be ameliorated with drug treatment, whereas other symptoms, such as social withdrawal and cognitive decline, remain uncontrolled. It is possible that these latter symptoms that are often termed "negative symptoms" are the result of anatomical and neurochemical abnormalities, whereas those symptoms of the disease such as auditory hallucinations that are termed "positive symptoms" may be a result of only neurochemical disorders (Crow 1986; Trimble 1987; Weinberger 1988).

The drugs used to treat schizophrenia are designated neuroleptics. The term neuroleptic was chosen to emphasize the similarity of pharmacological profiles of drugs with entirely different chemical structures (Carlsson 1978). Especially prominent features of the effects of neuroleptics include the following: a state of affective indifference; a decrease in locomotor activity; a decrease in excitation, agitation, and aggressiveness; and an antipsychotic action in patients with acute as well as chronic psychoses.

AFFINITY VERSUS EFFICACY

Since the first use of neuroleptics for the treatment of schizophrenia in 1952 (Delay et al. 1952), there has been growing evidence that the antipsychotic drugs exert their influence at least in part by reducing dopaminergic neuronal activity mediated by the D2 receptor (Seeman

This research was carried out at Brookhaven National Laboratory under Contract No. DE-AC2-76CH00016 with the U.S. Department of Energy and supported by NIH Grants 15638 and 15380.

75
The dopamine hypothesis is widely accepted in explaining the neuropharmacological abnormalities that occur in schizophrenia. The central tenet of the hypothesis is that people who have the disease have an apparent hyperactivity of the dopaminergic mechanisms in critical brain regions. There are several lines of evidence to support this hypothesis, and these have been outlined by Seeman (1987). They are:

1. The clinical side effects of the neuroleptics
2. The psychotomimetic effects of dopamine-mimetic drugs
3. Neuroleptic acceleration of catecholamine turnover
4. Antipsychotic potency correlates with D2 blockade in responders
5. Elevated density of D2 receptors in schizophrenia.

By far the most convincing of these observations is the correlation of clinical antipsychotic potency of these drugs with the affinity of the drug for the D2 receptor. The correlation between the clinically efficient dose and the binding affinity of the neuroleptic drugs for D2 receptors is given in Figure 5-1 (data from Closs et al. 1984; Peroutka and Snyder 1980). This correlation can be compared with the correlation with other receptor subtypes. The plot of the affinity for the D1 receptor is given in Figure 5-2. There is no correlation with this site. The similar plot for serotonin receptors is given in Figure 5-3. The plot of the affinity for the muscarinic receptor in Figure 5-4 shows a slight inverse correlation with the clinical dose. Figure 5-5 shows the plot for the sigma receptor that demonstrates no correlation between clinical dose and receptor affinity (Closs et al. 1984; Peroutka 1980). The sigma receptor was initially thought to represent a subtype of the opiate receptors. However, the inability to block the behavioral effects of sigma drugs with naloxone and the opposite stereospecificity of opiate and sigma drugs gave evidence that the sigma receptor is different from the opiate receptor. The moderate potency of sigma drugs on phencyclidine (PCP) receptors then led to the belief that the PCP receptor mediated the action of sigma drugs (Snyder and Largent 1989). Sigma receptors are now classified as a separate receptor type. The high affinity of haloperidol to sigma receptors has generated interest with respect to their role in psychoses.

![Figure 5-1](image1.png)

Figure 5-1. Plot of the affinity of common neuroleptic drugs for the D2 receptor with the typical clinical dosage. Clinical dosages taken from Peroutka and Snyder 1980. Values for the p(IC50)'s taken from Closs et al. 1984.

![Figure 5-2](image2.png)

Figure 5-2. Plot of the affinity of the common neuroleptic drugs for the D1 receptor with the typical clinical dosage. Clinical dosages taken from Peroutka and Snyder 1980. Values for the p(IC50)'s taken from Closs et al. 1984.
POSTMORTEM STUDIES

Postmortem studies of schizophrenic patients have shown that the D_2 receptor level was elevated in some subjects in this group (Seeman 1984). There was a bimodal distribution of receptor densities, one mode of which was significantly higher than the normal control group. The question that immediately arose was whether this elevation was due to the disease or resulted from the chronic use of neuroleptic drugs. It has been shown in animals that prolonged blockade of D_2 receptors elevates the number of receptors by approximately 30% (Seeman 1987). A study of postmortem brains of schizophrenic patients on haloperidol therapy in comparison with those who had been off drugs for 3 months and normal control subjects demonstrated a significant increase in D_2 receptor number only in those patients who were on neuroleptics at the time of death (Kornhuber et al. 1989b). Positron-emission tomography (PET) has the ability to ascertain the answer to this question directly because it is, in principle, possible to obtain information that may be used to determine the number of receptors available for binding.
PET STUDIES

PET is the only technique available at present that can accurately quantitate the receptor density in the living human brain, and several studies have been carried out in an attempt to accomplish this feat. There is a considerable amount of controversy at present as to the best technique to use to measure this receptor density, but there seems to be general agreement within the field that PET can be used to quantify receptor density in the living human brain once the intricacies of the experiment are understood. The controversy in general revolves around the choice of radiolabeled ligand used to measure receptor density. Some groups promote the use of low-affinity ligands that give dynamic information about the receptor availability, and other groups promote the use of very high-affinity ligands that are not displaced by endogenous ligands. These two techniques should in theory give the same results, but in fact they do not (Andreasen 1988). The explanation of these discrepancies must await further experimentation.

Another observation that requires further investigation is that in most patients, the symptoms of schizophrenia are decreased only after several weeks of treatment with neuroleptics. This corresponds to a fall in the homovanillic acid (HVA) concentration after the initial increase observed when neuroleptic therapy is begun. PET may be able to shed light on this phenomenon as one is able to correlate plasma drug levels with the receptor availability. Some work has been carried out that shows a good correlation between the receptor occupancy and the plasma level of the drug (Cambon et al. 1987; Smith et al. 1988; Wolkin et al. 1989).

The definitive test of the dopamine hypothesis of schizophrenia must also await a better understanding of the involvement of other receptor systems in the disease. It is not clear at this point in time whether the dopamine system is the only neurotransmitter system involved in the disease or whether there are several systems involved. This latter possibility seems more likely in view of the feedback loops known to exist between the dopaminergic system and other receptor systems (Vinick and Heym 1987). Compounds acting at sigma sites, for example, can alter dopaminergic function in the absence of direct interactions with the dopamine receptors. Some of the most effective “atypical” neuroleptics act at the sigma sites, as do some of the typical neuroleptics such as haloperidol, which binds to both D₂ and sigma sites with nearly equal affinity.

It has been suggested that antipsychotic activity and extrapyramidal side effects (EPS) may reside in different pathways in the brain (Carlsson 1978). The antipsychotic effect may reside in the limbic structures and the extrapyramidal effects in the striatum. This hypothesis could be tested with PET if the relevant labeled drugs were available.

There is a renewed interest in the atypical neuroleptic clozapine in part because of the minimal activity of this drug and other atypical drugs to produce EPS. One hypothesis for the mode of action suggests that the relative affinity of this drug for the serotonin receptor system in contrast to the affinity for the dopamine receptor system may have a significant role in the ability of this drug to relieve some of the symptoms of psychosis while producing minimal EPS (Matsubara and Meltzer 1989).

The role of other receptor systems in producing EPS is also unclear (Greene 1985). There is some indirect evidence that there is a correlation between the amount of time a neuroleptic is bound to a receptor and the EPS. The longer the drug is bound the greater the EPS.

METHODS FOR THE MEASUREMENT OF RECEPTOR DENSITY WITH PET

Receptor imaging is possible with PET because of the high sensitivity of PET when compared with other imaging modalities. Most of the receptors of interest in schizophrenia exist in nanomolar concentration in the living brain. As a result, it requires a technique that can measure these levels accurately. The PET measurement of the concentration of the radiolabeled drug does not give the information needed to directly make an assessment of the receptor number or affinity. To make these assessments requires the use of a model of the system (Frost 1988). Simpler methods may be used to estimate some of the parameters once these estimates have been shown to be valid by doing a complete kinetic analysis of the system. The application and interpretation of the PET data are subjects of some controversy and the resolution should give insight into the physiological processes involved.

There are two basic methods to determine the distribution of ligands in specific areas of the brain. The first of these is the direct visualization of the ligand bound to the receptor that requires that the ligand of interest be tagged with the radiolabel. The second indirect method is to use a radiolabeled ligand specific for a particular receptor and then try to block the uptake of the receptor with the compound of interest. The first method is certainly preferable if the radiolabeled compound can be synthesized, since this method also allows the regional distribution to be determined and gives evidence of the effects of transport and nonspecific binding.
Direct Visualization

The most straightforward method for determining the in vivo distribution and binding characteristics of a new ligand is to label the ligand with a positron-emitting label. This has been done with a number of compounds (Fowler and Wolf 1982; Kilbourn 1990). The biodistribution can be determined directly from the PET image and can be compared with that expected based on animal data and the known affinity of the compound with receptor subtypes. The effects of the lipophilicity of the drug as well as any transport system can be evaluated with the application of the appropriate model to the PET data. The receptor that has been studied most thoroughly is the D₂ receptor.

Blocking Experiments

If the radiolabeled ligand of interest can be synthesized, blocking experiments can be done to determine the type of receptor to which it is bound. Often some information as to the receptor type can be inferred from the literature concerning the in vitro data and from the regional distribution of the radiolabeled compound, but the best method is to block the drug with a receptor-specific ligand whose distribution is known and see how much the uptake in the region of interest is decreased. The difference between the receptor affinity in vitro and the distribution in vivo is often quite striking. The role of transport and metabolism is considerable and cannot be ignored when determining the clinical efficacy of a particular drug.

If the radioligand binds to several types of receptors, as is the case with many of the neuroleptics, it is necessary to block one type of receptor while observing the uptake in another. This type of experiment can also often shed light on the amount of nonspecific binding of the radioligand.

Methods of Evaluation

There are many methods being used by PET groups to try and gain useful quantitative information about the receptor system under study. These are those that are irreversibly bound over the usual course of the PET experiment and those that are reversibly bound over the course of the experiment. The most familiar example of the first type (irreversibly bound) is N-methylspiroperidol labeled with either fluorine-18 (¹⁸F-NMS; Arnett et al. 1986) or carbon-11 (¹¹C-NMS; Wagner et al. 1983). This ligand does not reach equilibrium during the course of the experiment. This can be easily determined by plotting the bound-free ratio as a function of time for the compound. The bound-free ratio is determined by dividing the concentration of radioligand in a region of interest by the concentration of radioligand in a region with little or no specific binding of the ligand. If the compound is at equilibrium with the tissue, then this ratio should be a constant. In the case of ¹⁸F-NMS, the ratio is still increasing even after 4 hours. Since NMS does not reach equilibrium, the mathematical models that make this assumption cannot be used to determine the parameters of the binding.

There are several methods that have been successfully used to analyze the data from ¹⁸F-NMS experiments. The simplest of these is the "ratio index" method, which involves plotting the ratio of an area of specific binding to an area of nonspecific binding over time. In the case of ¹⁸F-NMS, this means plotting the striatal value over the cerebellum value versus time. It has been shown that this can be related to the receptor density if the assumption is made that the affinity (Kᵦ) values are constant. This technique has been used to determine the extent of receptor occupancy during treatment with neuroleptics (Smith et al. 1988; Wolkin et al. 1989). This method has the distinct advantage of being very simple to use and not requiring arterial blood sampling.

The next in the order of complexity are the Patlak-Gjedde graphical methods, which use the plasma activity value derived from the arterial blood curve and the incorporation of radioactivity in the striatum (Patlak and Blasberg 1985; Patlak et al. 1983; Wong et al. 1986a, 1986b). The derivation of this model is quite involved and requires several assumptions to be made. This technique has been used by several groups for the analysis of labeled NMS data, and the method has been extended to other compounds that are not receptor binding in nature. In a variation of this method, the plasma curve can be replaced with the cerebellar curve with similar results. A rearrangement of the basic equations used to derive the Patlak-Gjedde methods leads to the incorporation quotient as first described by Patlak (1981). The advantage of this method is that it is the ratio of two large numbers (the activity in the region of interest and the plasma integral to that point in time) that tends to minimize the statistical noise in the image as well as variations in the plasma curve.

The most complex method of modeling that can be used for this type of irreversibly bound agent is the three-compartment four-parameter kinetic model or the four-compartment six-parameter kinetic model (Logan et al. 1987; Wong et al. 1986c). Both of these models require an arterial input function as well as a metabolite analysis of the activity in the blood to be accurate. The debate here is whether one is justified in using six parameters when four parameters...
fit the data just as well. It can be argued that the use of the six parameters most closely resembles what is occurring in the body, but considering the complexity of the actual physiological processes and the simplifications that have already been made in using the six-parameter model, it may not be significantly worse to use the simpler four-parameter model. This is a direct result of the fact that the data themselves have uncertainties of 5-10% associated with them. The uncertainty in the data arises from the scanning and reconstruction procedure, the blood counting, and the plasma analysis. It is not possible at this time to achieve lower noise levels in PET.

In the case of the reversibly bound compound, things can in principle be simpler. It must be demonstrated that the system is truly at equilibrium (Sedvall et al. 1986). Equilibrium is defined as that point when the rates of the forward and reverse chemical reactions (or association reactions) are equal. In some instances, compounds that appear to be at equilibrium are in reality not. An example is \([^{13}C]coca\) in humans. If the bound-free ratio (striatum divided by cerebellum in this case) is plotted versus time, the curve goes through a maximum and then decreases. This suggests that the system was momentarily at equilibrium with respect to influx and efflux, but that the efflux of the compound from the tissue could not keep up with the declining levels of tracer in the bloodstream. Thus, the equilibrium methods of analysis could be used in this case only at the time point where the curve went through a maximum. The Patlak-Gjedde methods using the slope of the line of tissue/plasma versus plasma integral/plasma also cannot be used, since the plot of the function is never linear. The incorporation quotient has been used in this case, since the terms that are dependent on time cancel out of the equations (Fowler et al. 1989a, 1989b).

In general, the method of analysis is fairly specific for a particular radioligand, and a method of analysis must be found that is valid for that particular radioligand. The graphical methods are easy to use and seem to be valid for most irreversibly bound ligands. The full kinetic analysis requires a significant amount of computer time and someone who understands how to manipulate the parameters to obtain the best solution to the equations (Zeeberg et al. 1988a, 1988b).

DOPAMINE RECEPTORS

D₂ Receptors

The concept that some forms of schizophrenia are inextricably entwined with the D₂ receptor is well accepted. The extremely high correlation between the potency of the neuroleptic drugs and their

[Figure 5-6. Schematic diagram of the dopamine receptor synaptic cleft with the associated feedback loops. HVA = homovanillic acid, RMAR = receptor-modulated autoreceptor, SMAR = synthesis-modulated autoreceptor. A positive symbol (+) indicates that this agent stimulates the next step toward the release of the neurotransmitter, whereas a negative symbol (-) indicates an inhibition of the following step. Rectangular boxes represent enzyme systems in the neuron.]
amount of dopamine in the synaptic cleft to increase and blocks the transmission of the signal along the neuron. Drugs such as cocaine or nomifensine that block the re-uptake of the dopamine into the presynaptic neuron also increase the levels of dopamine in the synaptic cleft. The difference is that the neuroleptics cause a diminution of the signal being passed through the synapse, whereas cocaine, nomifensine, and similar drugs allow the signal to be passed and increase sensitivity.

PET has been used to assess whether there are changes in the number of D2 receptors in schizophrenic patients. Previous post-mortem studies had demonstrated that some schizophrenic patients had increases in the number of D2 receptors. The results were confounded by the fact that they were not done in the living human brain and that most of the brains studied were from patients who had a history of previous neuroleptic treatment. The PET studies were able to measure the D2 receptor density in the brain of living schizophrenic patients who had never received neuroleptic treatment (Farde et al. 1986, 1987a; Wong 1986a). The two studies came to opposite conclusions so that no definitive answer is yet available. It is not clear at this point if the difference lies in the patients chosen or in the technique used to measure the receptor density. A report has recently been written about the various possibilities (Andreasen et al. 1988), but no definite conclusion had been reached at the time of this writing. It seems most likely that the answer lies in the affinity of the two ligands used to determine receptor density. It has been clearly shown in vitro that the affinity of the ligand used toward the D2 receptor will have an effect on the apparent receptor density as determined with PET (Seeman et al. 1989). If the ligand has a high affinity for the receptor as NMS does, then the receptor concentration as measured by PET will be nearly constant as the concentration of endogenous dopamine is changed. If, on the other hand, the affinity of the ligand is close to that of dopamine, the apparent receptor density will change as dopamine concentration in the synapse is changed, since dopamine will compete effectively with the labeled drug for the available sites.

In interpreting these results, it should be kept in mind that there may be a group of schizophrenic patients with elevated D2 receptor levels and a group with no D2 receptor density increase. The work of Seeman et al. (1984) in postmortem brains of schizophrenic patients in which a bimodal distribution of D2 receptors was observed supports this notion. This distinction may also be of relevance to the responder versus nonresponder categories of schizophrenic patients, i.e., those who respond favorably to neuroleptic treatment as opposed to those who do not respond well to this therapy (Wolkin et al. 1989).

Schizophrenia may represent a heterogeneous disease with sub-categories corresponding to different pathological processes that produce similar behavior patterns (DeLisi et al. 1985b).

D1 Receptors

D1 receptors have not until recently been considered as relevant in the etiopathogenesis of schizophrenia. A recent study has shown (Hess et al. 1987) that in postmortem brains the D1 receptor density was significantly decreased in schizophrenic patients as compared with a control group. This investigation also showed an increase in the D1 receptor affinity (Kd) in the brains of schizophrenic patients. In addition, the schizophrenic individual showed an increase in the D2 receptor density (56%). It is at odds with another study that showed no such increase in postmortem brains of schizophrenic patients (Pimoule et al. 1985).

Evidence suggests that there may be a synergistic effect between the D1 and D2 receptor systems, and certain dopamine-mediated behaviors are antagonized by combinations of D1 and D2 antagonists more effectively than by either one of them alone (Beaulieu 1987; Carlson et al. 1987). The ratio of activity of the D2 to the D1 receptor may be important in understanding psychopathology in schizophrenic patients (Clark and White 1987). Preliminary PET studies have been done to map the D1 receptor distribution in the human brain (Farde et al. 1987a, 1987b). PET studies are underway to characterize the ability of different neuroleptics to block the D1 versus the D2 receptors in the human brain and the relationship between their D1/D2 blocking ability and their effectiveness (Lundberg et al. 1989).

SIGMA RECEPTORS

The sigma receptor was first identified by the binding of N-allylnormetazocine (NANM) in the brain of rats (Martin et al. 1976). It was clearly different from the PCP receptor that was in large part responsible for its discovery and that is associated with the N-methyl-D-aspartate (NMDA) receptors. A classification system to distinguish the principal differences between the sigma site and the PCP site has been proposed (Quirion et al. 1987). Some of the typical neuroleptic drugs such as haloperidol show strong binding to the sigma sites. In fact, haloperidol has an affinity for sigma receptors at least as strong as its affinity for the D2 receptor. It has been shown that sigma-selective drugs injected into the brains of rats cause movement disorders that are similar in nature to the side effects caused by the common neuroleptics (Walker et al. 1988). The distribution of sigma sites in
postmortem human brain has been determined using 3H-labeled haloperidol (Table 5-1; Weissman et al. 1988).

Role of Sigma Receptors

There has been growing interest in the role of sigma receptors in the course of mental disorders since the identification of these receptors as a class of receptors separate from the opiate receptors. There have been several studies relating the affinity of these receptors with the psychiatric disorder of schizophrenia (Largent et al. 1988; Snyder and Largent 1989). It is known that many of the more effective neuroleptics also bind to the sigma receptor. It has been suggested that screening of new drugs for the treatment of these disorders may be done by determining the affinity of a new drug for the sigma receptor (Manallack et al. 1988).

It is hoped that new drugs that act through different mechanisms from the classic neuroleptics may offer a chance for effective therapy that does not have the commonly associated side effects. One mechanism of action that has been receiving considerable attention is through the sigma receptors. Models using rodent behavior as a test may be possible to label these drugs with a positron-emitting compound and thereby determine the distribution and relative receptor occupancy of a new drug. The experience with 18F-labeled haloperidol has shown that receptor affinity is not the only factor that needs to be considered when trying to find new drugs that may offer therapeutic benefit.

Examples of Sigma Drugs

Rimecazole shows some efficacy in the treatment of schizophrenia and is essentially inactive at the D$_2$, S$_2$, and other receptor sites (Snyder and Largent 1989). This drug is bound with good efficiency to the sigma sites in the brain and may be giving the therapeutic effect through this pathway (Beard et al. 1989).

The distribution of 18F-haloperidol in the human brain shows how the sigma receptors may be bound by this drug (D. J. Schlyer, C. Y. Shiu, J. S. Fowler, et al., 1990, unpublished observations). There can be little doubt that some of either the primary effects of haloperidol or the extrapyramidal side effects of the drug are caused in part by the binding to the sigma receptors. To date it has not been possible to specifically block the sigma receptors with another drug in humans to determine the difference in uptake.

In the area of psychopharmacological research, it has been shown that psychoactive drugs that bind with high affinity to the sigma receptor tend to be more effective in alleviating the "negative symptoms" of schizophrenia such as depression and anxiety in those patients in whom the drugs are effective, whereas psychoactive drugs that have a high affinity for the D$_2$ sites are more effective in alleviating the "positive symptoms" of schizophrenia.

PET can play a role in the evaluation of these hypotheses by allowing measurement of the in vivo affinity of these psychoactive drugs to the sigma receptor and by determining, in vivo, the possible disruption in the sigma receptors of subgroups of schizophrenic patients. The actual availability of these drugs can be quite different from that predicted on the basis of the in vitro receptor affinity. It is the availability in living humans that is the critical factor in the effectiveness of these drugs.

Table 5-1. Distribution of sigma receptors in the human brain

<table>
<thead>
<tr>
<th>Brain region</th>
<th>Receptor density (fmol/rag protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar cortex</td>
<td>130 ± 8</td>
</tr>
<tr>
<td>Orbital frontal cortex</td>
<td>111 ± 18</td>
</tr>
<tr>
<td>Nucleus accumbens</td>
<td>110 ± 23</td>
</tr>
<tr>
<td>Occipital pole cortex</td>
<td>106 ± 15</td>
</tr>
<tr>
<td>Frontal pole cortex</td>
<td>101 ± 5</td>
</tr>
<tr>
<td>Superior temporal gyrus</td>
<td>97 ± 4</td>
</tr>
<tr>
<td>Somatosensory cortex</td>
<td>86 ± 16</td>
</tr>
<tr>
<td>Caudate nucleus</td>
<td>84 ± 17</td>
</tr>
<tr>
<td>Hippocampus formation</td>
<td>73 ± 22</td>
</tr>
<tr>
<td>Substantia nigra</td>
<td>71 ± 8</td>
</tr>
<tr>
<td>Thalamus</td>
<td>58 ± 14</td>
</tr>
<tr>
<td>Cervical spinal cord</td>
<td>56 ± 7</td>
</tr>
<tr>
<td>Pontine nuclei</td>
<td>48 ± 9</td>
</tr>
</tbody>
</table>

Note: Receptor densities are means ± SD.
Source: Data from Weissman et al. 1988.
out with 22 neuroleptics and serotonin, α-adrenergic, and histamine receptors (Peroutka and Snyder 1980). The clinical doses of the neuroleptics used correlated extremely well with the affinity for the D2 receptor but not at all with the other receptor systems. It may well be that the binding at these other systems has a powerful effect on the extrapyramidal symptoms demonstrated in patients on neuroleptic therapy.

This strategy has also been utilized to characterize the unique therapeutic profile of clozapine, an antipsychotic agent effective for the alleviation of “negative symptoms.” In the case of clozapine, its therapeutic efficacy has been related by some to its ability to block serotonin receptors and by others to its ratio of D1/D2 receptor blockade (Melzer et al. 1989). Preliminary work with PET to monitor the distribution and blocking of clozapine in the brain has been achieved with [11C]clozapine (Lundberg et al. 1989). This study showed a widespread distribution in the cortex and subcortical structures. No blocking experiments were done to determine the nature of the binding.

Serotonin

Another strategy has been to measure the concentration of the different receptor types in the brain of diagnosed schizophrenic patients. Postmortem studies have demonstrated decreased serotonin receptors in brains of schizophrenic patients (Bennett et al. 1979). It is known that most of the neuroleptic drugs have some serotonergic component in their binding characteristics (Mumford et al. 1978). Indirect evidence is also provided by studies investigating regions with a high density of serotonergic receptors such as the frontal cortex. These studies appear to show that many patients with schizophrenia manifest clinical symptoms suggestive of prefrontal cortex dysfunction (Weinberger 1988b). There have been several PET studies to determine the metabolic rate in the prefrontal cortex of schizophrenic patients (Buchsbaum et al. 1984; DeLisi et al. 1985a; Farkas et al. 1984; Widen et al. 1981; Wolkin et al. 1985). The reports are conflicting and no clear picture has emerged, but several studies suggest a hypofrontality (Buchsbaum et al. 1984; Wolkin et al. 1985).

NMBA Receptors and Others

Glutamate can be neurotoxic, an effect mediated in part by the NMBA receptor complex. The role of this complex in schizophrenia is currently under investigation with PET using 11C-labeled MK-801 as a PET tracer for the NMBA receptor (Wong et al. 1989). This is an application of PET to confirm in vivo the results obtained in postmortem brains using 3H-labeled MK-801 (Kornhuber et al. 1989a).

The role of the other receptor systems in the etiopathogenesis of schizophrenia and their role in the clinical efficacy and the extrapyramidal side effects of the neuroleptics is now beginning to be explored with PET. The correlation between drug response and receptor availability is an area where PET can play an active role in the future.

IN VIVO DISTRIBUTION OF NEUROLEPTICS

There have been several studies done with PET where the in vivo distribution of D2 receptors using labeled neuroleptics or analogue drugs have been carried out. The first of these with a highly selective agent was with 11C-NMS (Wagner et al. 1983). The distribution observed was that expected of a D2 antagonist. A similar study was carried out with 18F-NMS that showed an identical distribution as would be expected (Arnett et al. 1986). The distribution of 18F-NMS is shown in Figure 5-7. The high uptake in the basal ganglia and low

Figure 5-7. Distribution of 18F-labeled N-methylspiroperidol in the human brain (Arnett et al. 1986).
uptake in the rest of the brain is exactly the distribution of D2 sites in the brain. The correlation between the receptor density as measured in vitro and the uptake in the various regions of the brain is shown in Figure 5-8. The linear relationship demonstrates that the NMS is binding nearly exclusively to D2 receptors at 3 hours postinjection.

The fact that haloperidol blocks the uptake of 18F-NMS in the striatum suggests that this drug must be binding to the D2 receptor. When 18F-haloperidol was prepared and injected into human subjects, it was clear that the distribution did not reflect the distribution of D2 receptors in the same way that 18F-NMS did. A comparison of the distribution of 18F-haloperidol to that of 18F-NMS is shown in Figure 5-9. The distribution of the haloperidol is widespread and probably reflects uptake at a number of receptor subtypes, especially the sigma receptor, as well as nonspecific binding. There is not a linear correlation between the measured in vitro receptor densities and the uptake in the various regions of the brain.

The distribution of 11C-labeled raclopride has also been determined in humans (Farde et al. 1985, 1987b). The distribution is very similar to that for 18F-NMS at longer times. The drug washes out of the striatum much more quickly than the 18F-NMS due to the lower affinity of raclopride for the D2 receptor. This lower affinity has some advantages and disadvantages when used to measure the binding potential of the D2 receptor. The lower affinity means that 11C-raclopride will be in competition with the dopamine present in the synapse. Thus, the measured level of receptors can be influenced by differences in the levels of endogenous dopamine. This effect will cause problems when trying to measure absolute receptor densities unless it can be demonstrated that the dopamine levels in the inter-synaptic cleft are so small that they do not compete effectively. This competition may be an advantage if a study wishes to observe effects on the levels of dopamine when other drugs are given.

The distribution and binding have also been studied with PET for

Figure 5-8. Correlation between the in vitro D2 receptor density of different regions of the brain with the observed uptake of N-methylspiroperidol in that region. Uptake is taken from Arnett et al. 1986 and receptor density is taken from Imae et al. 1984.

Figure 5-9. Comparison of the distribution of 18F-labeled N-methylspiroperidol (18F-NMSP) with the distribution of 18F-labeled haloperidol in the human brain. Distribution of the haloperidol does not follow the D2 receptor distribution (D.J. Schlyer, C.Y. Shuc, J.S. Fowler, et al., 1990, unpublished observations).
REFERENCES

Beart PM, O'Shea RD, Manallack DT: Regulation of α-receptors: high- and low-affinity agonist states, GTP shifts, and up-regulation by rimcazole and 1,3-di(2-tolyl)guainidine. J Neurochem 53:779-788, 1989

Carlson JH, Bergstrom DA, Walters JR: Stimulation of both D1 and D2 dopamine receptors appears necessary for the full expression of postsynaptic effects of dopamine antagonists: a neurophysiological study. Brain Res 400:205-216, 1987

Delay J, Deniker P, Harl J-M: Traitement des états d’excitation et d’agitation...

DeLisi LE, Buchsbaum MS, Holcomb HH: Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients. Am J Psychiatry 142:78-81, 1985a

Farde L, Wiesel FA, Hall H, et al: No D2 receptor increase in PET study of schizophrenia (letter). Arch Gen Psychiatry 44:671, 1987a

Kerwin RW, Patel S, Meldrum BS, et al: Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet 1:583, 1988

Lundberg T, Lindstrom LH, Harvig P, et al: Striatal and frontal cortex binding of \(^{11}C\)-labelled clozapine visualized by positron emission tomography (PET) in drug free schizophrenics and healthy volunteers. Psychopharmacology 99:8-12, 1989

Meltzer HY, Matsubara S, Lee JC: Classification of typical and atypical antipsychotic drugs on the basis of dopamine \(D_1\), \(D_2\) and serotonin \(pK_i\) values. J Pharmacol Exp Ther 251:238-246, 1989

Identifying and Quantitating Receptors

Weinberger DR: Schizophrenia and the frontal lobe. Topics in Neurosciences 11:367, 1988b

Seeman P, Guan HC, Niznik HB: Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse 1:96-97, 1989

