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Abstract

The toroidal precession of the well-circulating particles and particles that are

passing toroidally but trapped poloidally is studied. Expressions for the preces-

sion frequency, which are convenient for practical use, are obtained and analyzed.

It is found that the key parameters that determine the magnitude and the direction

of the precession velocity are the plasma elongation, the magnitudes and profiles

of the safety factor and β defined as the ratio of the local plasma pressure to the

magnetic field pressure at the magnetic axis. An important role of the “paramag-

netic” precession in highly elongated plasmas is revealed. The analysis carried out

is based on the obtained expressions for the equilibrium magnetic field strength

and the field line curvature.
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I. INTRODUCTION

The toroidal precession in axisymmetric toroidal plasmas is the bounce/transit-time-averaged

drift motion of the particles in the toroidal direction. Being associated with the toroidal drift,

the precession is the most pronounced for the energetic particles. The well-trapped particles

have the largest precession velocity because their bounce-averaged drift velocity in the poloidal

direction is maximum: 〈vd,pol〉 ≈ vd, where vd,pol ≈ −vd cos θ is the poloidal component of the

toroidal drift velocity ~vd, the brackets mean bounce averaging. In contrast to this, 〈vd,pol〉 � vd

for the well-circulating particles. This implies that the effect of the drift motion on circulating

particles strongly decreases the precession frequency and complicates its calculation. On the other

hand, the precession of circulating particles is enhanced in high-β plasmas of spherical tori by the

large Shafranov shift.1 This considerably affects both the stability of the plasmas with circulating

energetic ions and the transport of energetic ions in magnetohydrodynamically (MHD) active

plasmas with high β.1,2

The toroidal precession of trapped particles is studied rather well (see, e.g., Ref.3, where a

low-β plasma was considered, and Ref.4, where effects of high β were taken into account). The

precession of circulating particles is studied much less, especially, in high-β plasmas. No papers

are published on the precession of the particles passing toroidally but trapped poloidally (“semi-

trapped” particles), which may constitute a considerable fraction of an energetic ion population

in a spherical torus. This motivated the fulfillment of the present work, where the precession of

circulating and semi-trapped particles is studied.

The structure of the work is as follows. In Sec. II the precession of well-circulating particles with

negligible magnetic moment is considered on the assumptions that the particle orbit width, ∆rb,

is small (∆rb � r, where r is the radial coordinate) and the plasma cross section is circular. The

precession of similar particles moving in the near-axis region of a plasma with a non-circular cross

section is studied in Sec. III. In addition, in this section the precession of near-axis circulating

particles with arbitrary ∆rb/r and semi-trapped particles with the small magnetic moment is
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considered. The summary and the conclusions drawn are presented in Sec. IV. Appendix A

contains the derivation of a component of the magnetic field line curvature, which is required for the

calculation of the precession frequency. In Appendix B, the equilibrium of a non-circular plasma

in the paraxial approximation is analyzed, and the magnetic field strength near the magnetic axis

is determined.

II. PRECESSION OF CIRCULATING PARTICLES WITH NARROW ORBITS

We proceed from the following equations of the particle guiding center motion:

θ̇ = v‖bθ + vθd, (1)

ϕ̇ = v‖bϕ, (2)

where v‖ is the particle longitudinal velocity,

vθd =
1

ωB
Bϕbϕ

(
v2
‖κψ +

µ

M

∂B

∂ψ

)
, (3)

the Boozer coordinates5 ψ, θ and ϕ are used, the corresponding superscripts/subscripts denote

the contra-/co-variant vector components, ~B is the magnetic field, ~b = ~B/B, ~κ is the field line

curvature, µ is the particle magnetic moment, ωB = eB/(Mc), M and e are the particle mass and

charge, respectively.

It follows from Eqs. (1) and (2) that

〈X〉 = ωb

∮ 2π

0

dθ

2π

X

|v‖bθ + vθd|
, and τb =

∮ 2π

0

dθ

|v‖bθ + vθd|
, (4)

where the integrals are taken along the particle orbits, τb is the transit time, ωb = 2π/τb is the

transit frequency. Using Eq. (4), we obtain:

〈ϕ̇〉 = σvωbq̄ + ωD, (5)

where q̄ =
∮
qdθ/(2π), and
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ωD = −〈qvθd〉. (6)

According to Eq. (5), the toroidal motion consists of the motion along the field lines at a flux

surface where the safety factor equals to q̄ and the average drift motion with the frequency ωD,

which we will refer to as the precession frequency. However, this definition of the precession

frequency is not unique; e.g., it is possible to choose any other flux surface crossed by the particle

during its orbital motion instead of the q = q̄ surface as a reference surface. It is clear that the

difference between the magnitudes of ωD defined in different ways can be considerable when the

magnetic shear is not small and the orbit width is sufficiently large. However, different definitions

of the precession frequency do not affect 〈ϕ̇〉, which is the only important (for the plasma stability

and the particle transport) quantity associated with the average particle motion in the toroidal

direction.

Let us calculate ωD for the particles with the vanishing magnetic moment (µ = 0) in a plasma

with a circular cross section. In this case the component κψ required to know vθd can be written

as follows, see Appendix A:

κψ = − 1

B0rR

[
∂R

∂r
+

ε

q2
+O(ε2)

]
, (7)

where ε = r/R0, R0 is the radius of the magnetic axis, the radial coordinate r is defined by

ψ(r) = B0r
2/2 with B0 the magnetic field at the magnetic axis, and R = R(r, θ) is the distance

from the major axis of the torus. As shown in Appendix A, R(r, θ) is given by

R = R0

{
1 + ε cos θ −∆(r)/R0 + 0.5ε (∆′ + ε) [cos(2θ)− 1] +O(ε3)

}
, (8)

where ∆(r) is the Shafranov shift, ∆ ≥ 0 with ∆(0) = 0, ∆′ = d∆/dr. Note that this expression

for R(r, θ) coincides with the corresponding expressions of Refs.6,1 because the coordinates used

in those works are equivalent to the Boozer coordinates in the considered approximation (see

Appendix A for details).

The first and second terms in Eq. (7) describe the contribution to the curvature of the toroidal

field and the poloidal field, respectively. The second term does not depend on plasma pressure
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and takes into account that BR 6= const because of plasma paramagnetism. Therefore, we will

refer to the contribution of this term to the precession as the “paramagnetic precession”.

Using Eqs. (3) and (7), we write the poloidal contravariant component of the drift velocity as

vθd = − ρv

rR

(
∂R

∂r
+

ε

q2

)
, (9)

where ρ = v/ωB. We consider circulating particles with narrow orbits. Therefore, we have

r = r∗ + ∆b, where ∆b ≈ σvqρ cos θ with σv = sgnv‖ is the orbit half-width and r∗ is the radius

where θ = π/2. One can see that in this case vθd/v‖b
θ ≈ −∆b/r∗. Taking this into account and

noting that bθqR = 1 + O(ε2) and q = q∗(1 + ŝ∆b/r∗) with ŝ the magnetic shear, q∗ = q(r∗), we

can write:

1

r(v‖bθ + vθd)
=
q∗R
r∗v‖

[
1 + ŝ

∆b

r∗
+O

(
∆2
b

r2∗

)
+O

(
ε2
)]
. (10)

Now we easily calculate the integral in Eq. (6). Then, taking ωb = v/(qR0), we obtain:

ωD ≡ −〈qvθd〉 = ξ
v2

R2
0ωB0

, (11)

where

ξ = q

(
1

q2
− 1− 3∆′

2ε
− r∆′′

2ε
+ σv

ŝqρ

rε

)
, (12)

ωB0 = eB0/(Mc) with B0 = B(r = 0), and ∆′′ = d2∆/dr2.

The derivatives of the Shafranov shift can be expressed in terms of plasma parameters as

follows, see, e.g., Ref.7:

∆′ = ε(βθ + 0.5li), (13)

r∆′′ = ε[1− (3− 2ŝ)(βθ + 0.5li)] + αp, (14)

where li = 2/(r2B2
pol)

∫ r
0 B

2
polrdr is the internal inductance, Bpol is the poloidal magnetic field,

βθ = 8π(p̄ − p)/B2
pol with p̄ = (2/r2)

∫ r
0 prdr, p the plasma pressure, and αp = −(8πp′/B2

0)R0q
2.

Using Eqs. (13) and (14), we write ξ as follows:
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ξ = q−1 − q [1.5 + ŝ(βθ + 0.5li) + α̃p] + σvŝq
2ρR0

r2
, (15)

where α̃p = αp/(2εq
2) = −R2

0dβ̂/dr
2 with β̂ = 8πp/B2

0 is the quantity associated with plasma

diamagnetism. The first term in Eq. (15) describes the paramagnetic precession. The last term

takes into account the finite orbit width of the particle. It leads to a contribution of the order

of ρ2 in ωd; nevertheless, it is considerable when ρ is sufficiently large, which can be the case in

spherical tori.

Note that Eq. (15) agrees with the corresponding result of Ref.1 but contains two extra terms,

the first and last ones (when making this comparison, one should allow for the fact that ωD was

defined as ωD = 〈vθd〉 in Ref.1). This implies that the plasma paramagnetism and finite orbit width

were not taken into account in Ref.1.

It follows from Eq. (15) that the magnitude of ξ can considerably vary, depending on plasma

parameters. Furthermore, the sign of ξ can change. For instance, ξ = −0.5 in a shearless cold

plasma with q = 1, i.e., the precession velocity has the direction opposite to that of the well-

trapped particles, |ξ| growing with q. Finite plasma pressure and the concomitant diamagnetism

strongly enhance the precession when β is high, leading to α̃p > 1. The presence of the shear

increases |ξ| (but ξ < 0) when σv < 0 and can decrease it or reverse its sign when σv > 0. We

conclude from this that the largest precession takes place for counter-passing particles in plasmas

with high β and considerable shear, in which case |ξ| � 1 even for q ∼ 1. Note that the maximum

|ξ| can be estimated as qR0/r and the maximum ωD/(qωb), as qρ/r [this follows from the inequality

ωD ≤ (qvθD)|max].
One can see that plasma shaping has a considerable influence on the precession. First of all, it

reduces vd (for given q) and the orbit width ∆b by a factor of k, where k is the plasma elongation.

Therefore, the last term in Eq. (12) will be decreased by a factor of k2. The dependence of other

terms on k is more complicated. The effect of plasma shaping on the precession is studied in the

next section, where near-axis particles are considered.
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III. PRECESSION OF CIRCULATING AND POLOIDALLY TRAPPED PARTICLES

IN THE NEAR-AXIS REGION

A. Particles with narrow orbits in non-circular plasmas

In order to study the precession of the near-axis particles, it is convenient to use the following

expansion of the magnetic field strength in a Taylor series (we restrict ourselves to second-order

terms):

B = B0(1− ε cos θ + αε2 + σε2 cos2 θ), (16)

where α and σ are parameters. Equation (16) is valid for plasmas of any shape of the cross-section

with up-down symmetry. It is based on the results of Refs.8,9 and was used to study the precession

in Refs.4,1. The parameters α and σ were evaluated in Ref.4 by adjusting visually the magnetic

field strength given by Eq. (16) to that in a numerically calculated high-β equilibrium in the NSTX

spherical torus (National Spherical Torus eXperiment10), the aim being to have agreement in as

large region as possible (rather than to have the best agreement in the near-axis region). Such an

approach is rather rough; in addition, it does not enable one to determine the dependence of α

and σ on plasma parameters. Therefore, in Appendix B of this work we calculate α and σ in the

near-axis region in terms of plasma parameters, the Boozer coordinates being used. The obtained

expressions are given below:

α = − k2

2q2
0

+
9k2 + 2

6k2 + 2
+

3k2 − 2

3k2 + 1

δR0

r
+

(
1

2
+

3q2
0

3k2 + 1

)
α̃p, (17)

σ =
k2 − 1

2q2
0

− k2

3k2 + 1
− 3k2 − 1

3k2 + 1

δR0

r
− 2q2

0

3k2 + 1
α̃p, (18)

where δ is the flux-surface triangularity (the horizontal shift of the upper and lower tips of the

flux surface divided by the flux-surface half-width at the equatorial plane), δR0/r = const, r =

[2ψ/(kB0)]
1/2 (in main order this coincides with the common definition of r as the half-width of

the flux surface at the equatorial plane). Equations (17) and (18) do not depend on the magnetic
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shear and non-parabolic pressure profiles, which implies that terms of higher order (in ε) should

be taken into account when the mentioned factors become important. Note that Eqs. (17) and

(18) are obtained in Boozer coordinates; another choice of the poloidal angle θ may result in a

modification of α and σ.

Equations (16)–(18) determine the magnetic field strength. Knowing B, we can use the well-

known expression for the covariant ψ-component of the field line curvature [see, e.g., Ref.7 and

Eq. (A2)], κψ = B−2(∂/∂ψ)(B2/2 + 4πp). Then

vθd =
Bϕbϕv

2

kωB0r

[(
−1 +

λ

2

B

B0

)
∂

∂r

1

B
+

4πv2
‖

v2B3

dp

dr

]
, (19)

where λ = µB0/E with E the particle energy. As in the previous section, we consider circulating

narrow-orbit particles, but in a non-circular plasma and with µ 6= 0. Substituting Eq. (19) in

Eq. (6), we obtain:

ωD =
ωbv

2

kωB0

∮
dθ

2π

q2Bϕ

|v‖|r
[(

1− λB

2B0

)
∂

∂r

1

B
− v2

‖
v2

4π

|B|3
dp

dr

]
. (20)

We restrict ourselves to well-circulating particles, assuming that λ � 1. Then v‖ =

σvv [(1− 0.5λB/B0) +O(λ2)]. Therefore, Eq. (20) can be written as follows (the terms of the

order of λ2 are neglected):

ωD =
ωbv

kωB0

∮
dθ

2π

q2

r
Bϕ

(
∂

∂r

1

B
− |v‖|

v

4π

|B|3
dp

dr

)
. (21)

Equations (11), (16), and (21) yield:

ξ =
q0
k

[
1− 2α − σ + α̃p

(
1− λ

2

)]
ωb
ωb0

, (22)

where

ωb
ωb0

≈ 1− 0.5λ
(
1 + αε2 + 0.5σε2

)
, (23)

and ωb0 = ωb(λ = 0) = v/(qR0). Now, putting α and σ given by Eqs. (17) and (18) in Eq. (23),

we obtain:
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ξ =
q0
k

[
k2 + 1

2q2
0

− 5k2 + 1

3k2 + 1
− 3

k2 − 1

3k2 + 1

δR0

r
−
(

4q2
0

3k2 + 1
+
λ

2

)
α̃p

]
ωb
ωb0

. (24)

Note that in the particular case of a shearless plasma with a circular cross section (k = 1, δ = 0)

Eq. (24) coincides with Eq. (15) for q = q0.

Equation (24) shows that the role of the paramagnetic precession grows with the plasma

elongation, whereas the role of the diamagnetic precession drops. Therefore, ξ vanishes at certain k

and becomes positive when k is large enough, in which case the paramagnetic precession dominates.

For instance, Eq. (24) yields ξ ≈ 0 for k = 2, q = 1, δR0/r = 0.8, α̃p = 1, and λ = 0. On the

other hand, the diamagnetic precession overcomes the paramagnetic precession in high-β plasmas

of spherical tori with moderate k and sufficiently peaked plasma pressure, which leads to |ξ| > 1

with ξ < 0. Taking, e.g., β = β0(1 − r2/a2)2 with a the plasma radius, β0 = 1, R0/a = 1.4,

δR0/r = 0.8, k = 1.5, λ = 0, we obtain ξ = −1.6.

B. Particles with arbitrary orbit width

Above we applied the common procedure of calculating the particle precession frequency, which

is based on the assumption that the ratio ∆rb/r is small. Below we will use another procedure,

which will enable us to describe also the precession of particles in the near-axis region (r <∼ ρ),

where ∆rb >∼ r, i.e., we will consider particles with arbitrary orbit width. The analysis below is

relevant to both circulating particles and the semi-trapped particles that have turning points in

the poloidal cross section (where θ̇ = 0) and are characterized by small λ. Such semi-trapped

particles do not change the sign of v‖ in the course of their orbital motion; therefore, as we will

see, the frequencies of their motion are described by the same formulae as those of the circulating

particles. At the same time, as their orbits do not encircle the magnetic axis, 〈θ̇〉 = 0, which is of

importance for their interaction with some electromagnetic perturbations. Note that the analysis

below is restricted by the applicability of the approximation of B given by Eqs. (16)–(18).

Considering energetic particles in a steady-state axisymmetric configuration, we neglect the

electric field and choose the gauge for the electromagnetic field in the Boozer coordinates as
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follows:

Aψ = 0, Aθ = ψ, Aϕ = −ψp = −
∫ ψ

0

dψ

q(ψ)
, Φ = 0, (25)

where ~A and Φ are the vector and scalar potentials of the electromagnetic field, respectively; ψp

is the poloidal magnetic flux.

The action-angle formalism provides a convenient way to calculate the frequencies of the parti-

cle motion.11 The guiding-center Lagrangian12 takes the following form in the action-angle variables

(see, e.g., Ref.13 for details):

L = Jθ
˙̃
θ + Jϕ ˙̃ϕ− E (26)

where θ̃ and ϕ̃ are specially defined poloidal and toroidal coordinates on the drift surfaces, respec-

tively (canonical angles);

Jθ(µ, E, Jϕ) =
1

2π

∮
Jϕ=const,ϕ=const

d~r ·
(
e

c
~A +Mv‖~b

)
=

e

2πc

∮
Jϕ=const

[
dθ
(
ψ + ρ‖Bθ

)
+ dψρ‖Bψ

]
, (27)

is the poloidal action; ρ‖ = v‖/ωB ; Jϕ(ψ, θ, µ, E) = (e/c)(−ψp + ρ‖Bϕ) is the toroidal canonical

angular momentum (toroidal action). Jθ and Jϕ are, in fact, the integrals (divided by 2π) of the

canonical momentum along arbitrary poloidal and toroidal contours, respectively, lying on the

particle drift torus. One can show, in particular, that Jθ reduces to the longitudinal adiabatic

invariant,
∮
dsMv‖/(2π), for the trapped particles with narrow orbits. In Eq. (26) we consider

θ̃, ϕ̃, E and Jϕ as variables and Jθ as a function of E and Jϕ. As the average frequencies of the

toroidal and poloidal motion of a particle cannot depend on the choice of the poloidal and toroidal

coordinates, we can obtain them from the Euler-Lagrange equations resulting from Eq. (26):

ωb =

(
∂Jθ
∂E

)−1

,
ωϕ
ωb

= − ∂Jθ
∂Jϕ

. (28)

where ωϕ is the frequency of the toroidal motion, ωb is the bounce/transit frequency. Note that

Eq. (28) is exact for given actions, and Eq. (27) is exact in the framework of the first-order La-

grangian (or Hamiltonian) guiding-center theory; therefore, hitherto we have used no assumptions

on the orbit width, the aspect ratio etc.
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Thus, we need to calculate Jθ as a function of Jϕ, E, and µ. With this aim, we assume that

ρ/R0 ∼ r/a ∼ r/R0 ∼ ε� 1, r2dβ̂/d(r2) ∼ ε2 (this implies, in particular, that α̃p ∼ α ∼ σ ∼ 1).

This ordering is relevant, in particular, to near-axis particles in a spherical torus with moderately

high β. In addition, we assume that λε� 1−λ, which means that the particles are well circulating

in the sense that v‖ is not close to zero anywhere on the particle orbits. Nevertheless, we do not

demand that the orbits enclose the magnetic axis, allowing for poloidally trapped particles.

Using Eq. (16), we obtain

ρ‖ = ρ‖0

[
1 + Λ(x− αx2 − αy2 − σx2) +

8− 12λ + 3λ2

8(1− λ)2
x2 +O(ε3)

]
, (29)

where ρ‖0 = ρ‖(r = 0) = (1 − λ)1/2σvv/ωB0, Λ = (1 − λ/2)/(1 − λ), x = (r/R0) cos θ, y =

(r/R0) sin θ. It follows from Eq. (B11) that ψp = kB0r
2/(2q0)[1 +O(ε2)]. Then, using Eq. (B12),

we can write the following asymptotic expression for Jϕ:

Jϕ =
eB0R

2
0

c

[
ρ‖
R0

+ Λ
ρ‖
R0
x− Axx

2 − Ayy
2 +O(ε4)

]

= −eB0R
2
0

c

[
Axξ

2 + Ayy
2 −C +O(ε4)

]
, (30)

where ξ = x− d, d = Λρ‖0/(2AxR0),

Ax = Ay +
ρ‖
R0

[
Λσ − 8− 12λ + 3λ2

8(1− λ)2

]
, (31)

Ay =
k

2q0
+
ρ‖
R0

(
Λα − k

2
R0Bϕ(2)

)
, (32)

and C = ρ‖/R0 + ρ2
‖Λ

2/(4AxR
2
0). Thus, in the coordinates (ξ, y) the particle orbits are ellipses

with the center at the origin (to the considered order).

Equation (27) takes the following form in these coordinates:

Jθ = σv
eB0R

2
0

2πc

∫
S
dξdy

[
k + 2

ρ‖Bθ

r2B0

+ (ξ + d)
Bθ

r2B0

∂ρ‖
∂ξ

+ y
Bθ

r2B0

∂ρ‖
∂y

+ ky
∂

∂ξ
(ρ‖Bψ)− k(ξ + d)

∂

∂y
(ρ‖Bψ) +O(ε2)

]
, (33)
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where S(Jϕ, µ, E) is the interior of the contour Jϕ = const on the (ξ, y) plane. Note that σv

has arisen in Eq. (33) because the integration in Eq. (33) is performed in the clockwise direction

for the counter-circulating particles and in the counterclockwise direction for the co-circulating

ones. Taking into account Eqs. (29), (B22), and (B27), we find that all non-constant terms are

negligible:

Jθ = σv
eB0R

2
0

2πc

∫
S
dξdy

[
k + (k2 + 1)

ρ‖0
q0R0

+O(ε2)

]
. (34)

Recalling that S is the interior of the ellipse described by Eq. (30), we obtain:

Jθ =
σv
2

[
k + (k2 + 1)

ρ‖0
q0R0

]
(AxAy)

−1/2

(
eB0R

2
0

2πc
C − Jϕ

)
+O(ε4). (35)

Finally, substituting Eq. (35) for Jθ and Eq. (B20) for Bϕ(2) in Eq. (28) and taking into account

that C−2πcJϕ/(eB0R
2
0) ∼ ε2 (because this quantity is the square of the ellipse S of the size ∼ ε),

we obtain

ωϕ
ωb

= σvq0

{
1− q0ρ‖0

kR0

[
(2α+ σ)Λ− 1− 3

2
λ + 3

8
λ2

(1− λ)2
− α̃p

]
+O(ε2)

}
, (36)

ωb =
|v‖0|
q0R0

{
1 +

q0ρ‖0
kR0

[
(2α+ σ)Λ− 2− 7

2
λ + 9

8
λ2

(1− λ)2
− α̃p

]
+O(ε2)

}
, (37)

ωϕ =
v‖0
R0

[
1− ρ‖0q0

kR0

1− 2λ + 3
4
λ2

(1− λ)2
+O(ε2)

]
, (38)

where v‖0 = v‖(r = 0) = (1−λ)1/2σvv. We observe that the frequencies given by Eqs. (36)–(38) do

not depend on Jϕ and, therefore, are the same for conventional circulating and poloidally trapped

particles. For the circulating particles, these obtained results agree with those obtained above for

the narrow-orbit case. Indeed, expanding the ρ‖ term of Eq. (36) in degrees of λ for λ � 1, we

see that the two approaches give the same expressions for the precession [see Eq. (22)].

For the semi-trapped particles, we can interpret the toroidal motion described by Eq. (38) in

two ways. First, one can show that ωϕ equals to v‖/R at the point x = d, y = 0, which is the

center of the orbits and the location of the stagnation orbit for given E and µ. Hence, like for

12



circulating particles, the toroidal frequency can be interpreted as resulting from the longitudinal

motion. Second, we recall that the particles are trapped in the poloidal direction and, in fact,

do not follow the field lines. The well-known formula for the toroidal precession frequency of the

trapped particles gives ωϕ = qvθd for the particles in the vicinity of the stagnation orbit (when

cos θ ≈ 1). As for such particles the vertical velocities due to the longitudinal and drift motion

compensate for each other, vθd = v‖/(qR0), we recover the main term of Eq. (38). Thus, the main

term of Eq. (38) can also be considered as a result of the toroidal precession of semi-trapped

particles.

IV. SUMMARY AND CONCLUSIONS

We have considered the toroidal precession by using both the conventional approach applicable

to particles with ∆b � r and the approach based on the action integrals and quasi-cartesian

coordinates. The latter enabled us to consider near-axis well-circulating particles and semi-trapped

particles [i.e., the particles that do not encircle the magnetic axis but do not change sgn(v‖)

during their motion] with small λ = µB0/E, which is especially important for the energetic ions

with the large Larmor radius (e.g., in spherical tori). In addition, an analysis of equilibrium for

a plasma with a non-circular cross section is carried out in the paraxial approximation. Due

to this analysis, coefficients in a Taylor expansion of the magnetic field strength are found in

terms of plasma characteristics. An expression for the radial component of the magnetic field line

curvature (κψ) is derived, taking into account the poloidal magnetic field, which is responsible for

the paramagnetic precession. Finally, we obtained expressions for the precession frequency, which

are convenient for the practical use.

A general conclusion which follows from our work is that the precession of the toroidally passing

particles can strongly vary (0 ≤ |ξ| <∼ R0/r, and ξ can be either positive or negative), depending

on several factors. These factors are the plasma shaping and β, the aspect ratio R0/r, and the

safety factor profile. Because of this, the effects of the precession of toroidally passing energetic

13



ions on plasma instabilities (the fishbone mode, sawtooth oscillations etc.) and the transport of

the energetic ions in MHD-active plasmas are rather sensitive to specific experimental conditions.
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APPENDIX A: FIELD LINE CIRVATURE IN A CIRCULAR TOKAMAK

In this Appendix we calculate the field line curvature in an axisymmetric toroidal magnetic

configuration with a circular cross section. We assume that ε ≡ r/R0 � 1 and ∆β̂ ≡ 8π∆p/B2
0 ∼

ε2, where ∆p is the pressure variation in the considered region, which means that we consider

either a large-aspect-ratio tokamak or the central part of a spherical torus with moderately high

central β.

It follows from the force balance equation,

(∇× ~B)× ~B = 4π∇p, (A1)

that the field line curvature, ~κ = (~b · ∇)~b, can be found as follows:

~κ =
1

2B2

[
∇(B2 + 8πp)−~b∇‖B

2
]
, (A2)

As ∇‖B ∼ ε∇⊥B, the second term in Eq. (A2) is ε2 times smaller than the first one and will be

neglected.

An axisymmetric magnetic field can be presented in the form

~B = F (r)~e ϕ +
1√
g
~eθ
dψp
dr

, (A3)
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where the coordinate system (r, θ, ϕ) is taken so that the radial coordinate is constant on each flux

surface; F (r) = B0R0[1 + O(ε2)] is a function of r describing the plasma diamagnetism; ~ej and

~e j, j = r, θ, ϕ, are the corresponding co- and contravariant base vectors; g is the determinant of

the metric tensor. Note that we do not assume in this Appendix that we use Boozer coordinates.

One can show that in a circular tokamak to main order in ε

gθθ = r2,
√
g = rR0, grθ ∼ εr, (A4)

where grθ and gθθ are the corresponding components of the covariant metric tensor (see, e.g.,

Ref.14). Then the poloidal component of the magnetic field, Bpol, in a circular tokamak [which is

described by the second term of Eq. (A3)] is constant over a flux surface to main order,

Bpol =

(
gθθ
g

)1/2
dΨ

dr
=
ε

q
B0[1 +O(ε)] (A5)

From Eqs. (A2), (A3), and (A5), the curvature is

~κ =
1

2B2
∇
(
F 2

R2
+
ε2B2

0

q2
+ 8πp

)
+O(ε2R−1

0 ). (A6)

Using Eqs. (A3)–(A5), we can write Eq. (A1) as follows:

8π
dp

dr
+

1

R2

d(F 2)

dr
+

d

dr

ε2B2
0

q2
= −2ε2

rq2
B2

0 +O
(
ε3
B2

0

r

)
. (A7)

Comparing Eqs. (A6) and (A7), we find

~κ = − 1

R
∇R− ε2

rq2
∇r +O(ε2R−1

0 ). (A8)

Equation (7) immediately follows from Eq. (A8). The first and second terms of Eq. (A8) can be

interpreted as the contributions of the toroidal and poloidal curvature of the field lines, respectively.

In particular, we recover from Eq. (A8) the following formula for the scalar curvature:15

κ =
1

R

(
1 +

2ε

q2
∇R · ∇r

)1/2

= R−1
0

[
1 + ε

(
q−2 − 1

)
cos θ

]
, (A9)

To find κr from Eq. (A8) with the accuracy∼ ε, which is required for calculating the precession,

we need to determine ∂R/∂r with the same accuracy. It turns out that ∂R/∂r at this order depends

15



on the choice of the poloidal angle. Taking into account that non-circularity effects appear only

in the second order in a circular tokamak, we present the flux surfaces as follows:14

R = R0 −∆(r) + r cos ϑ+O(rε2), (A10)

z = r sinϑ+O(rε2), (A11)

ϑ = θ + γ(r) sin θ +O(ε2), (A12)

where ∆ ∼ εr, ϑ is the “geometrical” poloidal angle, θ is the poloidal angle of the chosen coordinate

system, γ ∼ ε is the angle correction providing the desired properties of the coordinates. It follows

from Eqs. (A10)–(A12) that the metric tensor determinant of the coordinates (r, θ, ϕ) is given by

√
g = R0r[1 + (ε+ γ −∆′) cos θ +O(ε2)]. (A13)

Equation (B2) shows that in Boozer coordinates the product B2√g does not depend on θ.

Then, using Eqs. (16) and (A13), we obtain

γ = ε+ ∆′. (A14)

Equation (8) follows from Eqs. (A10), (A12), and (A14).

Another widely used coordinate system is the system of coordinates in which the toroidal angle

φ is the “geometrical” angle and the poloidal angle is chosen so that the field lines are “straight”,

i.e., the ratio Bφ/Bθ = q(r) does not depend on θ. In such coordinates Bφ = Bφ/R
2, and it

follows from Eq. (A3) that
√
g/R2 is independent on θ. To required order, this condition also

results in Eq. (A14), and R in such coordinates is also given by Eq. (8). In fact, as one can see

from Eq. (B21), the difference between the Boozer toroidal angle and the “geometrical” one is

very small, ∼ ε3, when k = 1.

The Meiss–Hazeltine flux coordinates6 are defined by the condition that the radial covariant

component of ~B vanishes. To considered order, they coincide with the “geometrical” flux coordi-

nates in a circular tokamak. Therefore, Eq. (8) holds in these coordinates, too. The fact that the
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difference between the Boozer and Meiss–Hazeltine angles is small, ∼ ε3 is not surprising since Bψ

in the Boozer coordinates is rather small, see Eq. (B27). Moreover, unlike the similar estimate of

the difference between the “geometrical” and Boozer coordinates, this estimate holds also in the

case of k 6= 1.

APPENDIX B: AXISYMMETRIC EQUILIBRIUM IN THE PARAXIAL

APPROXIMATION

The aim of the calculations presented in this Appendix is to obtain the parameters of a general

plasma equilibrium with axial and up-down symmetries in the vicinity of the magnetic axis. The

derivation employs a Taylor expansion of the plasma equilibrium in the radial coordinate, the ratio

of the flux-surface radius to the other characteristic lengths being used as a small parameter. An

advantage of this approach is its simplicity; that is why it was used for general three-dimensional

configurations.8,16,17 However, its serious drawback is that one has to get to high order in order to

study any effects of the magnetic shear, non-parabolic pressure profiles etc. We use a modification

of this approach for the Boozer flux coordinates, which was suggested in Ref.18 (see also Ref.19).

The contravariant and covariant representations of the magnetic field in Boozer coordinates

have the form5

~B =
1√
g
~eϕ +

ι(ψ)√
g
~eθ

= Bψ(ψ, θ)∇ψ+Bθ(ψ)∇θ+Bϕ(ψ)∇ϕ, (B1)

where ~eθ ≡ ∂~r/∂θ and ~eϕ ≡ ∂~r/∂ϕ are covariant base vectors, g is the determinant of the metric

tensor, ι = q−1. It follows from Eq. (B1) that

√
g = B−2(Bϕ + ιBθ). (B2)

Following Ref.18, we write the spatial position of a point, ~r, as a function of the flux coordinates

(ψ, θ, ϕ):
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~r(ψ, θ, ϕ) = ~r0(ϕ) +X(ψ, θ)~̂κ(ϕ) + Y (ψ, θ)~̂b(ϕ) + Z(ψ, θ)~̂τ(ϕ), (B3)

where ~r0(ϕ) is the spatial position of the magnetic axis; ~̂τ (ϕ), ~̂κ(ϕ), and ~̂b(ϕ) are the tangent,

normal, and binormal (the Frenet unit vectors) of the magnetic axis, respectively. The unknown

functions X(ψ, θ), Y (ψ, θ), and Z(ψ, θ) are assumed to satisfy the condition X(ψ = 0) = Y (ψ =

0) = Z(ψ = 0) = 0. Then they are presented as power series in ε ≡ ψ1/2:

X(ψ, θ) = εX(1)(θ) + ε2X(2)(θ) + ε3X(3)(θ) + . . . , (B4)

and the same for Y (ψ, θ) and Z(ψ, θ). If the functions ψ(~x) and ϕ(~x) are analytic, as well as

θ(~x) aside from ψ = 0, the Fourier series of X(1)(θ), Y(1)(θ), and Z(1)(θ) in θ can contain only first

harmonics,

X(1)(θ) = X(1)s sin θ +X(1)c cos θ; (B5)

those of X(2)(θ), Y(2)(θ), and Z(2)(θ), zeroth and second harmonics; etc.18

Expressions for the covariant base vectors ~eψ ≡ ∂~r/∂ψ, ~eθ, and ~eϕ can be obtained by differ-

entiating Eq. (B3):

~eψ =
1

2ε

(
∂X

∂ε
~̂κ+

∂Y

∂ε
~̂b+

∂Z

∂ε
~̂τ

)
, (B6)

~eθ =
∂X

∂θ
~̂κ+

∂Y

∂θ
~̂b+

∂Z

∂θ
~̂τ , (B7)

~eϕ =
Z

R0

dl

dϕ
~̂κ +

(
dl

dϕ
− X

R0

dl

dϕ

)
~̂τ , (B8)

where l(ϕ) is the distance along the magnetic axis, dl/dϕ = |d~r0/dϕ|, and the Frenet formulae20

have been used to find the ϕ derivatives of the Frenet unit vectors.

It is also assumed that18

B(ψ, θ) = B(0) +B(1)(θ)ε+B(2)(θ)ε
2 + . . . , (B9)

Bψ(ψ, θ) = Bψ(0) +Bψ(1)(θ)ε+Bψ(2)(θ)ε
2 + . . . , (B10)

18



ι(ψ) = ι(0) + ι(2)ε
2 + ι(4)ε

4 + . . . , (B11)

Bϕ(ψ) = Bϕ(0) +Bϕ(2)ε
2 +Bϕ(4)ε

4 + . . . , (B12)

Bθ(ψ) = Bθ(2)ε
2 +Bθ(4)ε

4 + . . . , (B13)

with the Fourier spectra of (B−2)(i)(θ) and Bψ(i)(θ) obeying the same rules as those of X(i)(θ).

Using relationships between the Fourier harmonics of B and Bψ,18 one can show that Bψ(0) = 0

in axisymmetric configurations.

To find the parameters of the equilibrium, we put Eqs. (B6)–(B8) in the equations

~Ξ ≡ ι~eθ + ~eϕ − Bψ~eθ×~eϕ − Bθ~eϕ×~eψ −Bϕ~eψ×~eθ = 0, (B14)

and

B−2(ψ, θ, ϕ) =
|~eϕ + ι~eθ|2

(Bϕ + ιBθ)2
, (B15)

which follow from Eqs. (B1) and (B2) and the well known relationships between the co- and

contravariant base vectors: ∇ψ = ~eθ×~eϕ/√g etc. Then we will expand the resulting equations

in powers of ε and analyze them order by order. The same will be done with the force balance

equation [Eq. (A1)], which takes the following form in the Boozer coordinates:

dp

dψ
=

1

4π
√
g

(
ι
∂Bψ

∂θ
− dBϕ

dψ
− ι

dBθ

dψ

)
. (B16)

The ε0 order of Eq. (B15) yields:

dl

dϕ
=
Bϕ(0)

B(0)

; (B17)

hence, Bϕ(0) = B(0)R0. Using Eq. (B17), we present the equation ~̂τ · ~Ξ(0) = 0 in the form

X(1)

∂Y(1)

∂θ
− Y(1)

X(1)

∂θ
=

2

B(0)

. (B18)
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Having in mind Eq. (B18), the assumed dependence of X(1) and Y(1) on θ [see Eq. (B5)], and

the up-down symmetry of the configuration, we conclude that they can be put without loss of

generality in the following form:

X(1) =

(
2

kB(0)

)1/2

cos θ, Y(1) =

(
2k

B(0)

)1/2

sin θ, (B19)

where k is the elongation (ellipticity) of the flux surfaces. It follows from the equation (X(1)~̂κ +

Y(1)
~̂b) · ~Ξ(0) = 0 that Z(1) = 0 and, thus, Z = O(ε2). Finally, Eq. (B16) taken in zero order results

in the following relationship:

Bϕ(2) = −Bϕ(0)

2
β(2)− ι(0)Bθ(2), (B20)

where β(2) = 8πp(2)/B
2
(0).

Then we proceed to the first-order equations. The equation (X(1)~̂κ + Y(1)
~̂b) · ~Ξ(1) = 0 yields:

Z(2) = −k − k−1

2Bϕ(0)

ι(0) sin(2θ). (B21)

Substituting Z(2), X(1), and Y(1) given by Eqs. (B19) and (B21) in the equation (Y(1)~̂κ−X(1)
~̂b)·~Ξ(1) =

0, we arrive after some algebra at the following relationship between the toroidal current (Bθ) and

ι near the magnetic axis:

Bθ(2) =
k + k−1

R0
ι(0). (B22)

The remaining first-order component of Eq. (B14), ~̂τ · ~Ξ(1) = 0, yields:

∂X(1)

∂θ
Y(2) − ∂Y(1)

∂θ
X(2) +

Y(1)

2

∂X(2)

∂θ
− X(1)

2

∂Y(2)

∂θ
=

X(1)

B(0)R0
. (B23)

To proceed further, we need to specify the dependence of X(2) and Y(2) on θ. Taking account of

the up-down symmetry and the assumptions made above on the harmonic composition of X(i) and

Y(i), we take X(2) and Y(2) in the form

X(2) = X(2)0 +X(2)c cos(2θ), Y(2) = Y(2)s sin(2θ). (B24)

Substituting Eqs. (B19) and (B19) into Eq. (B23), we obtain
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Y(2)s + kX(2)c + kX(2)0 +R−1
0 B−1

(0) = 0. (B25)

The first order of Eq. (B15) gives us the first-order correction to the magnetic field strength:

B(1) = B(0)

X(1)

R0
. (B26)

Expanding Eq. (B16) in powers of ε, we obtain in first order:

Bψ(1) = −
(

2B(0)

k

)1/2
β(2)

ι(0)

sin θ. (B27)

Proceeding to the second order, we put the obtained expressions for X(1,2), Y(1,2), Z(2), Bϕ(0),

Bθ(2), and Bψ(1) in the equation (X(1)~̂κ+ Y(1)
~̂b) · ~Ξ(2) = 0 to find:

Z(3) =

(
2

kB(0)

)1/2
ι(0)

6R0

{[
k − k−1

2B(0)R0
+ (k2 − 1)X(2)c + (k2 + 3)X(2)0

+ (k − k−1)Y(2)s − 4β(2)R0

ι2(0)

 sin θ

+

[
k − k−1

2B(0)R0
+ (k2 + 3)X(2)c + (k2 − 1)X(2)0 − (3k + k−1)Y(2)s

]
sin(3θ)

}
. (B28)

Performing the same substitutions [and substituting Eq. (B28) for Z(3) as well] in the equation

(Y(1)~̂κ − X(1)
~̂b) · ~Ξ(2) = 0, we observe that both sin(θ) and sin(3θ) harmonics of the resulting

equation do not yield independent equations: They are both reduced to the equation

(k2 − 1)Y(2)s − 2k(k2 − 1)X(2)c − 2k3X(2)0 − k
β(2)R0

ι2(0)

+
2k2 + 1

R0B(0)

= 0. (B29)

Thus, we have obtained only two independent equations, Eqs. (B25) and (B29), for the three

parameters describing the flux surface shape in second order, X(2)0, X(2)c, and Y(2)s. Analyzing the

shape distortions due to these parameters, one can see that they are responsible for the Shafra-

nov shift and triangularity of the flux surfaces, as well as for the poloidal angle correction that

provides that the coordinates are indeed Boozer ones. Therefore, one could expect that the equa-

tions for these parameters are underdetermined, otherwise the triangularity of the configuration

would be predetermined, which is counterintuitive. Let us determine the parameter combina-

tions responsible for the Shafranov shift and triangularity explicitly. Applying the transformation

θ → θ + ες sin θ to the parametric equations of the flux surfaces,
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X = ε

(
2

kB(0)

)1/2

cos θ + ε2[X(2)0 +X(2)c cos(2θ)], (B30)

Y = ε

(
2k

B(0)

)1/2

sin θ + ε2Y(2)s sin(2θ), (B31)

we see that the parameters under consideration are transformed as follows:

X(2)0 = X(2)0 − ς̃ , X(2)c = X(2)c + ς̃ , Y(2)s = Y(2)s + kς̃, (B32)

where ς̃ = ς/(2kB(0))
1/2. As the flux surface shape is invariant to this transformation, the expres-

sions for the Shafranov shift and triangularity must be invariant, too. The triangularity cannot

depend on X(2)0 since the variation of this parameter just shifts the flux surfaces without changing

their shape. Hence, the only possible expression for the triangularity (up to a constant factor) is

d = Y(2)s/k−X(2)c. Similarly, as Y(2)s does not affect the flux surface at the equatorial plane, the

only reasonable combination for the Shafranov shift is D = X(2)0 +X(2)c, which does not include

Y(2)s and is invariant to the transformation given by Eq. (B32). One can easily find relationship

between the parameters D and d and the conventional Shafranov shift, ∆, and triangularity, δ.

We define the radial coordinate, r, on a flux surface as the half-width of the surface at the equa-

torial plane. Then in main order the relation between r and ψ is given by ψ = kB(0)r
2/2, and we

observe from Eq. (B30) that the Shafranov shift, i.e., the shift of the flux surfaces in the curvature

direction at the equatorial plane is given by ∆ = kB(0)r
2D. To express triangularity in terms of

d, it is convenient to set Y(2)s = 0 use the transformation given by Eq. (B32). Then the upper

and lower tips of a flux surface correspond to θ = ±π/2, and we see from Eq. (B30) that the

triangularity defined as the shift of the tips in the curvature direction divided by the radius is

δ = kB(0)rd.

Solving Eqs. (B25) and (B29) together with the definition of d, we obtain

X(2)0 =
1

3k2 + 1

3(k2 − 1)d +
5k2 + 1

kB(0)R0
− 4β(2)R0

ι2(0)

 , (B33)

X(2)c =
1

3k2 + 1

−(3k2 − 1)d − 4k2 + 1

kB(0)R0
+

2β(2)R0

ι2(0)

 , (B34)
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from which we find the Shafranov shift near the magnetic axis:

∆ =
1

3k2 + 1

[
−2δr +

k2r2

R0
− 4r2R0q

2
0

dβ

d(r2)

∣∣∣∣∣
r=0

]
. (B35)

After substituting Eqs. (B19)–(B22) and (B24) for X(1,2), Y(1,2), Z(2), Bϕ(0), Bθ(2), and Bϕ(2),

the second order of Eq. (B15) yields:

B(2) = B(0)

{
−β(2)

2
− kι2(0)

B(0)R0

+
X(2)0 −X(2)c

R0

+

[
2

kB(0)R
2
0

+
(k − k−1)ι2(0)

B(0)R0
+ 2

X(2)c

R0

]
cos2(θ)

}
. (B36)

The formulae for B used in our paper [Eqs. (16)–(18)] result from Eqs. (B9), (B26), and (B36)

after substituting Eq. (B33) for X(2)0 and Eq. (B34) for X(2)c and expressing ψ in terms of r and

d in terms of δ.
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