Reprint from

International DATA Series, Series A

SELECTED DATA ON MIXTURES

Volume 1992, No. 1, pages 45-49
Excess Volumes of Some Binary Mixtures Containing Chlorobenzene

W. E. Acree Jr.* and I-L. Teng
(Department of Chemistry, University of North Texas,
Denton, TX 76203-5068, USA)
Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances

Volume 1992, No. 1, pages 45-49

Excess Volumes of Some Binary Mixtures Containing Chlorobenzene

W. E. Acree Jr.* and I-L. Teng
(Department of Chemistry, University of North Texas,
Denton, TX 76203-5068, USA)

FIRST PUBLISHED RESULTS

2c. Excess volume, pp. 45-49

*Author to whom correspondence should be addressed

Published and distributed by Thermodynamics Research Center
The Texas A&M University System, College Station, TX 77843-3111
SELECTED DATA ON MIXTURES
International DATA Series*
2c. EXCESS VOLUME

Components: 1. Chlorobenzene, C₆H₅Cl
2. Heptane, C₇H₁₆

State: Binary system, single-phase liquid; pure components, both liquid

Variables: \(V^E \), molar excess volume
\(x_i \), mole fraction of component i

Parameters: \(T \), temperature
\(P \), pressure

Method: Calculation of \(V^E \) from density measurements at constant \(T \) and \(P \) and variable \(x_i \); ref. 1

Notes: \(P \), atm.

<table>
<thead>
<tr>
<th>(T/K = 298.15)</th>
<th>(x_1)</th>
<th>(V^E/10^{-9})</th>
<th>(m^3/mol^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1455</td>
<td>(-68)</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>0.2709</td>
<td>(-140)</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>0.3856</td>
<td>(-204)</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>0.4875</td>
<td>(-252)</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>0.5891</td>
<td>(-271)</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>0.6841</td>
<td>(-261)</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>0.7672</td>
<td>(-218)</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>0.8465</td>
<td>(-177)</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>0.9245</td>
<td>(-96)</td>
<td>171</td>
</tr>
</tbody>
</table>

Points, direct experimental \(V^E \) values; curves, \(V^E \)_calc calculated from the smoothing equation.

SMOOTHING EQUATION

\[V^E_{\text{calc}} = x_1 x_2 \sum_{i=1}^{n} a_i (x_1 - x_2)^{i-1} \]

Coeffs. \(a_i \) in the smoothing eq., std. deviation \(\sigma \) and max. deviation \(\sigma_m \) detd. by least-squares anal.

<table>
<thead>
<tr>
<th>(T/K)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(\sigma_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>(-1013)</td>
<td>(-566)</td>
<td>169</td>
<td>50</td>
<td>4.6</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

The std. deviations \(\sigma \) of the coeff. \(a_i \) are given in parentheses

\(\sigma_m = \max \left\{ |V^E_{\text{calc}} - V^E|; \sigma_a = \sqrt{\sum (V^E_{\text{calc}} - V^E)^2/(N - n)} \right\} \)

\(N \), no. of direct expl. values; \(n \), no. of coeff. \(a_i \)

All direct expl. values equally weighted

AUXILIARY INFORMATION

Apparatus: Vibrating tube densimeter (Anton Paar, Graz, Austria), model DMA 55, equipped with a thermostating water bath (Neslab Instruments, Portsmouth, NH, USA). Temp. was controlled to within 0.005 K and was measured by means of a Beckman thermometer (Beckman Instruments Inc., Fullerton, CA, USA) which was periodically compared against a calibrated (National Bureau of Stds., USA) Pt resistance thermometer.

Procedure: Density, \(\rho \), was calcld. from period of vibration, \(r \). V, \(\rho \), and \(\rho_0 \) were calculated by calibrating the app. with benzene, \(\rho \)(298.15 K)/kg m⁻³ = 873.63, doubly distilled and degassed water \(\rho \)(298.15 K)/kg m⁻³ = 997.04, and cyclohexane \(\rho \)(298.15 K)/kg m⁻³ = 773.85. Mixts. were prepd. by weighing, \(V^E \) was calcld. from \(V^E = V - (x_1 V^E_1 + x_2 V^E_2) \), where \(V = (x_1 M_1 + x_2 M_2)/\rho \) is the molar vol. of the mixt. and \(V^E \) = \(V(x_1 = 1) \) and \(M_1 \) are, resp., the molar vol. and the molar mass of component i.

Materials: 1. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; \(\rho \)(298.15 K)/kg m⁻³ = 1101.98; \(M_1/10^{-3} \) kg mol⁻¹ = 112.5584.
2. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99 mole %, stored over mol. sieves and used without further purification. Purity tested by GLC, > 99.8 mole %; \(\rho \)(298.15 K)/kg m⁻³ = 679.55; \(M_2/10^{-3} \) kg mol⁻¹ = 100.20404.

Errors: \(\delta T \) (reproducibility)/K < 0.003; \(\delta T \) (IPST-68)/K = 0.01; \(\delta \rho \) = 0.0001; \(\delta V^E/10^{-9} m^3/mol^{-1} \) < 20.

REFERENCES

Footnotes:

*Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances
SELECTED DATA ON MIXTURES
International DATA Series*

EXCESS VOLUME

Components: 1. Chlorobenzene, C₆H₅Cl
2. Octane, C₈H₁₈

Variables: Vₑ, molar excess volume
xᵢ, mole fraction of component i

Parameters: T, temperature

Constants: P, pressure

Method: Calculation of Vₑ from density measurements at constant T and P and variable xᵢ; ref. 1

Notes: P, atm.

T/K = 298.15

<table>
<thead>
<tr>
<th>x₁</th>
<th>Vₑ[10⁻⁹ m³mol⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1595</td>
<td>6</td>
</tr>
<tr>
<td>0.2920</td>
<td>-8</td>
</tr>
<tr>
<td>0.4130</td>
<td>-31</td>
</tr>
<tr>
<td>0.5119</td>
<td>-55</td>
</tr>
<tr>
<td>0.6127</td>
<td>-72</td>
</tr>
<tr>
<td>0.7082</td>
<td>-83</td>
</tr>
<tr>
<td>0.7879</td>
<td>-83</td>
</tr>
<tr>
<td>0.8630</td>
<td>-68</td>
</tr>
<tr>
<td>0.9340</td>
<td>-43</td>
</tr>
</tbody>
</table>

DIRECT EXPERIMENTAL VALUES

298.15 K

POINTS, direct experimental Vₑ values; curves, Vₑ calc calculated from the smoothing equation.

SMOOTHING EQUATION

Vₑ calc = x₁ x₂ \sum_{i=1}^{n} a_i (x₁ - x₂)^{i-1}

Coefs. aᵢ in the smoothing eq., std. deviation σ₀ and max. deviation δₓ,d detd. by least-squares anal.

<table>
<thead>
<tr>
<th>T/K</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
<th>a₅</th>
<th>σ₀</th>
<th>δₓ,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>-202.5 (2.8)</td>
<td>-439.7 (5.7)</td>
<td>-114 (13)</td>
<td>1.2</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The std. deviations σ₀ of the coefs. aᵢ are given in parentheses

δₓ,d = max | [Vₑ(calc) - Vₑ] | ; σₓ = \sqrt{\sum_{i=1}^{N} (Vₑ(calc) - Vₑ)^{2}/(N-n)}^{1/2}

N, no. of direct expl. values; n, no. of coefs. aᵢ
All direct expl. values equally weighted

AUXILIARY INFORMATION

Apparatus: Vibrating tube densimeter (Anton Paar, Graz, Austria), model DMA 55, equipped with a thermostating water bath (Neslab Instruments, Portsmith, NH, USA). Temp. was controlled to within 0.005 K and was measured by means of a Beckman thermometer (Beckman Instruments, Inc., Fullerton, CA, USA) which was periodically compared against a calibrated (National Bureau of Stds., USA) Pt-resistance thermometer. Samples were introduced by means of a glass syringe.

Procedure: Density, ρ, was calc'd, from period of vibration, τ, ρ = a + b τ². Consis. a and b were detd. by calibrating the app., with benzene, ρ(298.15 K)/kg m⁻³ = 873.63, doubly distd. and degassed water ρ(298.15 K)/kg m⁻³ = 997.04, and cyclohexane ρ(298.15 K)/kg m⁻³ = 773.85. Mixts. were prep'd by weighing. Vₑ was calc'd from Vₑ = V - (x₁ V₁ + x₂ V₂), where V = (x₁M₁ + x₂M₂), V₁ is the molar vol. of the mixt. and V₂ = V(x₁ = 1) and Mᵢ are, resp., the molar vol. and the molar mass of component i.

Materials: 1. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; ρ(298.15 K)/kg m⁻³ = 1101.98; M₁/10⁻³ kg mol⁻¹ = 112.5584.
2. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) anhydrous material of stated purity > 99 mole %, stored over mol. sieves and used without further purification. Purity tested by GLC, > 99.8 mole %; ρ(298.15 K)/kg m⁻³ = 696.61; M₂/10⁻³ kg mol⁻¹ = 114.23692.

Errors: δ(τ) (reproducibility) K < 0.003; δ(τ)(IPPS-68) K = 0.01; δx₁ = 0.001; δVₑ/10⁻³ m³mol⁻¹ < 0.5

REFERENCES

*Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances

Published by Thermodynamics Research Center
The Texas A&M University System, College Station, TX 77843-3111

Received: December 20, 1991
Published: January 31, 1992
SELECTED DATA ON MIXTURES

International DATA Series

2c. EXCESS VOLUME

The Texas A&M University System, College Station, TX 77843-3111

Components: 1. Chlorobenzene, C₆H₅Cl
 2. 2,2,4-Trimethylpentane, C₉H₂₀

State: Binary system, single-phase liquid; pure components, both liquid

Variables: \(V^E \), molar excess volume; \(\chi_i \), mole fraction of component \(i \)

Constants: \(T \), temperature; \(P \), pressure

Method: Calculation of \(V^E \) from density measurements at constant \(T \) and \(P \) and variable \(\chi_i \); ref. 1

SOURCES OF DATA

Acree Jr., W. E. (Department of Chemistry, University of North Texas, Denton, TX 76203 - 5068, USA); Teng, I.-L.

Edited by: Kehiaian, H. V. (Institut de Topologie et de Dynamique des Systèmes, Université Paris VII, CNRS, 1, Rue Guy de la Brosse, 75005 Paris, France)

DIRECT EXPERIMENTAL VALUES

<table>
<thead>
<tr>
<th>(T/K) = 298.15</th>
<th>(\chi_i)</th>
<th>(V^E), (10^{-5}) m³ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1632</td>
<td>−147</td>
<td></td>
</tr>
<tr>
<td>0.2983</td>
<td>−226</td>
<td></td>
</tr>
<tr>
<td>0.4174</td>
<td>−303</td>
<td></td>
</tr>
<tr>
<td>0.5243</td>
<td>−341</td>
<td></td>
</tr>
<tr>
<td>0.6217</td>
<td>−344</td>
<td></td>
</tr>
<tr>
<td>0.7108</td>
<td>−323</td>
<td></td>
</tr>
<tr>
<td>0.7910</td>
<td>−285</td>
<td></td>
</tr>
<tr>
<td>0.9025</td>
<td>−236</td>
<td></td>
</tr>
<tr>
<td>0.8281</td>
<td>−119</td>
<td></td>
</tr>
</tbody>
</table>

SMOOTHING EQUATION

\[
V^E_{\text{calc}} = \chi_1 \chi_2 \sum_{i=1}^{n} a_i (\chi_1 - \chi_2)^{i-1}
\]

Coeffs. \(a_i \) in the smoothing eq., std. deviation \(\sigma_p \) and max. deviation \(\delta_m \) detd. by least-squares anal.

<table>
<thead>
<tr>
<th>(T/K)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(\delta_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>−1316</td>
<td>−757</td>
<td>−255</td>
<td>9.2</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

The std. deviations on of the coefs. \(a_i \) are given in parentheses

\(\delta_m = \max \left| V^E_{\text{calc}} - V^E_{\text{calc}} \right| ; \sigma_p = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (V^E_{\text{calc}} - V^E_{\text{calc}})^2} \frac{1}{N-n} \right|^{1/2} \)

\(N \), no. of direct expl. values; \(n \), no. of coefs. \(a_i \)

All direct expl. values equally weighted

REFERENCES

Apparatus

Vibrating tube densimeter (Anton Paar, Graz, Austria), model DMA 55, equipped with a thermostating water bath (Neslab Instruments, Portsmouth, NH, USA). Temp. was controlled to within 0.005 K and was measured by means of a Beckman thermometer (Beckman Instruments, Inc., Fullerton, CA, USA) which was periodically compared against a calibrated (National Bureau of Stds., USA) Pt-resistance thermometer.

Procedure

Density, \(\rho \), was calcld. from the period of vibration, \(\tau \): \(\rho = \frac{a + b \tau^2}{\tau} \). Consts. \(a \) and \(b \) were detd. by calibrating the app. with benzene, \(\rho(298.15 \text{ K})/ \text{kg m}^{-3} = 873.63 \), doubly distd. and degassed water \(\rho(298.15 \text{ K})/ \text{kg m}^{-3} = 997.04 \), and cyclohexane \(\rho(298.15 \text{ K})/ \text{kg m}^{-3} = 773.85 \). Mixts. were prepd. by weighing. \(V^E \) was calcld. from \(V^E = V - (\chi_1 V^I_1 + \chi_2 V^I_2) \), where \(V = (x_1M_1 + x_2M_2)/\rho \) is the molar vol. of the mixt. and \(V^I = V(x_1 = 1) \) and \(M_1 \) are, resp., the molar vol. and the molar mass of component \(i \).

Materials

1. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; \(\rho_1(298.15 \text{ K})/ \text{kg m}^{-3} = 1101.98; M_1/10^{-3} \text{ kg mol}^{-1} = 112.5584 \).

2. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.7 mole %, stored over mol. sieves and used without further purification. Purity tested by GLC; > 99.8 mole %; \(\rho_2(298.15 \text{ K})/ \text{kg m}^{-3} = 687.91; M_2/10^{-3} \text{ kg mol}^{-1} = 114.23092 \).

Errors

\(\delta T(\text{repeatability})/K < 0.003; \delta T(\text{IFT-58})/K = 0.01; \delta \chi_1 = 0.0001; \delta V^E/10^{-5} \text{ m}^3 \text{ mol}^{-1} < 20 \).

©1992 Thermodynamics Research Center

Received: December 20, 1991

Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances
SELECTED DATA ON MIXTURES
International DATA Series*

2c. EXCESS VOLUME

Author(s): Acree Jr, W. E. (Department of Chemistry, University of North Texas, Denton, TX 76203–5068, USA); Teng, I-L.
Edited by: Kehian, H. V. (Institut de Topologie et de Dynamique des Systèmes, Université Paris VII, CNRS, 1, Rue Guy de la Brosse, 75005 Paris, France)

SOURCE OF DATA
Acree Jr, W. E.; Teng, I-L. (Department of Chemistry, University of North Texas, Denton, TX, USA); FIRST PUBLISHED RESULTS

Notes: P, atm.

\(T/K = 298.15 \)

\(x_1 \times 10^{-9} \)

\(\text{m}^{-3} \text{mol}^{-1} \)

0.1123 186
0.2139 283
0.3105 321
0.4108 340
0.5150 315
0.6169 273
0.7052 208
0.8036 148
0.9054 63

\(V^E/10^{-9} \text{m}^{-3} \text{mol}^{-1} \)

\(x_1 \)

298.15 K

Points, direct experimental \(V^E \) values; curves, \(V^E_{\text{calc}} \) calculated from the smoothing equation.

SMOOTHING EQUATION

\(V^E_{\text{calc}} = x_1 x_2 \sum_{i=1}^{n} a_i (x_1 - x_2)^i \)

Coefs. \(a_i \) in the smoothing eq., std. deviation \(\sigma_d \) and max. deviation \(\delta_m \) detd. by least-squares anal.

<table>
<thead>
<tr>
<th>T/K</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(\sigma_d)</th>
<th>(\delta_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>1289.4</td>
<td>−649</td>
<td>(26)</td>
<td>5.6</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The std. deviations \(\sigma_d \) of the coefs. \(a_i \) are given in parentheses.

\(\delta_m = \max | V^E_{\text{calc}} - V^E |; \sigma_d = [\sum (V^E_{\text{calc}} - V^E)^2/(N - n)]^{1/2} \)

\(N \), no. of direct expl. values; \(n \), no. of coefs. \(a_i \)

All direct expl. values equally weighted

AUSTRALIAN INFORMATION

Apparatus: Vibrating tube densimeter (Anton Paar, Graz, Austria), model DMA 55, equipped with a thermostating water bath (Neslab Instruments, Portsmouth, NH, USA). Temp. was controlled to within 0.005 K and was measured by means of a Beckman thermometer (Beckman Instruments, Inc., Fullerton, CA, USA) which was periodically compared against a calibrated (National Bureau of Stds., USA) Pt-resistance thermometer. Samples were introduced by means of a glass syringe.

Procedure: Density, \(\rho \), was calcld. from period of vibration, \(\tau; \rho = \alpha + b \tau^2 \). Consts. \(a \) and \(b \) were detd. by calibrating the app, with benzene, \(\rho(298.15 \text{ K})/\text{kg m}^{-3} = 873.63 \), doubly distd. and degassed water \(\rho(298.15 \text{ K})/\text{kg m}^{-3} = 997.04 \), and cyclohexane \(\rho(298.15 \text{ K})/\text{kg m}^{-3} = 773.85 \). Mxts. were prepd. by weighing, \(V^E \) was calcld. from \(V^E = V - (x_1 M_1 + x_2 M_2)/\rho \), where \(V = (x_1 M_1 + x_2 M_2)/\rho \) is the molar vol. of the mxt. and \(V^E = V(1/x_1) \) and \(M_i \) are, resp., the molar vol. and the molar mass of component \(i \).

Materials: 1. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; \(\rho(298.15 \text{ K})/\text{kg m}^{-3} = 1101.98 \); \(M_i/10^{-2} \text{kg mol}^{-1} = 112.5684 \).
2. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; \(\rho(298.15 \text{ K})/\text{kg m}^{-3} = 773.85 \); \(M_i/10^{-2} \text{kg mol}^{-1} = 84.16128 \).

Errors: \(\Delta T \) (reproducibility)/K < 0.003; \(\Delta T \) (IPTS-68)/K = 0.01; \(\delta x_1 = 0.0001 \); \(\delta V^E/10^{-9} \text{m}^{-3} \text{mol}^{-1} < 20 \).

REFERENCES

Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances

Published: January 31, 1992
SELECTED DATA ON MIXTURES

International DATA Series

2e. EXCESS VOLUME

Published by Thermodynamics Research Center

The Texas A&M University System, College Station, TX 77843-3111

Components:
1. Chlorobenzene, C₆H₅Cl
2. Dibutyl ether, C₄H₉O

State: Binary system, single-phase liquid; pure components, both liquid

Variables:
\(\nu^E \), molar excess volume

Parameters:
\(T \), temperature

Constants:
\(P \), pressure

Method:
Calculation of \(\nu^E \) from density measurements at constant \(T \) and \(P \) and variable \(x_i \); ref. 1

SOURCES OF DATA

Acree Jr., W. E.; Teng, I.-L. (Department of Chemistry, University of North Texas, Denton, TX, USA); FIRST PUBLISHED RESULTS

DIRECT EXPERIMENTAL VALUES

<table>
<thead>
<tr>
<th>(T/K = 298.15)</th>
<th>(\nu^E/10^{-9}) m³ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1693</td>
<td>-309</td>
</tr>
<tr>
<td>0.3029</td>
<td>-473</td>
</tr>
<tr>
<td>0.4232</td>
<td>-559</td>
</tr>
<tr>
<td>0.5306</td>
<td>-571</td>
</tr>
<tr>
<td>0.6280</td>
<td>-548</td>
</tr>
<tr>
<td>0.7115</td>
<td>-492</td>
</tr>
<tr>
<td>0.7924</td>
<td>-409</td>
</tr>
<tr>
<td>0.8649</td>
<td>-291</td>
</tr>
<tr>
<td>0.9333</td>
<td>-156</td>
</tr>
</tbody>
</table>

\(\nu^E \), calculated from the smoothing equation.

SMOOTHING EQUATION

\[\nu^E_{\text{calc}} = x_1 x_2 \sum_{i=1}^{n} a_i (x_1 - x_2)^{i-1} \]

Coeffs. \(a_i \) in the smoothing eq., std. deviation \(\sigma_d \) and max. deviation \(\delta_m \) detd. by least-squares anal.

<table>
<thead>
<tr>
<th>(T/K)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(\sigma_d)</th>
<th>(\delta_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>-2297.7</td>
<td>-199</td>
<td>-106</td>
<td>4.1</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The std. deviations \(\sigma_d \) of the coeffs. \(a_i \) are given in parentheses

\[\delta_m = \max \left[\nu^E_{\text{calc}} - \nu^E_i \right] ; \sigma_d = \sqrt{\frac{2 \left(\nu^E_{\text{calc}} - \nu^E_i \right)^2 (N - n)}{N - 1}} \]

\(N \), no. of direct expl. values; \(n \), no. of coeffs. \(a_i \)

All direct expl. values equally weighted

AUXILIARY INFORMATION

Apparatus:
Vibrating tube densimeter (Anton Paar, Graz, Austria), model DMA 55, equipped with a thermostating water bath (Neslab Instruments, Portsmouth, NH, USA). Temp. was controlled to within 0.005 K and was measured by means of a Beckman thermometer (Beckman Instruments, Inc., Fullerton, CA, USA) which was periodically checked against a calibrated (National Bureau of Stds., USA) Pt-resistance thermometer.

Samples were introduced by means of a glass syringe.

Procedure:
Density, \(\rho \), was calc'd. from period of vibration, \(\tau \). \(\rho = \alpha + \beta \tau^2 \). Constr. \(\alpha \) and \(\beta \) were detd. by calibrating the app. with benzene, \(\rho(298.15 \text{ K}) \text{kg m}^{-3} = 873.63 \text{ kg m}^{-3} \), doubly distilled and degassed water \(\rho(298.15 \text{ K}) \text{kg m}^{-3} = 997.04 \text{ kg m}^{-3} \), and cyclohexane \(\rho(298.15 \text{ K}) \text{kg m}^{-3} = 773.85 \text{ kg m}^{-3} \). Mists. were prep'd. by weighing. \(\nu^E \) was calc'd. from \(\nu^E = V - (x_1 \nu_1^E + x_2 \nu_2^E) \), where \(V = (x_1 M_1 + x_2 M_2) / \rho \) is the molar vol. of the mixt. and \(\nu_1^E \) = \(V(x_1 = 1) \) and \(M_i \) are, resp., the molar vol. and the molar mass of component \(i \).

Materials:
1. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) HPLC grade material of stated purity > 99.9 mole %, stored over mol. sieves and used without further purification; \(\rho(298.15 \text{ K}) \text{kg m}^{-3} = 1101.98 \text{ kg m}^{-3} \), \(M_1/10^{-3} \text{ kg mol}^{-1} = 112.5584 \).
2. Aldrich Chem. Co. Inc. (Milwaukee, WI, USA) anh. grade material of stated purity > 99 mole %, stored over mol. sieves and used without further purification. Purity tested by GLC, > 99.8 mole %; \(\rho(298.15 \text{ K}) \text{kg m}^{-3} = 764.20 \text{ kg m}^{-3} \), \(M_1/10^{-3} \text{ kg mol}^{-1} = 130.23032 \).

Errors:
\[\delta \nu^E \text{(reproducibility)} \leq 0.003; \delta (\text{IPTS-68}) \leq 0.001; \delta \rho \leq 0.0001; \delta M_i/10^{-3} \text{kg mol}^{-1} \leq 20 \]

Received: December 20, 1991

Ser. A. Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances