Batch Microreactor Studies of Lignin Depolymerization by Bases. 2. Aqueous Solvents

PDF Version Also Available for Download.

Description

Biomass feedstocks contain roughly 15-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels assume that the lignin coproduct will be utilized as boiler fuel. Yet, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller compounds. From Fiscal year 1997 through Fiscal year 2001, Sandia National Laboratories participated in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's ... continued below

Physical Description

51 pages

Creation Information

MILLER, JAMES E.; EVANS, LINDSEY; MUDD, JASON E. & BROWN, KARA A. May 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Biomass feedstocks contain roughly 15-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels assume that the lignin coproduct will be utilized as boiler fuel. Yet, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller compounds. From Fiscal year 1997 through Fiscal year 2001, Sandia National Laboratories participated in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to perform kinetic studies, examine the reaction chemistry, and to develop alternate BCD catalyst systems. This report summarizes the work performed at Sandia during Fiscal Year 1999 through Fiscal Year 2001 with aqueous systems. Work with alcohol based systems is summarized in part 1 of this report. Our study of lignin depolymerization by aqueous NaOH showed that the primary factor governing the extent of lignin conversion is the NaOH:lignin ratio. NaOH concentration is at best a secondary issue. The maximum lignin conversion is achieved at NaOH:lignin mole ratios of 1.5-2. This is consistent with acidic compounds in the depolymerized lignin neutralizing the base catalyst. The addition of CaO to NaOH improves the reaction kinetics, but not the degree of lignin conversion. The combination of Na{sub 2}CO{sub 3} and CaO offers a cost saving alternative to NaOH that performs identically to NaOH on a per Na basis. A process where CaO is regenerated from CaCO{sub 3} could offer further advantages, as could recovering the Na as Na{sub 2}CO{sub 3} or NaHCO{sub 3} by neutralization of the product solution with CO2. Model compound studies show that two types of reactions involving methoxy substituents on the aromatic ring occur: methyl group migration between phenolic groups (making and breaking ether bonds) and the loss of methyl/methoxy groups from the aromatic ring (destruction of ether linkages). The migration reactions are significantly faster than the demethylation reactions, but ultimately demethylation processes predominates.

Physical Description

51 pages

Source

  • Other Information: PBD: 1 May 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2002-1318
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/800964 | External Link
  • Office of Scientific & Technical Information Report Number: 800964
  • Archival Resource Key: ark:/67531/metadc733414

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 11, 2016, 1:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 16

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MILLER, JAMES E.; EVANS, LINDSEY; MUDD, JASON E. & BROWN, KARA A. Batch Microreactor Studies of Lignin Depolymerization by Bases. 2. Aqueous Solvents, report, May 1, 2002; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc733414/: accessed April 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.