HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

PDF Version Also Available for Download.

Description

The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as ... continued below

Physical Description

127 pages

Creation Information

Urbas, Jerry B. May 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem, the catalyst did not have sufficient activity in order to continue the planned test program. Arsenic poisoning was found to be the cause of premature catalyst deactivation.

Physical Description

127 pages

Notes

OSTI as DE00789208

Source

  • Other Information: PBD: 1 May 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FG22-96PC96256--01
  • Grant Number: FG22-96PC96256
  • DOI: 10.2172/789208 | External Link
  • Office of Scientific & Technical Information Report Number: 789208
  • Archival Resource Key: ark:/67531/metadc725718

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 29, 2016, 7:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Urbas, Jerry B. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES, report, May 1, 1999; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc725718/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.