Elements for Real Time Steady Simulation of Flat Glass Lehr Control

Lee A. Bertram

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
ELEMENTS FOR REAL TIME STEADY SIMULATION
OF FLAT GLASS LEHR CONTROL

Lee A. Bertram
Chemical and Materials Process Modeling
Sandia National Laboratories
Livermore, California 94551-0969

ABSTRACT

In partnership with Ford/Visteon, Sandia National Laboratories began work on design and implementation of improved end-to-end control for float glass production, under DOE Office of Industrial Technology sponsorship. The first task undertaken was to provide an intelligent control for the annealing lehr, both for optimum usage of sensors and for the ability to report digitally the state of the lehr to an end-to-end control system. The heat transfer simulation of the lehr enclosure for that purpose is described here. This includes a closed-form solution for the infinitely wide glass ribbon, which allow robust computations of the thermal profile and inverses of this function for controls use. This also allows useful initial temperature estimates for the case with counterflow in the lehr ducts, which should greatly simplify and speed the convergence of more detailed models in which the glass participates in the radiative exchanges. This is supplemented by software to compute radiative viewfactors of lehr elements for use in finite-width versions of the simulation. A brief discussion of how stresses could be computed from such a thermal solution is given, but not implemented in software.
ACKNOWLEDGEMENTS

The author gratefully acknowledges the support of U. S. Department of Energy/Office of Industrial Technology/Advanced Sensors and Controls under the Glass Labs 99 Program and of Sandia National Laboratories under DOE contract DE-AC04-94AL85000. The heat transfer work was developed with the help of Bill Houf of Sandia, with much guidance from Ford/Visteon personnel V. Henry, A. Huber, K. Bhatia, D. Fryz and C. Dodge. Controls issues were discussed with the Visteon personnel and with D. Schaeffer of Sandia and Prof. P. Smith and D. Smith of the University of Utah. P. Walsh of Sandia has provided continuous guidance and encouragement on many fronts during the developments reported here.
TABLE OF CONTENTS

Lehr Model Requirements .. 7

1. Plane Parallel Solution .. 8
 1.1. Software Modules ... 14
 1.1.2 XENDO() ... 14
 1.1.3 XCOUNT() ... 14
 1.1.4 Tofx() Speciamens/Mechanical Testing ... 14
 1.1.5 ALEHR() Speciamens/Mechanical Testing ... 14
 1.2. Example Calculation ... 15

2. Finite Widths and Lengths .. 15

3. Heat Transfer Within the Ribon .. 18

4. Stresses ... 19

5. Discussion .. 20

6. References .. 22

APPENDIX A .. 23

APPENDIX B .. 25

APPENDIX C .. 45

APPENDIX D .. 64

APPENDIX E .. 66
FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ribbon/Cooler Temperatures. a) Duct flow is parallel to the glass ribbon motion, and duct fluid is cooling the glass. b) Counterflow solution for same parameters, with no adjustments.</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Subdomains of the ((a, \theta_{do})) plane with distinct solution types for plane parallel infinite glass ribbons and duct surfaces.</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Lehr Geometry.</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Some viewfactors for the geometry of Fig.3</td>
<td>17</td>
</tr>
<tr>
<td>5.</td>
<td>Image for highly-reflective roller</td>
<td>18</td>
</tr>
</tbody>
</table>
LEHR MODEL REQUIREMENTS

The annealing lehr is basically a large insulated enclosure through which a ribbon of flat glass passes at controlled speed (see Schematic). The enclosure contains air ducts through which air flows with controlled initial temperature and flowrate from a plenum. The goal of this arrangement is to subject the ribbon to a suitable temperature history so that the exiting ribbon has a desirable residual stress distribution when it reaches room temperature.

Lehr Heat Exchange Schematic

A glass ribbon carried on supporting rollers enters the lehr in a fluid state at a temperature around 1050 deg F and exits below the glass transition temperature. The complete lehr consists of three sections—conditioner, annealing section, and cooldown section, all enclosed in an insulated box. The first two sections are cooled primarily by radiative exchange with cooling air in the ducts above and below the ribbon. Airflow in the ducts can be parallel or counter to the ribbon motion which defines the positive x-direction here. Electrical heaters may also be installed between the bottom of the ducts and the ribbon to improve control.

To achieve the goal, it is necessary to select flowrates in the individual ducts as well as inflow temperatures, so that the desired temperature distribution is imposed. To do this, we can either specify an array of sensors adequate to the characterization of the temperature distribution, or we can attempt to simulate the glass temperature in real time so that a few robust sensors can provide sufficient information for successful control. We have chosen the second approach.
Taking the Chui model [1] as our starting point, we seek a real time simulation which can track the dynamics of the lehr thermal solution faithfully enough for control development and potentially as an element of a model-based control. The goals are double—to bring the lehr under better control, and to provide a digital set of state variables for the lehr which can be communicated throughout an end-to-end control system for float glass production. The physics incorporated in [1] consists of balancing energy between the glass ribbon and the fluid in an array of ducts which are symmetric about the ribbon’s midplane, with radiation flux connecting them.

To begin the discussion, a closed-form solution for a single duct exchanging radiation with a ribbon, both infinitely wide, so there are no viewfactors to consider, (simplified version of the Chui model) is derived, exhaustively analyzed and written into FORTRAN software. Then radiative viewfactors of realistic lehr geometries are generated in the second section, so that the full Chui model can be assembled from very high speed software. This section also includes software to characterize roller radiative exchanges, and discusses the thermal contact between glass ribbon and the supporting rollers as well. Treatment of heaters and coolers which allow more realistic spectral characterization of the glass-heater exchange is also provided in Section 2. In a report to follow, that case will be extended to include radiative participation of the glass ribbon, see Ref. [3].

The approach for estimating stresses is outlined in the fourth section, and a discussion follows in the fifth.

1. PLANE PARALLEL SOLUTION

Consider the case of an infinitely wide glass ribbon moving through an infinitely long and infinitely wide set of ducts in which a fluid flows. Let the ducts be symmetric about the midplane of the ribbon, and suppose that the heat exchange is entirely by radiation between the ribbon surface and the ducts’ surfaces. For steady operation of this system, the surface temperature of the glass will be $T_g(x)$, depending only on the position along the direction of motion, and, if the ducts’ fluid and surface temperatures are taken to be the same, these will similarly be functions of x alone: $T_d(x)$. If the flux between the duct and ribbon is entirely radiative, the energy balance for bulk temperatures can be written in terms of the mass flux per unit width times the specific heat $m_g C_g$, that is, the heat capacity of half the ribbon, simply as:

$$m_g C_g \frac{dT_g}{dx} = -\varepsilon \sigma \left(T_g^4 - T_d^4 \right)$$

when the x axis is in the direction of motion of the ribbon, and the radiative flux is determined entirely by the temperatures of the duct and ribbon at station x alone—the
temperature gradient along ribbon and duct is ignored here. The “effective emissivity” \(\varepsilon_e \) is given by:

\[
\varepsilon_e = \left(\frac{1}{\varepsilon_g} + \frac{1}{\varepsilon_d} - 1 \right)^{-1}
\]

for infinite plane-parallel gray isothermal surfaces. The fluid in the duct then obeys:

\[
\pm \dot{m}_d C_d \frac{\partial T_d}{\partial x} = \varepsilon_e \sigma \left(T_g^4 - T_d^4 \right)
\]

[1b]

where the \(\pm \) sign indicates fluid flowing in the same direction as the ribbon moves, while the \(- \) sign indicates counterflow. It follows immediately that

\[
\frac{\partial T_d}{\partial x} = a \frac{\partial T_g}{\partial x},
\]

where the parameter \(a \) is simply the ratio of advected heat capacities (per unit width):

\[
a = \mp \frac{\dot{m}_g C_g}{\dot{m}_d C_d}.
\]

This means that \(T_d(x) \) can be eliminated as a first integral; in dimensionless form:

\[
\theta_d = \theta_{do} + a (\theta - 1)
\]

[2a]

where \(\theta_d = T_d(x)/T_{go} \) and \(\theta = T_g(x)/T_{go} \) are dimensionless values for the absolute (e.g., K) temperatures, scaled by the initial glass ribbon temperature \(T_{go} \). For convenience, let this be written as \(\theta_d = a \theta + b \) where \(b = \theta_{do} - a \) is a known constant since \(a \) and the initial duct temperature are prescribed.

An inherent length scale \(\hat{L}_o \) can be defined from the data as:

\[
\hat{L}_o = \left(\dot{m}_g C_g \right) / \left(\varepsilon_e \sigma T_{go}^3 \right)
\]

Now, the energy balance equation reduces to the ordinary differential equation

\[
-\hat{L}_o \frac{d \theta}{dx} = \left(\theta^4 - [\theta_{do} + a(\theta - 1)]^4 \right) = P_4(\theta; \theta_{do}, a)
\]

Closed-form quadrature can be carried out on this expression; for three basic cases:
(Case 1: general solution) The result is the cumbersome but explicit form of the solution, including its initial conditions:

$$\frac{(x-x_o)}{\hat{L}_o} = \frac{1 + a^2}{2b^3} F(\theta, a, \theta_{do})$$ \hspace{1cm} \text{[2b]}

where

$$F(\theta, a, \theta_{do}) = - \ln \left[\frac{\theta - \theta_{do} \theta + \theta_d}{1 + a^2} \right]^{1/2} + \left\{ \frac{1 - a^2}{1 + a^2} \right\} \frac{1}{\tan^{-1} \left[\frac{\theta\theta_{do} - \theta_d}{\theta + \theta_{do}\theta_d} \right]} + \frac{a}{1 + a^2} \ln \frac{1 + \theta^2_{do}}{\theta^2 + \theta^2_d} \left(\theta^2 - \theta^2_d \right) \left(\theta^2 + \theta^2_d \right)$$

The right hand side depends only on the arguments of $F(\theta, a, \theta_{do})$, given the definition of b. That is, the lehr aim point, namely, the glass temperature at the exit, has the dimensionless value θ, while the lehr control settings for (1) flow in the ducts, a, and for (2) the temperature of the duct fluid, θ_{do}, at the station x_o, are the other two arguments.

For counterflow in the ducts, a is positive; it is negative for parallel flow. In the counterflow case, the value of the dimensionless parameter θ_{do} is not usually known; rather, the temperature of the fluid at the inflow end of the duct at station x is known. If we denote the inflow temperature of the duct fluid by θ_{din} regardless of whether it occurs at station x or at station x_o, then the function $F(\theta, a, \theta_{do})$ can be written as $F(\theta, a, \theta_{din})$ with the understanding that θ_{din} means θ_{do} when a is negative, and means θ_d when a is positive.

(Case 2: $b=0$ in counterflow) Putting $b=0$ makes the [2b] singular, but also makes the duct absolute temperature a multiple of the glass temperature, allowing another trivial quadrature:

$$x-x_o = \hat{L}_o \left(\frac{1}{3(1-a^4)} - \frac{1}{\theta^3} - 1 \right)$$ \hspace{1cm} \text{[2c]}

Note that a cannot be unity in this case, or the duct and ribbon are at the same temperature everywhere, since $b=0$. Further, because $b=\theta_{do}-a=0$ here, the initial duct temperature θ_{do} is simply a.
When b is small, evaluation of [2b] is inaccurate, so it is necessary to expand the solution in powers of b. This is developed in App. 1, where the most natural expansion parameter turns out to be

$$e = b / (1 - a^4)$$

rather than simply b.

(Case 3: Minimum ribbon length: $a = 0$) This case represents infinite heat capacity of the duct flow as compared to the ribbon. The duct fluid remains isothermal at θ_{do}, and the quadrature gives:

$$\frac{(x-x_o)}{\hat{L}_o} = \frac{1}{2\theta_{do}^3} \left\{ \ln \left[\frac{(1-\theta_{do})(\theta + \theta_{do})}{(\theta - \theta_{d})(1+\theta_{do})} \right]^{1/2} + \tan^{-1} \left[\frac{\theta_{do}(\theta - 1)}{\theta + \theta_{do}^2} \right] \right\}$$ [2d]

Since this also represents the shortest length for which the glass temperature can be brought to the value θ, it is a useful reference value for calibrating the lehr performance.

The solution given by eqs.[2] above is of the form $\ell = \hat{F}(\theta; a, \theta_{do})$ in terms of the dimensionless distance $\ell = (x-x_o)/\hat{L}_o$ as dependent variable, with independent variable being θ, and the duct settings a and θ_{do} as parameters. Since any value of θ can be used in the right hand sides of eqs.[2], the first step in evaluating the solution must be to select the physically meaningful domain of θ, for the given values of a and θ_{do}.

By inspection of eq.[2b], it is clear that $\theta = \theta_d$ and $\theta = -\theta_d$ are both singular, and produce an infinite value for ℓ. Substitution into eq.[2a] and solution result in two values

$$\theta_c = \frac{b}{1-a} \quad [3a]$$

$$\theta_o = -\frac{b}{1+a} \quad [3b]$$

The first of these is the value θ_c at which the ribbon and duct temperature converge, given infinite length to accomplish this asymptotic behavior, as seen in Fig. 1(a) for parallel flow. The second represents an asymptote approached by the glass while the duct approaches $-\theta_o$. Since one temperature ratio or the other must be negative, this infinite length branch must be nonphysical because these are absolute temperatures. Thus, when the value θ_o is positive, the solution must have been cut off when $\theta_d = 0$, at $\ell = \ell_{ext}$, an extremum of ℓ. This length corresponds to $\theta^* = -b/\alpha$. Similarly, for a
negative θ_o value, the cutoff must be imposed where $\theta = 0$ (where $\theta_d = b$); in either case, ℓ_{ext} is given by:

$$
\ell_{ext} = \frac{1 + a^2}{2b^3} \left(\ln \frac{1 - \theta_{do}}{1 + \theta_{do}} \right)^{1/2} + \frac{1 - a^2}{1 + a^2} \tan^{-1} \left(s_o \theta_{do}^* \right) + \frac{a}{1 + a^2} \ln \left(\frac{1 + \theta_{do}^2}{1 - \theta_{do}^2} \right) \right) \tag{3c}
$$

where s_o is +1 when θ_o is positive, and is –1 when θ_o is negative, so that the argument of the arctan is θ_{do} and $-1/\theta_{do}$ respectively in these cases. The physical solution branch can now be fully characterized by analysis of the relative sizes of $\theta_c, \theta_o, \theta^*$ in relation to 0, 1, and θ_{do} values.

The usual information sought by solving the energy balance [1] is the variation of temperature with distance from the inflow station x_o. In terms of the variables introduced above, this is the function $\theta = f(\ell; a, \theta_{do})$, with dimensionless distance ℓ as the independent variable and the duct settings a and θ_{do}, as parameters, which describes the variation of temperature on ribbon and duct (using eq. [2a]). This function $f(\ell; a, \theta_{do})$ is clearly the inverse of the function $\tilde{f}(\theta; a, \theta_{do})$ defined by the solution [2]. Numerical evaluation, using bisection to locate the appropriate value of ℓ for the given a and θ_{do}, is done by a routine called ‘Tofx()’. Example plots, using input parameters derived from Chui’s work [1], are shown in Fig. 1 below, for both parallel and counterflow in the ducts.

Figure 1. (a, to left) Duct flow is parallel to the glass ribbon motion, and duct fluid is cooling the glass. Parameters (a, θ_{do}) are taken from Ref.[1], Fig. 8(A), and \hat{L}_o is chosen to give the best fit of the closed form solution (continuous curves) to the solution from Ref.[1] (plot symbols +). (b, to right) Counterflow solution for same parameters, with no adjustments. Fig. 8(B) of Ref.[1] is plotted for comparison (plot symbols +). This plot requires the inverse function $f(\ell; a, \theta_{do})$ described below.
The inverse function \(f(l; a, \theta_{do}) \) can only be constructed when an exhaustive classification of the possible solutions is available; see Fig. 2. The physically meaningful part of this plane is its first two quadrants, in which \(\theta_{do} > 0 \) holds. This halfplane is then subdivided by the line \(\theta_{do} = 1 \) which separates glass heating (H) solutions from glass cooling (C) ones. Counterflow solutions make up the first quadrant; parallel flows constitute the second quadrant.

The \((a, \theta_{do})\) plane further subdivides because the parameter \(b = \theta_{do} - a \) introduced in eq.[2a] vanishes on the 45-degree line through the origin; \(b \) is positive above and to the left of this line. Near this line, the power series with leading term eq.[2c] is evaluated whenever \((a, \theta_{do})\) lies between the broken curves which converge at (1,1); outside this region, eq.[2b] is evaluated directly to determine \(\ell \). At these dashed curves, numerically evaluated \(\ell \) may be discontinuous because of this switch between [2b] and [2c].

General Classification of Lehr Solutions

![Diagram](image)

Figure 2. Subdomains of the \((a, \theta_{do})\) plane with distinct solution types for plane parallel infinite glass ribbons and duct surfaces. Solutions in Figs. 1 (a) and (b) correspond to the points A,B with the filled circle plot symbols. All solutions with \(\theta_{do} > 1 \) have ducts heating the glass, and are labelled “H”; those with \(\theta_{do} < 1 \) are glass cooling, “C”. In each subdomain, the order of the glass temperature values \(\theta \) given as \(\theta_o, \theta_c \) are different and are in different orders relative to 0, 1 or \(\theta_{do} \). Asymptotic form eq. [2c] is used between the dashed curves, which includes all weak duct flow cases (large \(|a|\)); values depicted are \(e_{\min} = -0.115 \) and \(e_{\max} = 0.086 \). The infinite duct capacity solution [2d] applies to all points along the vertical axis.
In summary, the solutions given in eqs. [2] have physically meaningful values when the glass temperature aim point θ is between unity and θ_c for the regions C1, C2, H1 and H2; for C3 and C4, θ must lie between $\theta^* = -\frac{b}{a}$ and unity, while H3 and H4 can take on any θ value from unity to infinity.

1.1 Software Modules. To make the results derived above readily available to the user, some basic subroutines have been written. These are enumerated here.

1.1.1 XEND() This function has arguments θ, a, and θ_{din} and returns the overall length ℓ_{oa} as the value of ‘xend()’. For the parallel flow case with $a < 0$, $\theta_{do} = \theta_{din}$ and this is simply the function value of $\mathbf{\hat{F}}(\theta, a, \theta_{do})$ discussed above. However, for the counterflow case with $\theta_{a} = \theta_{din}$, the value returned is ℓ_{oa}, the dimensionless distance to the station x where the duct temperature is θ_{din}. Either the direct solution [2b] or the asymptotic solution [2c] is used in making this evaluation.

1.1.2 XCOUNT() This function has arguments θ, a, and θ_{din}; it returns the length ℓ at which the ribbon temperature ratio is θ, for the counterflow case. Thus, for counterflow, this gives as ‘xcount()’, the value of $\mathbf{\hat{F}}(\theta, a, \theta_{do})$. It is called by the three routines ‘Tofx()’, ‘aLEHR()’ and ‘Tdin()’ described below.

1.1.3 Tofx() This function has arguments a, θ_{din}, ℓ_{oa}, and ℓ; it returns the ribbon temperature θ, found at dimensionless distance ℓ. It is the value of $f(\ell; a, \theta_{do})$, and is found by iterating on θ values until ‘xend()’ and ‘xcount()’ return values as near to ℓ as the machine arithmetic allows. The iteration scheme is bisection, so that jumps in ℓ where the asymptotic and direct solutions join are tolerated. This function was used to generate Fig.1.

1.1.4 aLEHR() This function has arguments θ_{din}, ℓ_{oa}, and θ aim point; it returns values of the duct heat capacity ratio a which will result in these values, with ‘aLEHR()’ being the parallel flow value (negative) and the argument ‘a2’ being the counterflow (positive) value. This is presumed to be useful for model-based control, in that it selects how large an actuator move is required to change the estimated steady solution to the desired one (θ).

1.1.5 Tdin() This function has arguments θ, ℓ_{oa}, and a; it returns the duct temperature θ_{din} needed to achieve this steady solution. Model based control is the application target for this function, which would be used to select the changes
of duct inflow temperature to when estimated glass temperature is not the desired θ value.

1.2. Example calculation. With the function ‘Tdin()’ above, the calculation of Chui’s Fig.9 centerline case can be approximated with input $a = 0.8943$, $\theta = 0.8678$ (850 deg F exit glass temperature), and $\ell_{oa} = 90$ ft (27.4 m)/ℓ_{o}; the returned duct input temperature is $\theta_{din} = 0.7426$ (676 deg F) with $\theta_{din} = 0.8707$ (855 deg F). This duct temperature profile lies in the middle of the centerline-to-edge profiles Chui shows, so long as the ℓ_{o} value fitted in Fig. 1(a) is used. Beyond this, the control coefficients he discusses are simple double calls and finite difference formulae. CPU time is completely negligible, well below a millisecond per call on a 266 MHz laptop. Another useful application envisioned for these functions is generation of meshes for more detailed calculations of radiative exchange, to produce near-optimal nodal distributions along the ribbons and ducts for both efficiency and for uniform numerical error control. For the source code of these functions, see App. 2.

2. FINITE WIDTHS AND LENGTHS

The ‘infinitely wide’ approximation treated in the previous section is the ideal situation which lehr design attempts to approach, by using low headroom between ribbon and ducts, well-insulated sidewalls, etc. However, the ribbon and lehr are not infinitely wide, so the radiative exchange must take account of the enclosure geometry. The first step in this direction was discussed by Chui [1] and later by Gardon [2]. These analyses considered radiative viewfactor effects in the calculation of the radiative flux, and used the same presumption of independence of the flux on axial temperature variations of the ducts as in the previous section. The glass was not transparent to any spectral range of the radiation in these treatments.

When the geometry effects on the viewfactors cannot be ignored, and when the glass is semitransparent, it becomes necessary to calculate them in an economical way. If it is presumed that the glass heat conduction problem will be given a Lagrangian treatment, in order that its internal radiative exchange with the surroundings be conveniently treated (see Sect. 3 below, and Ref. [3]), then the viewfactors need to be provided as a function of arbitrary position of the element of glass being considered. Fortunately, the lehr is predominately made up of plane elements, so its walls, ends, and ducts can all be represented as planar rectangles arranged so as to make up the enclosure.(Fig. 3). Therefore, the ability to calculate the viewfactors of two rectangles at arbitrary distance and arbitrary orientation to each other is the most difficult calculation required. This can be carried out in closed form by application of ‘viewfactor algebra’ relations [5,6,7]. This has been done in the subroutines attached to this report as App. 3.
Figure 3. Lehr Geometry. Typical lehr dimensions for flat glass production include a glass ribbon of width around 10 feet (3 m), a lehr width around 15 feet (5 m) and total height between duct surfaces around 3 feet (1 m). Rollers support the glass ribbon as it enters at the lower left and moves at several hundred inches per minute (0.15 m/sec) through the lehr. Separately controlled ducts make up the ceiling (long strips on top with solid lines) and on the floor (dashed lines below ribbon). Glass throughput for numerical examples is about 400 T/day (4.26 kg/sec).

Given the convenience of the viewfactor subroutines, they can also be used for a prismatic approximation to the cylindrical surfaces of the rollers which support the glass ribbon in a physically realistic model of the lehr. This requires only the extension of a one-dimensional quadrature to evaluate the local viewfactors for (prismatic) rollers.

If rollers are included in the radiative calculation, consistency demands that they be given contact conductive boundary conditions as well. However, the possible conditions of contact are so varied that there is no unique model for this effect. Here, we expect to parameterize the contact, compare simulated surface temperatures of the ribbon to measured values, and fix the model parameters for the industrial site at which the lehr models are to be applied.
Figure 4. Some viewfactors for the geometry of Fig. 3. A point on the ribbon centerline, will see a 3 ft (1 m) wide duct at distance 1 ft (0.2 m) above, with the viewfactor rising from 0.1 to 0.35 as it moves into the lehr, away from the entry end panel. This point will see the next duct to the side with a viewfactor varying from 0.02 to 0.07 (“centerline, duct 4.5 ft to the side”), and the third duct even more weakly (“centerline, duct 7.5 ft to the side”). Were the 0.35 asymptote 0.50 instead, the plane parallel solution would be exact. The sidewall viewfactor, deep in the lehr, would be about 0.14 for this example. The end panel visible above the ribbon has viewfactors as seen by particles on the ribbon centerline and on the ribbon edge which decline as the particles move into the lehr, but the distance required to reduce it by a factor of 10 is about 10 feet, a substantial portion of the conditioning zone length, or of the anneal section.

When models of the detail that includes rollers are handled, it becomes necessary to provide convenient electronic definitions of the model geometry and material properties. This definition has begun, and communicates with the user in convenient units such as throughput in ‘tons/day’. Sample files to define the lehr and ribbon are displayed in App. 4.
Cylindrical Mirror Images

Figure 5. Image for highly-reflective roller. Segment of glass ribbon along line A NB can be viewed directly from point P on the lehr floor. It is also seen at P as a distorted image BN’A’ reflected through the segment of the cylindrical roller arc C_B-C_N-C_A. The image BN’A’ is constructed by ray tracing from P to a point of contact such as C_A, where the ray from A to C_A makes and equal angle to the radius from the roller center C. Then the length of A- C_A is laid out along the direction P- C_A to define point A’ on the image. The image can then be meshed to include this reflected energy in the flux received at P. Of course, P also receives the diffuse radiation from roller arc C_B-C_N-C_A. A similar consideration will show that the next segment of the roller below this arc reflects an image of the roller to the left, then the next segment reflects an image of the floor (which trace multiple reflections from glass or rollers, so it is applicable only when such an approximation is accurate. The subroutine ‘im.f’ in App. 4 lists the source code for this calculation.

3. HEAT TRANSFER WITHIN THE RIBBON

The heat transfer effects discussed above include only radiative transfer at the surface of the ribbon, and at the surface of the duct. This formulation is fully characterized by the dimensionless parameters of Section 1, with the additional dimensionless geometric parameters such as w_x / \hat{L}_o, h / \hat{L}_o, etc, where w_x is the finite width of the ribbon, h is the height of the lehr sidewall, etc. The viewfactors F_{ij} which connect surfaces ‘i’ and ‘j’ are, of course, also dimensionless inputs to the heat transfer calculation in that treatment. This presumes that the glass can conduct whatever flux is needed to accomplish the bulk temperature changes described by variations of the
temperature \(\theta \). The issues arising in assuring that the fluxes computed in the enclosure exchange are consistent with the actual ribbon thickness \(t_g \) moving at velocity \(V_g \) will be treated in a forthcoming description of a calculation with glass as a participating medium in Ref. [3].

4. STRESSES

The lehr is fundamentally an annealing oven, and is meant to control residual stresses in the ribbon. If model based control is to operate in real time on presently practical (i.e., economical) computers, it must assess these stresses in as simple a manner as possible while remaining faithful to the actual sensitivity to changes in process variables. We assume that there is a ‘strength of materials’ approximation to the relevant stresses, in which changes in fiber length can be computed by one-dimensional expressions, and these strains used to estimate the mechanical stresses needed to maintain continuity of the ribbon, in the same spirit as Adams and Williamson [10].

In its passage through the annealing lehr, a glass ribbon changes its state from a rapidly relaxing viscous liquid medium to a “solid” with long-term residual stress. The change of state is induced by cooling the glass through its annealing temperature \(T_a \) down to its strain temperature \(T_s \). Generally, the values of \(T_a \) and \(T_s \) are selected to agree with the temperature at which viscosity is \(10^{13.5} \) and \(10^{14.5} \) Poise (\(10^{12.5} \) and \(10^{13.5} \) Pa-s), respectively. These are heuristically adjusted by \(\Delta T_a \) computed as

\[
\Delta T_a = 8.86 \ln R_{avg} + 65(1 - R_{avg})
\]

to define upper and lower temperature limits on annealing for finite average cooling rates \(R_{avg} \). Viscosity \(\mu \) is taken to be a Fulcher value

\[
\mu = \exp\left(a_f + \frac{b_f}{(T - T_f)}\right).
\]

The goal of the anneal process, in general, is to produce a residual stress state which will survive the fabrication processes downstream as well as survive the service environment of the glass part. Our treatment follows Narayanaswamy’s tutorial [12]. Both through-thickness and membrane stress is considered.

The governing relations for one-dimensional deformation are written in terms of a reduced time \(\xi \) defined in terms of the physical time by

\[
\xi = \int_0^T \phi(T; T_f) dt' ,
\]

i.e., glass is assumed to be ‘thermorheologically simple’ material, and where
\[\phi(T; T_f) = \frac{\mu_g}{\mu(T)} = \exp \left[\frac{H_g}{R} \left(\frac{1}{T_g} - \frac{1}{T} \right) + \frac{H_f}{R} \left(\frac{1}{T_f} - \frac{1}{T_f} \right) \right] \]

which includes activation energies \(H_g \) and \(H_f \), the universal gas constant \(R \), and the ‘structural relaxation’ effect by including the ‘fictive temperature’ \(T_f \) calculated from

\[T_f = T + \int_0^t M(\xi - \xi')d\xi' \]

for the shift \(M(\xi) = e^{-\xi/\xi_f} \) defined by the two relaxation parameters \(b_f \) and \(t_f \). Van Zee & Noritake use an \(M \) composed of a sum of two exponentials, rather than a single exponential with a power. The net thermal strain \(\varepsilon_{th} \) of a fiber at time \(t \) will consist of the instantaneous thermal strain and a structural relaxation term \(\varepsilon_{th} = \alpha_{T,L}(T - T_a) - r_x \)

where \(\varepsilon_x = (\alpha_{T,L} - \alpha_{T,g}) \int_0^t M(\xi - \xi')d\xi' \)

allows the instantaneous glassy strain with linear coefficient of expansion \(\alpha_{T,g} \) to relax toward the relaxed liquid expansion \(\alpha_{T,L} \). Then, for a total strain \(\varepsilon \), the stress \(\sigma \) in the fiber is given by

\[\sigma = \frac{E(0)}{1 - \nu} \int_0^t R(\xi - \xi) \frac{d(\varepsilon - \varepsilon_{th})}{d\xi'} d\xi' \]

where the relaxation function \(R(\xi) = e^{-\xi/\xi_f} \) mirrors the form of \(M() \). \(E(0) \) is the instantaneous (‘glassy’) Young’s modulus, and \(\nu \) is Poisson’s ratio. Values for the various parameters appearing here are summarized in App.5 below.

5. DISCUSSION

At this point, the elements of a simple quasisteady model which accepts as its input the high level description of the lehr detailed in App.4 has been described. The first two portions of it, dealing with the simplest possible model of the radiative energy exchange between the ribbon and enclosure elements, have been embodied in FORTRAN code. The validation process has been limited to comparison with Chui’s results reported in Ref. [1]. That comparison, it must be stressed, used a fitted value of the length scale \(\hat{L}_o \), namely, 6670 cm instead of the value 2985 cm which results from calculating \(\hat{L}_o = \frac{\dot{m}_g C_g}{(\varepsilon_c \sigma T_g^{3/2})} \) from the values in his Table I. This is a multiplier of 2.2, which
suggests that perhaps the factor 2 in his eq.[1] was omitted from the numerical calculations he reported. The fact that both his Fig. 8(B) and Fig.9 results are essentially reproduced with $L_o = 6670$ cm reinforces this likelihood.

The plane parallel thermal solution can be evaluated before the glass ribbon has moved 0.1 mm (i.e., in under a millisecond), so it is quite feasible to use it in a real time control of the lehr. Given sensor data, such as temperatures in an IR strip scanner, it could calculate and return the adjustments required to move the quasisteady solution back to the aim point.

For finer control than the plane parallel solution provides, the viewfactor values could be used in numerically integrating the energy balance eqs.[1-7] of Chui. The parallel flow case is a simple initial value problem quadrature for a system of ordinary differential equations, and is well treated by universally available software. For the counterflow case, it is necessary to solve a boundary value problem because the duct inflow temperatures θ_{din} (one value for each duct) are given at the far end (station x) of the ribbon. While software packages exist which can accomplish this task automatically with controlled error, it is more efficient numerically to use a dedicated code. The most direct method for a robust solution with the known monotonicity properties here would be to iteratively solve initial value problems with estimated θ_{din} values; that is, by “shooting”. Not only the initial estimate of these values, but perhaps their subsequent iterations, could be obtained from the plane parallel solution above, very quickly and completely robustly (since those routines make use of the information in Fig. 2). In short, using the software of sections 1 and 2 above, it should be possible to carry out the Chui calculation in real time as well, during the time the ribbon moves around a few cm. As with the plane parallel solution, lehr control adjustments should be possible, based on calculations by such routines.

The next level of sophistication, in which the heat fluxes include radiative participation by the interior of the ribbon, is beyond the scope of discussion here, and will be treated in Ref. [3]. At present it seems that such a calculation may well prove possible in a time useful for update of aim points, and perhaps even in real time.

The actual goal of the lehr is to manage stresses, and so the complete model based control would connect the lehr settings with the residual stresses in the glass as it reaches the cutting station. Simulation of the stresses due to thermal strains can be done in a “Strength of Materials” sense by use of one-dimensional calculations of fiber strains as outlined in Section 4, and these strains used to calculate membrane stresses, perhaps with the help of some plate equations to check for ribbon buckling; see Ref. [13]. This remains for a future effort.
REFERENCES:

3. Houf, W., ”Lagrangian Thermal Model of Annealing Lehr Glass Ribbon as Radiatively Participating Medium (Tentative Title)”. Sandia National Laboratories. (2000)

APPENDIX A. Derivation of the Plane Parallel Solution and Asymptotic Forms

Separation of variables reduces the energy balance to quadrature:

\[(x - x_o) = -\hat{L}_\theta \frac{du}{1 P_4(u; \theta_{do}, a)}.\]

The quartic polynomial \(P_4(\theta; \theta_{do}, a) \) can be factored, and expanded into the form:

\[
\frac{du}{u^4 - (au + b)^4} = \frac{1}{2a^2} \left\{ \frac{du}{u^2 - (au + b)^2} + \frac{du}{u^2 + (au + b)^2} \right\}
\]

The quadrature can now be carried out explicitly [4], to give:

\[
\theta \frac{du}{P_4(u; \theta_{do}, a)} = \frac{a}{2b^3} (G(\theta) - G(1))
\]

in terms of

\[
G(\theta) = \ln \left(\frac{\theta^2 + \theta_d^2}{\theta^2 - \theta_d^2} \right) + \frac{1 + a^2}{2a} \ln \left[\frac{(1 + a)(\theta - \theta_d)}{(1 - a)(\theta + \theta_d)} \right] - \frac{1 - a^2}{a} \tan^{-1} \left(\frac{\theta + a\theta_d}{-a\theta + \theta_d} \right)
\]

[A1.1]

Evaluating \((G(\theta) - G(1))\) and using the trigonometric identity for \(\tan(x + y)\), [A1.1] becomes eq.[2b].

In cases of counterflow, the first two \(\ln()\) terms can very nearly cancel one another (which they do exactly when \(b = 0\) produces the Case 1 solution). For computation in that case, the corresponding \(\ln()\) terms in \((G(\theta) - G(1))\) are expanded as

\[
\ln(1 + \epsilon) + \frac{1 + a^2}{2a} \ln \left[\frac{(1 + \theta_{do})(\theta - \theta_d)}{(1 - \theta_{do})(\theta + \theta_d)} \right] \approx \epsilon - \frac{1}{2} \epsilon^2 + \frac{1 + a^2}{2a} \ln \left[\frac{(1 + \theta_{do})(\theta - \theta_d)}{(1 - \theta_{do})(\theta + \theta_d)} \right]
\]

where \(\epsilon = 2 \frac{\theta_{do}(\theta - \theta_d)^2 - (1 - \theta_{do})^2 \theta_d}{(1 + \theta_{do})(\theta - \theta_d)^2} \).

[A1.2]
Finally, we note that the cases with $|a| = 1$, b nonzero, can be integrated because the integrand becomes cubic, and quadrature gives:

$$x - x_o = - \text{sgn}(a) \hat{L}_o \frac{1}{2b^3} \ln \left[\left(\frac{(\theta + \text{sgn}(a)\theta_{do})^2}{(\theta^2 + \theta_{do}^2)} \right) \frac{(1 + \theta_{do}^2)}{(1 + \text{sgn}(a)\theta_{do}^2)} \right]$$

Despite its quite different appearance, this form is a special case of the solution derived above, and need not be treated separately.

In the counterflow case, $a > 0$ holds and the coefficient $b = \theta_{do} - a$ can be zero or negative. When the solution (1) is evaluated with a small value of the coefficient b, less than about 0.1, the finite precision arithmetic of a computer loses accuracy quite noticeably, so it is necessary to have an asymptotic solution around b=0 to evaluate. This can be constructed by expanding the integrand in powers of

$$w = \frac{2ab}{u} + \frac{b^2}{u^2},$$

which gives the expansion

$$\left(1 - a^4\right) \left(x - x_o\right) \hat{L}_c = \frac{1}{3} \left(\frac{1}{\theta^3} - 1 \right) - 2a^2 \int \frac{\theta w}{u^4} \frac{du}{u^4} - (1 + 3a^4) \int \frac{\theta w^2}{u^4} \frac{du}{u^4} -$$

$$+ 4a^2 (1 + a^4) \int \frac{\theta w^3}{u^4} \frac{du}{u^4} - (1 + 10a^4 + 5a^8) \int \frac{\theta w^4}{u^4} \frac{du}{u^4} - \ldots$$

from which the powers of b can be explicitly written. The actual expansion parameter which appears in the power series is $e = b / (1 - a^4)$, and it represents the solution as the fourth order relation:

$$\left(1 - a^4\right) \left(x - x_o\right) \hat{L}_c = \frac{1}{3} \left(\frac{1}{\theta^3} - 1 \right) + a^3 \left(\frac{1}{\theta^4} - 1 \right) e + \frac{2}{5} a^2 (3 + 5a^4) \left(\frac{1}{\theta^5} - 1 \right) e^2$$

$$+ \frac{2}{3} a \left(1 + 10a^4 + 5a^8\right) \left(\frac{1}{\theta^6} - 1 \right) e^3$$

$$+ \frac{1}{7} \left(1 + 65a^4 + 155a^8 + 15a^{12}\right) \left(\frac{1}{\theta^7} - 1 \right) e^4 + \ldots$$

and this is used with heuristically chosen values $-0.115 < e < 0.0827$ in the routine XEND().
APPENDIX B. Source Code for Evaluating the Plane Parallel Solution

```fortran
program calibrate
C********************************************************************
C** Subroutines for Flat Glass Lehr Thermal Simulation **
C** written by Lee A. Bertram **
C** Sandia National Laboratories **
C** Livermore, CA 94551 **
C** April 2000 **
C** Copyright 2000 (c) Sandia Corporation **
C********************************************************************
C Evaluate RHS of Apr00 version of closed-form plane-parallel
C radiative exchange solution for glass (g) ribbon and ducts (d).
C Input variables are the controlled quantities: heat advection
C ratio 'a',
C and duct inflow dimensionless absolute temperature
thdin=Tdin/Tgo.
C These are held fixed, and the whole range of the third
C independent
C variable (endpoint ribbon th=Tg/Tgo) is marched through to
display
C all possible solutions for the given 'a,thdin'.
open(unit=8,file='soln.dat',status='unknown')
open(unit=9,file='fort.9',status='unknown')
open(unit=66,file='cal.log',status='unknown')
hatL=5481.
```
Possible emissivity correction of 25%?

\[
\hat{L} = 1.205 \times \hat{L}
\]

\[
\hat{L} = 1.25 \times \hat{L}
\]

\[
\hat{L} = 1076.
\]

\[
\hat{L} = 2765.
\]

\[
\hat{L} = 3775.
\]

\[
\hat{L} = 6670.
\]

Tgo = 838.6

Tdo = 616.3

Tdo = 916.3

thdin = Tdo/Tgo

To choose parallel flow, set this flag to 1; else, counterflow.
k8A = 21

Set an 'a' value, then march 'th' and compare the base solution to the asymptotics of order 0-4, in the counterflow case a > 0.

if (k8A.eq.1) then
 a = -0.8576
 a = -0.8943
else
 a = 0.8576
 a = 0.8943
endif

nth = 51

write(6, *) 'Initial XEND() calls: a, thdin, hatL=', a, thdin, hatL
write(66, *) 'Initial case: a, thdin, hatL=', a, thdin, hatL

bo = (thdin - a)

if (a.lt.1.) then
 brange = -(thdin - a) + 0.99*(1.-a)*thdin
else
 brange = 0.99*(1.-a) - bo
endif

Write a, b, thdin all specified, the counterflow solution is fixed.

However, when thdin = thdo, th = 1 and (x-xo) = 0. This occurs when the selected b-value is thdin-a, so the minimum b of the range must be thdin-a. The maximum b must be 1-a, which requires infinite length for the ribbon to cool from its degenerate initial condition

thdo = 1.

db = (brange)/float(nth-1)

For the parallel flow case, the marching must be on th, the endpoint ribbon temperature, since a, b, thdin are not independent here. Clearly,

the th value goes from 1 (for zero length) to thc (for infinite length), where thc is the convergence temperature of ribbon and duct.

if (abs(1.-a**2).le.1.e-4) then
 thc = 0.5*(thdin+1.)
else
 thc = (thdin-a)/(1.-a)
endif

\[
dth = (1.-thc)/float(nth)
\]
write(66,*) 'a,thdin-a,db=',a,thdin-a,db
do 10 i=1,nth
 if(a.gt.0.) then
 b=bo+db*float(i-1)
 th=(thdin-b)/a
 thdo=a + b
 else
 th=thc+dth*float(i)
 b=thdin-a
 endif
write(9,*) b,th,thdo,a,thdin
xth=xend(th,a,thdin,thdo,thd)
if(abs(th-thdo).gt.2.e-4*amax1(abs(th),abs(thdo))) then
 c Display limit case (a=0) and components of 'xend':
 xzero=xmin(thdin,th)
 xcrunch=xdir(a,thdo,th)
 xseries=xasymp(a,b,th)
else
 xzero=1.
 xcrunch=1.
 xseries=1.
endif
if(a.gt.0.) then
 thd=a*th+b
 write(9,*) xth,th,xseries,xcrunch,xzero
else
 thd=a*th+b
 write(9,*) xth,th,thd,thdo
endif
10 continue

c

c Second example: Generate Chui plots for Fig.8:

thdin=0.734915
if(a.gt.0.) then
 c Fig. 8B
 a=0.8576
 th=0.856
 a=0.8943
 cc a=2.0
 th=(5.*(844.-32.)/9. + 273.)/Tgo
 cc th=(5.*(1144.-32.)/9. + 273.)/Tgo
 cc th=(5.*(1100.-32.)/9. + 273.)/Tgo
 b=thdin-a*th
 thdo=a+b
else
 c Fig.8A
 th=0.8764
 th=(5.*(865.-32.)/9. + 273.)/Tgo
 a=-0.8576
 a=-0.8943
 thdo=thdin
endif
write(6,*) ' Chui Fig 8 from Tofx() with a,th,thdin=',a,th,thdin
write(66,*) ' Fig 8 call XEND with a,th,thdin=',a,th,thdin
oal=xend(th,a,thdin,thdo,thd)

c Overall length for Chui: 90 ft X 30.48 cm/ft:

sta=90.*30.48/hatL
write(66,*) 'oal,sta=','oal,sta
npts=101
ds=sta/float(npts-1)
do 20 i=1,npts
 sta=amax1(1.e-5,ds*float(i-1))
write(66,*) ' Enter Tofx with oal=','oal,' and sta=','sta
tchk=Tofx(a,thdin,oal,sta)
write(66,*) ' Exit Tofx with i,thdin,tchk=','i,thdin,tchk
xft=hatL*sta/30.48
TdegF=tchk*Tgo*9./5.-460.
if(a.gt.0.) then
 thd=a*tchk+b
else
 thd=a*(tchk-1.)+thdin
endif
Tduct=thd*Tgo*9./5.-460.
write(8,*) xft,TdegF,Tduct,sta,tchk,thd
20 continue
write(6,*) ' Chui Fig 8 curves Tofx() in file "soln.dat".'
c
th=0.86745
c
cc th=1.031
oal=xend(th,a,thdin,thdo,thd)
write(6,*) ' Calling aLEHR with thdin,th,oal; a=','thdin,th,oal,a
write(66,*) ' aLEHR arguments thdin,th,oal; a=','thdin,th,oal,a
astar=alehr(thdin,th,oal,thd,thdo,a2)
write(6,*) ' Roots from aLEHR(): astar,a2=','astar,a2
c
Chui Fig. 9 sets glass exit temperature to 850 deg F,
c
then length=90 ft; seeks Tdin for counterflow duct
with a=0.8943 (same as Fig.8) to achieve this aim Tg.
th=0.8678
thdin=Tdin(th,oal,a,thd,thdo)
write(6,*) ' Tdin() return with th,a,oal,thd,thdo,'
th,a,oal,thd,thdo,thdin
alen=xend(th,a,thdin,thdo,thd)
write(6,*1) ' For th,a,thdo=','th,a,thdin,','XEND()=','alen
stop
end

function alehr(thdin,th,oal,thd,thdo,a2)
**
**
** **
** ** Subroutines for Flat Glass Lehr Thermal Simulation **
**
**

c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** Copyright 2000 (c) Sandia Corporation
**
C**
c Given a dimensionless lehr length 'oal' and a duct input absolute
dimensionless
c temperature ratio 'thdin' and the target glass temperature
th=Tg/Tgo,
c find the heat advection ratio 'a' for the duct and return it as
'alehr';
c also return as an argument the second value 'a2' of opposite
sign.
c Also return duct temperature ratios at xo (thdo) and at exit oal
(thd).

k=0
kmax=50
eps = 1.e-4
tol=amax1(eps,eps*oal)
c Start by seeking parallel flow (a < 0) solution:
if(abs(1.-th).lt.eps) then
c write(66,*) ' Abort ALEHR because ribbon ends with',
cc & th = Tg/Tgo =',th
alehr=1.
a2=-1.
return
endif
c Locate smallest feasible 'a' value, where ribbon and duct
 temperatures
c converge in parallel flow:
amin=(1.-3.e-6)*(thdin-th)/(1.-th)
xinf=xend(th,amin,thdin,thdo4,thd4)
c write(66,*) 'Parallel flow amin=',amin,' has scaled
length=',xinf
c Locate largest feasible 'a', which arises when duct temperature
c at glass inflow station xo is equal to the glass temperature;
ducts
c are counterflow in this case:
amax=(1.-3.e-6)*(1.-thdin)/(1.-th)
xinf=xend(th,amax,thdin,thdo4,thd4)
c write(66,*) 'Counterflow amax=',amax,' has scaled
length=',xinf
c Examine length for infinite duct flow (a=0) case:
a0=0.
ximin=xend(th,a0,thdin,thdo4,thd4)
c write(66,*) ' Isothermal duct flow a=0 case has scaled
length=',
cc & xmin
cc Check input arguments for consistency: can 'oal' be reached for
this
c thdin,th pair?
c write(66,*) ' Feasible range of lengths is',xmin,' to max of',
& xinf,xinf
if(oal.lt.xmin.or.oal.gt.amax1(xinf,xinf)) then
 c Solution is not feasible
 cc write(66,*) 'ALEHR cannot reach the input oal=',oal
 cc write(66,*) ' feasible range of lengths is',xmin,' to max of',
 cc & xinf,xinf
 c Return error flag alehr=0.
 alehr=0.
 return
endif
 c Proceed with bisections to locate parallel flow solution:
 aL=amin
 xL=xinf
 sL=1.
 c Set right point as essentially zero:
 aR=-0.00001
 xR=xend(th,aR,thdin,thdo4,thd4)
 targ=oal
 if(abs(xL-oal).le.tol) then
 c Converged; quit:
 alehr=aL
 go to 15
 c else bisection to right is already set up
 endif
 c Parallel flow:
 thdo=thdin
 thd=a*th+thdo-a
 sL=sign(1.,xL-targ)
 sR=sign(1.,xR-targ)
 cc write(66,*) ' Start ALEHR bisection with
 aL,aR,xL,xR,sL,sR,targ='
 cc write(66,*) aL,aR,xL,xR,sL,sR,targ
 cc write(66,*) ' Bisection gives xL, targ, xR values at aM : '
 10 continue
 aM=0.5*(aL+aR)
 cc write(66,*) xL,targ,xR,aM
 b=thdin-aM
 xM=xend(th,aM,thdin,thdo,thd)
 if(xM.lt.0.) then
 c Identify error flag:
 if(xM.gt.-1.5) then
 cc write(66,*) ' Error in ALEHR for counterflow; aM,th,thdin=',
 cc & aM,th,thdin
 alehr=1.0
 return
 cc stop
 else
 cc write(66,*) ' Error in ALEHR for parallel flow; a,th,thdin=',
 cc & a,th,thdin
 alehr=-1.0
 return
 cc stop
 endif
 endif
 sM=sign(1.,xM-targ)
 if((sM*sR).gt.0.) then
c Left half contains root:
xR=xM
sR=sM
aR=aM
else
c Right half contains root:
xL=xM
sL=sM
aL=aM
endif
if(abs(aR-aL).le.1.e-6) then
c Converged
alehr=0.5*(aL+aR)
else
k=k+1
if(k.le.kmax) then
c Continue bisection
goto 10
else
c Write(66,*) ' ALEHR() giving up after',k,' bisections.'
alehr=aM
endif
endif
aL=-0.8576
xL=xend(th,aL,thdin,thdo,thd)
c Write(66,*) ' xend(a=',aL,') =',xL,'; thd,thdo=',thd,thdo
c Write(66,*) 'ALEHR solved parallel flow; a=',aM,' gives
 xM=',xM,'; aL=',aL
cc & ' while oal=',oal
c For parallel flow, the task is finished; for counterflow, the
 conditions are established, and bisection can proceed.
15 continue
cc Write(66,*) ' Start counterflow with th,thdin,oal=',th,thdin,oal
aR=amax
sa=1.
xR=xinfrc
cc Write(66,*) ' ALEHR sets xR=',xinfrc,' for a=',aR,
cc & ' and th,thdin=',th,thdin,'.'
aL=0.0001
xL=xend(th,aL,thdin,thdo,thd)
thdo4=thdo
c Now have xM consistent with 'a' and 'thdin,th' inputs. Correct
 'a' to
cc Write(66,*) ' For aL=',aL,' get xL,sL=',xL,sL
k=0
20 continue
aM=0.5*(aL+aR)
c Write(66,*) xL,targ,xR,aM
b=thdin-aM
xM=xend(th,aM,thdin,thdo,thd)
if(xM.lt.0.) then
c Identify error flag:
cc Write(66,*) ' Abort in aLEHR().'
if(xM.gt.-1.5) then
cc write(66,*) ' Error in ALEHR for counterflow; aM,th,thdin=', aM,th,thdin
cc stop
else
cc write(66,*) ' Error in ALEHR for parallel flow; a,th,thdin=', a,th,thdin
cc stop
endif
endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then
 c Left half contains root:
xR=xM
 sR=sM
 aR=aM
else
 c Right half contains root:
xL=xM
 sL=sM
 aL=aM
endif
if(abs(aR-aL).le.1.e-6) then
 c Converged
 a2=0.5*(aL+aR)
else
 k=k+1
 if(k.le.kmax) then
 c Continue bisection
 go to 20
 else
 cc write(66,*) ' ALEHR() giving up after',k,' bisections.'
 a2=aM
 endif
endif
cc write(66,*) 'ALEHR succeeded in counterflow; a2=',a2, ' gives xM=',xM, ' while oal=',oal
aL=0.8576
xL=xend(th,aL,thdin,thdo,thd)
cc write(66,*) ' xend(a=',aL,') =',xL
return
end

c function Tofx(a,thdin,oal,sta)
c**
c**
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** April 2000 **
c** Copyright 2000 (c) Sandia Corporation **
c**
c**
Given heat advection ratio 'a' and duct inflow 'thdin' at overall length 'oal',
determine the ribbon dimensionless temperature 'Tofx' at dimensionless distance 'sta' along the ribbon. Find 'sta' by bisection, using the closed form solution 'xend()'; precision of 'sta' is set to six figures.

\[
\begin{align*}
k &= 0 \\
\text{kmax} &= 50 \\
\text{eps} &= 1.e-6 \\
\text{tR} &= 1. \\
\text{xR} &= 0. \\
\text{xL} &= 1.e11 \\
\text{if}(a > 0.) \text{ then} \\
\quad \text{Counterflow:} \\
\quad tL &= \text{thdin} \\
\quad \text{targ} &= \text{oal} \\
\quad \text{if}(\text{thdin} > 1.) \text{ then} \\
\quad \quad \text{tL} &= 1. \\
\quad \quad \text{xL} &= 0. \\
\quad \quad \text{if}(a < 1.) \text{ then} \\
\quad \quad \quad \text{tR} &= \text{thdin} \\
\quad \quad \quad \text{xR} &= 1.e11 \\
\quad \quad \else \\
\quad \quad \quad \text{tR} &= 1. + (\text{thdin} - 1.) / a \\
\quad \quad \quad \text{xR} &= 1.e11 \\
\quad \quad \endif \\
\quad \endif \\
\else \\
\quad \text{Parallel flow; convergence T on left:} \\
\quad tL &= (\text{thdin} - a) / (1. - a) \\
\quad \text{targ} &= \text{sta} \\
\quad \endif \\
\quad sL &= \text{sign}(1., xL - \text{targ}) \\
\quad sR &= \text{sign}(1., xR - \text{targ}) \\
10 \ continue \\
\quad \text{tM} &= 0.5 * (tL + tR) \\
\quad \text{th} &= \text{tM} \\
\quad \text{xM} &= \text{xend}(\text{th}, \text{a}, \text{thdin}, \text{thdo}, \text{thd}) \\
\quad \text{if}(\text{xM} \lt 0.) \text{ then} \\
\quad \quad \text{Identify error flag:} \\
\quad \quad \text{write}(6,*) ' \text{Abort in Tofx().}' \\
\quad \quad \text{if}(\text{xM} \lt -1.5) \text{ then} \\
\quad \quad \quad \text{write}(66,*) ' \text{Error in Tofx() for parallel flow; a,th,thdin=},' \\
\quad \quad \quad \text{a,th,thdin=}, \\
\quad \quad \else \\
\quad \quad \quad \text{write}(66,*) ' \text{Error in Tofx() for counterflow; a,th,thdin=},' \\
\quad \quad \quad \text{a,th,thdin=}, \\
\quad \quad \endif \\
\quad \endif \\
\quad \quad \text{stop} \\
\quad \else \\
\quad \quad \text{stop} \\
\quad \endif \\
\quad sM &= \text{sign}(1., xM - \text{targ}) \\
\quad \text{if}((sM \cdot sR) > 0.) \text{ then} \\
\quad \quad \text{stop} \\
\quad \endif \\
\end{align*}
\]
c Left half contains root:
xR=xM
sR=sM
tR=tM
else
c Right half contains root:
xL=xM
sL=sM
tL=tM
endif
if(abs(tR-tL).le.eps) then
c Converged
Tofx=0.5*(tL+tR)
else
k=k+1
if(k.le.kmax) then
c Continue bisection
go to 10
else
cc write(66,*) ' Tofx() giving up after',k,' bisections.'
 Tofx=tM
endif
endif
cc write(66,*) 'Tofx solved stage 1; th=',tM,' gives xM=',xM
cc write(66,*) ' inputs were a=',a,', while oal=',oal,
cc & ' and sta=',sta
c For parallel flow, the task is finished; for counterflow, the
initial
c conditions are established, and the evaluation can proceed.
if(a.lt.0.) return
c Set up bisection for th between 1. and Tofx, and find
c thd value appropriate to 'sta'
targ=sta
tL=1.
tR=Tofx
xL=0.
xR=oal
if(sta.gt.oal) then
 xR=1.e11
 thc=amax1(0.,(Tofx-a)/(1.-a))
 tR=eps+thc
endif
sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)
k=0
20 continue
tM=0.5*(tL+tR)
th=tM
targ=sta
cc write(66,*) ' Calling XCOUNT with inputs a,thdo,th=',a,thdo,th
xM=xcount(a,thdo,thdin,th,thd)
sM=sign(1.,xM-targ)
cc write(66,*) 'XCOUNT returns tL,tR,xL,xR,sL,sR,xM='
cc write(66,*) tL,tR,xL,xR,sL,sR,xM
if((sM*sR).gt.0.) then
c Left half contains root:
xR=xM
sR = sM
tR = tM
else
c Right half contains root:
xL = xM
sL = sM
tL = tM
endif
if(abs(tR - tL) .le. eps) then
c Converged
Tofx = 0.5 * (tL + tR)
else
k = k + 1
if(k .le. kmax) then
c Continue bisection
go to 20
else
cc write(66,*) ' Tofx() giving up after',k,' bisections.'
Tofx = tM
return
endif
endif
c write(66,*) 'Tofx succeeded in counterflow; th=', tM,
c & ' gives xM=', xM,' while sta=', sta
cc return
end
c function xend(th, a, thdin, thdo, thd)
cc**
c**
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c**
c**
c Evaluate closed-form solution for glass length 'xend' at which
the
c dimensionless absolute temperature Tg/Tgo = th, when given the
mass flow
c ratio a = [(dm/dt)*Cp]g/[(dm/dt)Cp]d and duct inflow
thdin = Td/Tgo.
c In counterflow case, a smooth asymptotic approximation is
provided when
nc Td is nearly a*Tg. Returns duct temperatures at xo (thdo) and at
x (thd),
c as well as dimensionless length xend=(x-xo)/Lc.
c Error flags are xend=-1. (parallel flow error) and -2. (counterflow error).
if(abs(a) .le. 2.e-4) then
cc Isothermal ducts with infinite heat capacity:
thdo=thdin
val=xmin(thdo,th)
xend=val
thd=thdo
return
d
if(a.gt.0.) then
 c Counterflow:
 thd=thdin
 b=thd-a*th
 thdo=b+a
 thc=(thdo-a)/(1.-a)
 c Checking input 'th' consistency: on same side of 'thc' as 1?
 sc=sign(1.,(th-thc)*(1.-thc))
 if(sc.lt.0.) then
 cc write(66,*) 'XEND inputs physically unrealistic:'
 cc write(66,*) ' With a,b,th,thdin,thdo=',a,b,th,thdin,thdo
 cc write(66,*) 'Return xend=-2. error flag.'
 xend=-2.
 return
 endif
c Select heuristic join between asymptotics and direct evaluation.
blow=amin1((-0.118*(1.-a**4)),(0.0827*(1.-a**4)))
bhigh=amax1((-0.118*(1.-a**4)),(0.0827*(1.-a**4)))
bhigh=(0.0827*(1.-a**4))
c cc write(66,*) 'XEND blow=',blow,' and bhigh=',bhigh,', b=',b
 if(abs(1.-a**2).le.1.e-4) then
 cc write(66,*) 'Degenerate XEND case with a=1.'
c Requires direct evaluation to avoid NaNs, Infs.
bhigh=0.5*blow
 if(abs(b).le.(1.e-3)) then
 cc write(66,*) ' XEND has degenerate case a=b=0 with a,b=',a,b
 xend=1.e10
 return
 endif
c endif
e
 else
 c Parallel flow:
 thdo=thdin
 c Check for physically possible solution by computing converging
c temperature value for duct and ribbon:
 thc=(thdo-a)/(1.-a)
 if((th-thc)*(-1.-thc).lt.0.) then
 cc write(66,*) 'Inputs to XEND are not physically realizable:'
 cc write(66,*) ' The given ratio of mass flows was a=',a
 cc write(66,*) ' and the initial temperatures, th=1 and
 thdo=',thdo
 cc write(66,*) ' Convergence T/Tgo =', thc,'.'
 cc write(66,*) 'Abort XEND, return xend=-1.'
xend=-1.
 return
 endif
 b=thdo-a
 thd=a*th+b
 c Suppress calls to power series in 'b':
 blow=1.1
bhigh=1.0
endif
if(b.gt.blow.and.b.lt.bhigh) then
 xth=xasymp(a,b,th)
else
c Direct evaluation of general solution:
 xth=xdir(a,thdo,th)
endif
xend=xth
return
end

function xcount(a,thdo,thdin,th,thd)
 c**
c**
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c**
c**
c Evaluate closed-form solution for glass length 'xcount' in
counterflow.
c Inputs are dimensionless heat advection ratio 'a', the duct
initial
c dimensionless absolute temperature Tdo/Tgo = thdo, and a
c glass temperature th=Tg/Tgo which is not at the station x
c where the duct inflow temperature 'thdin' occurs; 'xcount' is
c the station at which 'th' occurs.
c From these, evaluate the closed-form solution for distance
c 'xcount', and duct temperature thd=Td/Tgo at 'xcount'.
c The counterflow case uses a smooth asymptotic approximation when
c Td is nearly a*Tg.
c Error flag is xend=-2. (counterflow error).
 if(abs(a).le.2.e-4) then
 c Isothermal ducts with infinite heat capacity:
 val=xmin(thdo,th)
 xcount=val
 thd=thdo
 return
 endif
 if(a.gt.0.) then
 c Counterflow:
 b=thdo-a
 thd=a*th+b
 thc=(thdo-a)/(1.-a)
 sc=(th-thc)*(1.-thc)
 if(sc.lt.0.) then
 cc write(66,*) 'XCOUNT inputs physically unrealistic:'
 cc write(66,*) ' Inputs were a,th,thdin=',a,th,thdin
 cc write(66,*) 'Return xcount=-2. error flag.'
 else
 cc write(66,*) 'XCOUNT inputs physically realistic:'
 cc write(66,*) ' Input values were a,th,thdo,thdin=',a,th,thdo,thdin
 cc write(66,*) 'Return xcount=',xcount
 endif
 endif
end
xcount=-2.
return
endif
c Select heuristic joint between asymptotics and direct evaluation.
blow=(-0.118*(1.-a**4))
bhigh=(0.0827*(1.-a**4))
else
c write(66,*) 'XCOUNT has parallel flow input a=',a
xcount=-2.
return
endif
if(b.gt.blow.and.b.lt.bhigh) then
xth=xasymp(a,b,th)
else
c Direct evaluation of general solution:
xth=xdir(a,thdo,th)
endif
xcount=xth
return
end

c function Tdin(th,oal,a,thd,thdo)
c**
c**
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c**
c**
c Given a dimensionless lehr length 'oal', the heat advection ratio 'a',
c and the target glass temperature th=Tg/Tgo, find and return as 'Tdin'
c the duct input absolute dimensionless temperature ratio 'thdin'
c Also return duct temperature ratio at exit oal (thd) and at glass entry xo (thdo), unambiguously labelled.
k=0
kmax=50
eps = 1.e-6
tol=amax1(eps,eps*oal)
c Start by seeking parallel flow (a < 0) solution:
if(abs(1.-th).lt.eps) then
cc write(66,*) ' Abort Tdin() because ribbon ends with th =','
c & ' Tg/Tgo =','th
Tdin=-1.
return
endif
if(a.lt.0.) then
c Locate smallest feasible 'oal' value, with thdo=0 in parallel
c flow:
thdin=0.
tL=0.
aminl=xend(th,a,thdin,thdo,thd)
ccc write(66,*)'Parallel flow aminl=',aminl,' for thdo=0 in
c Tdin().'
c
 c Now locate infinite 'oal' value, with th=convergence in parallel
c flow:
thdin=a+(1.-a)*th -1.e-6
 tR=thdin
 ainfl=xend(th,a,thdin,thdo,thd)
ccc write(66,*)' Max oal=ainfl=',ainfl,' for thdo=thc in
c Tdin().'
c else
 c Range of thdo for counterflow (a > 0)
c ccc write(66,*)' Set up bisection for counterflow.'
c c Lower limit for thdo in cooling:
tL=a*(1.-th)
c c Upper limit for thdo in heating with a > 1:
tR=100.
 if(th.gt.1.) then
 c Heating:
 tL=1.+10.*eps
 if(a.lt.1.) then
 tL=a+(1.-a)*th
 endif
 else
 c Cooling:
tR=1.-10.*eps
 tR=aminl(tR,0.999*(th+a*(1.-th)))
 endif
 thdo=tL
 thdin=a*th+thdo-a
 aminl= xcount(a,thdo,thdin,th,thd)
c c Infinite length when thdo=tR:
 amaxl= xcount(a,tR,thdin,th,thd)
c c Because these may interchange roles, check to assure
c c that tL is associated with the smaller x-xo:
 if(amaxl.lt.aminl) then
 xL=amaxl
 amaxl=tL
 tL=tR
 tR=amaxl
 xR=aminl
 else
 xL=aminl
 xR=amaxl
 endif
 ainfl=xR
cc ccc write(66,*)' Counterflow: ',tL,'.lt.thdo.lt.',tR,'.'
ccc ccc write(66,*)' ',xL,'.lt.oal.lt.',xR,'.'
thdo=0.5*(tL+tR)
if(thdo.ne.123.) go to 6
do 5 i=1,kmax
 thdinx=thdinx+0.1*((0.5)**i)
thdo=thdinx
thdin = a*th + thdo - a
ainflx = xcount(a, thdo, thdin, th, thd)
if (ainflx.gt.0.) then
 tR = thdo
 ainfl = ainflx
else
 go to 6
endif
5 continue
6 continue
thdin = a*th + thdo - a
ainfl = xcount(a, tR, thdin, th, thd)
aminl = xL
c write(66,*) ' Counterflow range for oal is', aminl, ' to',
c & ainfl, '.'
c write(66,*) ' obtained for thdo=', tL, tR
endif
if (oal.gt.ainfl) then
c Singular solution:
 Tdin = thdin
 if (a.gt.0.) then
 thd = thdin
 thdo = thd - a*th + a
 else
 thdo = thdin
 thd = a*th + thdo - a
 endif
 return
elseif (oal.lt.aminl) then
c Physically inconsistent inputs to Tdin():
c write(66,*) ' Inconsistent inputs to Tdin(): oal=', oal
c & write(66,*) ' but aminl=', aminl, ' is minimum possible',
c & ' ribbon length'
c write(66,*) ' for input th,a=', th, a
 Tdin = -1.
 thdo = -1.
 thd = -1.
 return
endif
7 continue
c Bisect interval:
xR = ainfl
xL = aminl
targ = oal
sL = sign(1., xL - targ)
sR = sign(1., xR - targ)
c write(66,*) ' Bisections for Tdin(): xL, oal, xR, tM'
10 continue
tM = 0.5*(tL + tR)
c write(66,*) xL, oal, xR, tM
thdin = tM
if (a.lt.0.) then
 xM = xend(th, a, thdin, thdo, thd)
else
 thdo = tM
 thdin = a*th + thdo - a
 xM = xcount(a, thdo, thdin, th, thd)
endif
if(xM.lt.0.) then
 c Identify error flag:
 write(6,*), ' Abort in Tdin().'
 if(xM.gt.-1.5) then
 write(66,*), ' Error in XEND for parallel flow; a,th,thdin=', a,th,thdin
 stop
 else
 write(6,*), ' Error in XEND for counterflow; a,th,thdin=', a,th,thdin
 stop
 endif
endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then
 c Left half contains root:
 xR=xM
 sR=sM
 tR=tM
else
 c Right half contains root:
 xL=xM
 sL=sM
 tL=tM
endif
if(abs(tR-tL).le.eps) then
 c Converged
 Tdin=0.5*(tL+tR)
else
 k=k+1
 if(k.le.kmax) then
 c Continue bisection
 go to 10
 else
 write(66,*), ' Tdin() giving up after',k,' bisections.'
 Tdin=tM
 endif
endif
if(a.gt.0.) then
 c Counterflow:
 thdo=Tdin
 thd=a*th+thdo-a
 Tdin=thd
endif
write(66,*), 'Tdin solved for thdin=',Tdin,', giving xM=',xM
write(66,*), ' inputs were a=',a,', and oal=',oal
return
end

function xdir(a,thdo,th)
c**
c**
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **

end
Evaluating full solution directly to get dimensionless distance 'xdir' for given heat advection ratio 'a', given duct temperature at station xo 'thdo', and final temperature ratio 'th'. Calling program must have checked that a.ne.0., that a.ne.1, and that th.gt.(thdo-a)/(1-a) so that no operation below is singular.

write(66,*) ' Direct XEND with th,thd,a,thdo=', th,thd,a,thdo
cc if(abs(b).gt.1.e-3) then
 Nonzero b; full solution:
 b=(thdo-a)
thd=a*th+b
 thsq=th**th
 thdsq=thd*thd
 f1=(thsq+thdsq)/(1.+thdo**2)
 f2=(1.-thdo**2)/(thsq-thdsq)
 f12=f1*f2
 fp3=(th-thd)/(1.-thdo)
 fp4=(1.+thdo)/(th+thd)
 arg=fp3*fp4
 expl1=(1.+a**2)/(2.*a)
 f3=arg**expl1
 val=(th*thdo-thd)/(th+thdo*thd)
 val2=atan(val)
 val3=-(1.-a**2)*val2/a
 if((f1*f2*fp3*fp4-1.).gt.2.e-3) then
 xth=-a*(val3+alog(f1*f2*f3))/(2.*b**3)
 else
 Expand ln(1-eps) as -eps + 0.5*eps**2 :
 f14=2.*((1-thdo)**2)-((1-thdo)**2)*th*thd
 f14=f14/((1.+thdo**2)*((th+thd)**2))
 f12=f14/0.5*(f14**2)+((1.-a)**2)*(alog(fp3*fp4))/(2.*a)
 xth=-a*(val3+f12)/(2.*b**3)
 endif
 xdir=xth
 return
end

function xmin(thdo,th)
cc**
c**
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
For the maximum cooling rate, with a=0, the duct remains isothermal at 'thdo' and the distance to reach 'th' is the minimum possible. Distance 'xmin' is that dimensionless value. Calling program must have checked that a =0., and that 'th' and 'thdo' are such that no operation below is singular.

\[f_1 = \frac{thdo \cdot (th - 1)}{(th + thdo^2)} \]
\[f_1 = \text{atan}(f_1) \]
\[f_2 = \frac{(th - thdo)}{(1 - thdo)} \]
\[f_2 = f_2 \cdot \frac{(1 + thdo)}{(th + thdo)} \]

\[
\begin{align*}
\text{if}(f_2 > 0) & \text{ then } \\
& f_2 = 0.5 \cdot \text{alog}(f_2) \\
\text{else} & \\
& \text{xmin} = 1. \\
& \text{return} \\
\text{endif} \\
\end{align*}
\]

\[\text{xmin} = \frac{f_1 - f_2}{2 \cdot (thdo^3)} \]
\[\text{return} \]
\[\text{end} \]

Function xasymp(a, b, th)

Degenerate case; b=0 solution
\[a_{4m1} = 1 - a^4 \]
\[e = b / a_{4m1} \]
\[x_{th} = \left(\frac{1}{(th^3)} - 1 \right) / (3 \cdot a_{4m1}) \]
\[x_0 = x_{th} \]
\[\text{if}(\text{abs}(b).gt.b1) \text{ then} \]
\[\text{Asymptotic linear correction:} \]
\[x_{th} = x_{th} - e \cdot (a^3) \cdot \left(\frac{1}{1 - (th^4)} \right) / a_{4m1} \]
\[\text{endif} \]
\[x_1 = x_{th} \]
\[\text{if}(\text{abs}(b).gt.b2) \text{ then} \]
\[\text{Asymptotic quadratic correction:} \]
\[x_{th} = x_{th} - 0.4 \cdot ((e \cdot a)^2) \cdot (3.5 \cdot a^4) * \]
& \quad (1.-1./(th**5))/(a4ml)
endif
x2=xth
if(abs(b).gt.b3) then
 c Asymptotic cubic correction:
 xth=xth-(e**3)*(2.*a/3.)*(1.+10.*a**4+5.*a**8)*
 & \quad (1.-1./(th**6))/(a4ml)
endif
x3=xth
if(abs(b).gt.b4) then
 pofa=1.+65.*(a**4)+155.*(a**8)+15.*(a**12)
 xth=xth+pofa*(e**4)*((1./(th**7))-1.)/(7.*a4ml)
endif
x4=xth
xasymp=xth
return
end

c
APPENDIX C. Source Code for Radiative Viewfactors

program ex_vf_cyl
 dimension Fkl(101)
 c Calculates single heater element viewfactors.
 c Fkl is an array of the viewfactor between a sample point
 c point (xi,yj,0) in the (x,y) plane with area dA1, and a
 c cylindrical element of length cL, diameter 2r, with its
 c centroid over the origin at height h1. Each row at constant
 c xi is computed as an array Fkl(j), and written to the
 c output file 'Fkl.dat'.
 c**
 c** Issued by Sandia National Laboratories, operated for the **
 c** United States Department of Energy by Sandia Corporation. **
 c** NOTICE **
 c** This program was prepared in the course of work sponsored **
 c** by an agency of the U.S.Government. Neither the United **
 c** States Government nor any agency thereof, nor any of their**
 c** employees, makes any warranty, express or implied, or **
 c** assumes any legal liability or responsibility for the **
 c** accuracy, completeness, or usefulness of any information, **
 c** apparatus, product, or process disclosed, or represents **
 c** that its use would not infringe privately owned rights. **
 c** Reference herein to any specific commercial product, **
 c** process, or service by trade name, trademark, manufacturer,*
 c** or otherwise, does not necessarily constitute nor imply **
 c** its endorsement, recommendation, or favoring by the United**
 c** States Government, any agency thereof or any of their **
 c** contractors or subcontractors. The views and opinions **
 c** expressed herein do not necessarily state or reflect **
 c** those of the United States Government, any agency thereof **
 c** or any of their contractors or subcontractors. **
 c** This code is supplied for official government use only. **
 c** No further dissemination is permitted without specific **
 c** permission from Sandia Laboratories, Livermore, CA 94551. **
 c**
 c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
 c***** by Lee A. Bertram *****
 c***** Copyright (c) May 1999 Sandia National Laboratories *****
 c**
 open(unit=10,file='Fkl.dat',status='unknown')
 open(unit=11,file='Fkl.log',status='unknown')
 open(unit=12,file='Fkl.plt',status='unknown')
 open(unit=13,file='vwx.plt',status='unknown')
 pi=4.*atan(1.)
 cl=10./12.
 r=1./24.
 c Quadrature to get viewfactor of cylinder of radius r,
 c length cl. Sample point dA1 is distance yc perpendicular
 c to cylinder axis, and height hc from axis. Cylinder's near
 c face is xF away from dA1; its far end is at xF+cl. Ends are
 c not included in viewfactor. Sample point dA1 is at height
 c h1 above origin; h1=hc+r.
 c Start at element centroid:

hc=0.5
hc=2.
xf=-0.5*cL
dx=1./12.

write(6,*) 'Computing cylinder viewfactor from dA1.'
write(6,*) 'Writing ',imax,' X ',jmax,' array of viewfactors.'
write(6,*) 'Viewfactors written to file "Fkl.dat" for axial'
write(6,*) 'and transverse spacings dx,dy=', dx,dy,'.'
write(10,*) imax,jmax,dx,dy,cL,r,hc
sum=0.
rect=0.
dsum=2.*hc*dx/(r*cL)
drect=2.*dx*dy/(pi*r*cL)
zc=2.0

do 30 i=1,imax
 yc=0.0
 do 20 j=1,jmax
 ycn=yc
 xarg=xf
 Fkl(j)=cyl2(ycn,zc,xarg,r,cL,h1)
 write(12,*) yc,Fkl(j)
 rfac=1.
 if(j.eq.1.or.j.eq.jmax) then
 qfac=1.
 rfac=0.5
 if(i.eq.1.or.i.eq.imax) then
 qfac=0.5
 rfac=0.25
 endif
 endif
 if(j.eq.1) then
 sum=sum+qfac*dsum*Fkl(j)
 endif
 if(j.ne.jmax) then
 write(13,*) xf,Fkl(j),sum,rect
 endif
 rect=rect+rfac*drect*Fkl(j)
 yc=yc+dy
 20 continue
 xf=xf+dx
 write(10,101) (Fkl(j),j=1,jmax)
30 continue
close(10)
close(11)
close(12)
101 format(31e13.4)
write(6,*) ' Viewfactors done.'
write(6,*) ' Enclosing cylinder P1/P2=',sum
write(6,*) ' Rectangle P1/P2=',rect
write(6,*) '
stop
end
function vert(a,b,c,g,h)
c Compute viewfactor of rectangle with sides a and b, in a plane
 perpendicular to the plane of a sample point with area dA1.
c Let lower left corner of the rectangle have coordinates (g,h)
c (displaced by g along side a, and by h along
 and side b) relative to normal dropped from dA1 onto
c rectangle's plane. (Both g and h can be negative).
c See Spiegel & Howell Appendix C: 'Selected Configuration
 Factors'.
c**
c**
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S. Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c**
c**
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c**
pi=4.*atan(1.)
tol=1.e-4
write(13,*) 'VERT gets',a,' X',b,' rectangle at',c,
 &' from dA1; offsets vert,horiz=',g,h
r=sqrt((a**2)+(b**2))
if(c.lt.tol*r) then
 vert=0.50
else
 vert=0.
endif
if(abs(g).lt.tol.and.abs(h).lt.tol) then
vert=0.25
define
return
define
disp=sqrt(g**2+h**2)
if ((r.lt.c*tol).or. & (g.gt.tol.and.h.gt.tol.and.r.lt.tol*disp)) then
c Sample point at infinity:
vert=0.
return
endif
c First step: rectangle (a+g) X (h+b), with dA1 on its edge (from
Handbook tables):
sg=sign(1.,g+0.1*tol)
x=(a+g)/(b+h)
y=c/(b+h)
try=sqrt(x**2+y**2)
vert=atan(1./y)-(y/try)*atan(1./try)
c write(11,*) c,x,y,try,vert
v1=vert
if(abs(h).lt.tol*r) go to 10
c Subtract rectangle (a+g)Xh with dA1 on its edge:
sh=sign(1.,h+0.1*tol)
x=(a+g)/h
y=c/(h*sh)
try=sqrt(x**2+y**2)
v2=sh*(atan(1./y)-(y/try)*atan(1./try))
vert=vert-v2
10 continue
if(abs(g).lt.tol*r) go to 20
c Subtract rectangle gX(b+h) with dA1 on its edge:
x=(g*sg)/(b+h)
y=c/(b+h)
try=sqrt(x**2+y**2)
v3=sg*(atan(1./y)-(y/try)*atan(1./try))
vert=vert-v3
20 continue
if((abs(g).lt.tol*r).or.(abs(h).lt.tol*r)) go to 30
c Add back double-subtracted rectangle gXh with dA1 on its edge:
sf=sg*sh
x=g*sg/h*sh
y=c/(h*sh)
try=sqrt(x**2+y**2)
v4=sf*(atan(1./y)-(y/try)*atan(1./try))
vert=vert+v4
30 continue
write(13,*) h,v1,v2,v3,v4,sg,sh,sf
vert=vert/(2.*pi)
return
c
function horiz(a,b,c,g,h)
c Compute viewfactor of rectangle with sides a and b, in a plane
c parallel to the plane of a sample point with area dA1.
c Let lower left corner of the rectangle have coordinates (g,h)
c (displaced by g along side a, and by h along
c and side b) relative to normal dropped from dA1 onto
rectangle's plane. (Both g and h can be negative)
See Spiegel & Howell Appendix C: 'Selected Configuration Factors'.
**
**
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. **
NOTICE **
This program was prepared in the course of work sponsored by an agency of the U.S. Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute nor imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.
This code is supplied for official government use only. No further dissemination is permitted without specific permission from Sandia Laboratories, Livermore, CA 94551. **
***** Written May 1999 for OIT/Glass/Sensors and Controls *****
Copyright (c) May 1999 Sandia National Laboratories *****
**
pi=4.*atan(1.)
tol=1.e-4
r=sqrt((a**2)+(b**2))
if(c.lt.tol*r) then
dA1 is in contact with rectangle's plane;
if((g).lt.r*tol.and.(h).lt.r*tol) then vert=1.0 else vert=0.
endif
if(abs(g).lt.r*tol.and.abs(h).lt.r*tol) then vert=0.25
endif
return
disp=sqrt(g**2+h**2)
if((r.lt.c*tol).or. (g.gt.tol.and.h.gt.tol.and.r.lt.tol*disp)) then Sample point at infinity:
vert=0.
return
endif
First step: rectangle \((a+g) \times (h+b)\), with \(dA1\) on its edge (from Handbook tables):

\[
\begin{align*}
sg &= \text{sign}(1., g) \\
sh &= \text{sign}(1., h) \\
x &= (a+g)/c \\
y &= (b+h)/c \\
rx &= \sqrt{1.+x^2} \\
ry &= \sqrt{1.+y^2} \\
horiz &= ((x/rx)*\text{atan}(y/rx)+(y/ry)*\text{atan}(x/ry)) \\
\end{align*}
\]

```
if(abs(h).lt.tol*r) go to 10
```

Subtract rectangle \((a+g)Xh\) with \(dA1\) on its edge:

\[
\begin{align*}
x &= (a+g)/c \\
y &= h*sh/c \\
rx &= \sqrt{1.+x^2} \\
ry &= \sqrt{1.+y^2} \\
horiz &= horiz-sh*((x/rx)*\text{atan}(y/rx)+(y/ry)*\text{atan}(x/ry)) \\
\end{align*}
\]

```
10 continue
```

```
if(abs(g).lt.tol*r) go to 20
```

Subtract rectangle \(gX(b+h)\) with \(dA1\) on its edge:

\[
\begin{align*}
x &= (g*sg)/c \\
y &= (b+h)/c \\
rx &= \sqrt{1.+x^2} \\
ry &= \sqrt{1.+y^2} \\
horiz &= horiz-sg*((x/rx)*\text{atan}(y/rx)+(y/ry)*\text{atan}(x/ry)) \\
\end{align*}
\]

```
20 continue
```

```
if((abs(g).lt.tol*r).or.(abs(h).lt.tol*r)) go to 30
```

Add back double-subtracted rectangle \(gXh\) with \(dA1\) on its edge:

\[
\begin{align*}
sf &= sg*sh \\
x &= g*sg/c \\
y &= h*sh/c \\
rx &= \sqrt{1.+x^2} \\
ry &= \sqrt{1.+y^2} \\
horiz &= horiz+sf*((x/rx)*\text{atan}(y/rx)+(y/ry)*\text{atan}(x/ry)) \\
\end{align*}
\]

```
30 continue
```

```
horiz = horiz/(2.*pi)
return
```

```
end
```

```
c function cyl(dc, hc, yc, r, cL)
```

```
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************
```

Compute the viewfactor of a cylinder of length \(cL\), radius \(r\) as seen from \(dA1\) which is \(hc\) below and \(dc\) to the right of the cylinder axis; the axis lies parallel to \(+y\). Use the viewfactor of a strip of inclination \(\alpha\), width \(dw\), and displacements \((d,h)\), lying from \(yc\) to \(y2\); obviously, \(cL=y2-yc\).

```
c RESTRICTION: \(y2\) must be positive, nonzero. Argument \(yc\) is modified to conform with this rule.
```

```
pi = 4.*atan(1.)
tol = 1.e-4
rtol = tol*sqrt((dc)**2+(hc)**2+(yc+cL)**2)
if(yc.lt.0..and.(yc+cL).lt.rtoll) then
```

```
```
yc=-(yc+cL)
endif
sdc=sign(1.,dc)
dc=sdc*dc
if(dc.lt.rtol) then
 write(11,*), ' CYL sees dc, hc, yc, rtol=', dc, hc, yc, rtol,
 & ' in closed form evaluation.'
 dA1 is on cylinder axis: check that it is outside cylinder:
 if(hc.gt.r-rtol) then
 Closed form solution is:
 sc=1.
 cyl1=0.
 if(abs(yc).gt.rtol) then
 Needs two evaluations:
 sc=sign(1.,yc)
 aL=sc*yc/r
 aH=hc/r
 aX=(1.+aH)**2+aL**2
 aY=(1.-aH)**2+aL**2
 cyl1=atan(sqrt((aH-1.)/(aH+1.)))
 cyl2=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
 cyl1=((aX-2.*aH)*cyl2/sqrt(aX*aY))-cyl1
 cyl1= (atan(aL/sqrt(aH**2-1.))+aL*cyl1)/aH
 endif
 aL=(yc+cL)/r
 aH=hc/r
 aX=(1.+aH)**2+aL**2
 aY=(1.-aH)**2+aL**2
 cyl2=atan(sqrt((aH-1.)/(aH+1.)))
 cyl3=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
 cyl2=((aX-2.*aH)*cyl3/sqrt(aX*aY))-cyl2
 cyl2= (atan(aL/sqrt(aH**2-1.))+aL*cyl2)/aH
 cyl=(cyl2-sc*cyl1)/pi
 else
 Inside (or on) cylinder:
 cyl=0.
 if(abs(hc-r).lt.rtol) cyl=1.
 endif
endif
dc=sdc*dc
return
endif
dA1 has definite offset from cylinder axis: quadrature required.
dA1 Can be inside or on cylinder; check (dc**2+hc**2)>r**2:
dist=sqrt(dc**2 + hc**2)
if(abs(dist-r).lt.rtol) then
 On cylinder at angle atan(hc/dc):
 cyl=(atan(hc/dc))/pi
 return
elseif(dist.lt.r-rtol) then
 cyl=0.
 return
endif
Compute limits of integration; 'ang' measured from -y going ccw:
dphi=atan(r/sqrt(dc**2+hc**2))
angc=atan(hc/dc)
ang1=dphi-angc
ang2=pi-(dphi+angc)
c Choose number of evaluation points in quadrature (minimum allowed=3):
iq=51
iq=max1(3,iq)
dang=(ang2-ang1)/float(iq-1)
c End integration limits
c Perform trapezoidal rule quadrature:
ang=ang1+0.5*dang
d=dc-r*sin(ang)
h=hc-r*cos(ang)
y1=yc
y2=yc+cL
dw=r*dang
c write(11,*) ' CYL quadrature with ang1,ang,dang,d,h,y1,y2,dw='
c write(11,*) ang1,ang,dang,d,h,y1,y2,dw
angs=0.5*pi-ang
dF=0.5*strip(d,h,y1,y2,angs,dw)
c write(11,*) ' CYL quadrature with ang1,ang2,dang,iq,dF1='
c write(11,*) ang1,ang2,dang,iq,dF

 do 10 i=2,iq-1
 ang=ang+dang
 d=dc-r*sin(ang)
 h=hc-r*cos(ang)
 y1=yc
 y2=yc+cL
 dw=r*dang
 angs=0.5*pi-ang
 dFq=strip(d,h,y1,y2,angs,dw)
c write(11,*) ang,angs,dang,iq,dFq
dF=dFq+dF

 10 continue
 ang=ang2-0.5*dang
 d=dc-r*sin(ang)
 h=hc-r*cos(ang)
 y1=yc
 y2=yc+cL
 dw=r*dang
 angs=0.5*pi-ang
 dF=dF+0.5*strip(d,h,y1,y2,angs,dw)
cyl=dF
dc=sdc*dc
return
end

function strip(d,h,y1,y2,alpha,dw)
c Let dA1 be on the x-axis, with normal in +z direction, and
calculate the viewfactor
c of a strip of width dw, with its normal at alpha radians ccw from
+x. The strip is
c parallel to the y-axis, and is at height h above the (x,y) plane;
x-displacement
c between dA1 and strip is d. Strip lies between y1 and y2

**
**
***** Written May 1999 for OIT/Glass/Sensors and Controls *****
***** by Lee A. Bertram *****
***** Copyright (c) May 1999 Sandia National Laboratories *****
pi=4.*atan(1.)
tol=1.e-4
rtol=tol*sqrt(d**2 + h**2 + y1**2)
c Start with (0,y1) value:
strip=0.,
sp=1.
if(abs(y1).gt.rtol) then
 sp=sign(1.,y1)
p=sp*y1/sqrt(h**2 + d**2)
strip=atan(p)+p/(1.+(p**2))
strip=strip*(d*cos(alpha)+h*sin(alpha))
& *(h/((sqrt(d**2+h**2))**3))
strip1=sp*strip*dw
c write(13,*) strip1,p,y1,d,h,alpha,dw
endif
if(abs(y2-y1).gt.rtol) then
 p=y2/sqrt(h**2 + d**2)
 strip2=atan(p)+p/(1.+(p**2))
 strip2=strip2*(d*cos(alpha)+h*sin(alpha))
 & *(h/((sqrt(d**2+h**2))**3))
 strip2=strip2*dw
c write(13,*) strip2,p,y2,d,h,alpha,dw
 strip=strip2-(strip1)
else
 strip=0.
endif
c write(13,*) y1,strip,strip1,strip2,y2
strip=strip/(2.*pi)
return
end

function cyl2(yc,zc,xf,r,cL,h1)
C Compute the viewfactor of a cylinder of length cL, radius r as
C seen from sample area dA1. Sample point is at z=h1, cylinder
C axis is at (yc,zc). Thus, dA1 is hc=h1-zc above and dc=yc to
C the right of the cylinder axis; the axis lies parallel to +x.
C Using the viewfactor of a strip of inclination alpha, width dw,
C to assemble the integrand for Trapezoidal Rule quadrature, we
C compute the viewfactor 'cyl2'. The cylinder face
C is distance 'xf' from the (y,z) plane.
C RESTRICTION: x2=xf+cL must be positive, nonzero. Argument xf
C is modified to conform with this rule, but returned intact.
C**
c**
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c**
pi=4.*atan(1.)
tol=1.e-4
hc=h1-zc
dc=yc
rtol=tol*sqrt(dc**2+hc**2+(xf+cL)**2)
xflag=0.
if(xf.lt.0..and.(xf+cL).lt.rtol) then
 xf=-(xf+cL)
xflag=1.
endif
sdc=sign(1.,dc)
dc=sdc*dc
if(dc.lt.rtol) then
 write(11,*) ' CYL2 sees dc,hc,xf,rtol=',dc,hc,xf,rtol,
 & ' dA1 is on-axis.'
 dA1 is on cylinder axis: check that it is outside cylinder:
 if(hc.gt.r-rtol) then
 sc=1.
cyl1=0.
 if(abs(xf).gt.rtol) then
 Needs two evaluations:
 sc=sign(1.,xf)
al=sc*xf/r
ah=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl1=atan(sqrt((aH-1.)/(aH+1.)))
cyl2=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl1=((aX-2.*aH)*cyl2/sqrt(aX*aY))-cyl1
endif
al=(xf+cL)/r
ah=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl2=atan(sqrt((aH-1.)/(aH+1.)))
cyl3=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl2=((aX-2.*aH)*cyl3/sqrt(aX*aY))-cyl2
cyl2=(atan(al/sqrt(aH**2-1.))+al*cyl2)/aH
cyl2=(cyl2-sc*cyl1)/pi
endif
Integration limits for on-axis dA1:
if(r.gt.abs(h1-zc)) then
 cyl2=0.
else
 ang1=asin(r/(h1-zc))
endif
ang2=0.5*pi
iq=26
iq=max1(3,iq)
End integration limits
Perform trapezoidal rule quadrature:
x1=xf
x2=xf+cL
cyl2=2.*cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)
cyl2=cyl2a-cyl2x
write(11,*) cyl2,cyl2a,h1,x1,x2
else
 Inside (or on) cylinder:
cyl1=0.
if(abs(hc-r).lt.rtol) cyl1=1.
endif
if(xflag.gt.0.1) then
 xf=-(xf+cL)
endif
return
endif

c dA1 has definite offset from cylinder axis: quadrature required.
c dA1 Can be inside or on cylinder; check (dc**2+hc**2)>r**2:
dist=sqrt((dc**2+hc**2))
if(abs(dist-r).lt.rtol) then
c On cylinder at angle atan(hc/dc):
cyl2=(atan(hc/dc))/pi
return
elseif(dist.lt.r-rtol) then
cyl2=0.
return
endif
c Compute limits of integration; 'ang' measured from -y going ccw:
rc=sqrt((dc**2+hc**2))
if(r.gt.rc) then
cyl2=0.
return
else
dphi=asin(r/rc)
endif
angc=atan(hc/dc)
ang1=angc-0.5*pi+dphi
ang2=angc+0.5*pi-dphi
if(hc.lt.r) then
c Horizon of dA1 intersects cylinder:
ang2=asin(hc/r)
endif
c Choose number of quadrature points (minimum allowed=3):
iq=51
iq=max1(3,iq)
c End integration limits
c Perform trapezoidal rule quadrature:
x1=xf
x2=xf+cL
c write(11,*) r,rc,angc,dphi,ang1,ang2
cyl2=cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)
if(xflag.gt.0.1) then
 xf=-(xf+cL)
endif
return
end

c function strip2(d,h,x1,x2,alpha,dw)
c Let dA1 be on the z-axis at height h above the origin, with
c normal at angle 'alpha' ccw from the -z direction.
c Calculate the viewfactor of a strip of width dw, length
c (x2-x1), with its normal in +z direction. The strip is
c parallel to the x-direction, and is distance 'd' from it.
**
**
*c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
*pi=4.*atan(1.)
tol=1.e-4
rtol=tol*sqrt(d**2 + h**2 + x1**2)
c Start with (0,x1) value:
strip=0.
r2sq=d**2+h**2
rsq1=r2sq+(x1)**2
rsq2=r2sq+(x2)**2
v2=1./sqrt(r2sq)
sf1=h*((x1/rsq1)+v2*atan(x1*v2))
sf2=h*((x2/rsq2)+v2*atan(x2*v2))
sf=(sf2-sf1)*dw/(2.*pi*r2sq)
c write(11,*) x1,x2,alpha,sf1,sf2
strip2=sf*(d*sin(alpha)+h*cos(alpha))
c strip2=sf*(-d*sin(alpha)+h*cos(alpha))
return
de

subroutine image(d,r,h,x,ang1,ang2,xcm,rcm,kimage)
c
pi=4.*atan(1.)
delta=d/r
k=1
dk=0.5*d+d*float(k-1)
dic=sqrt((h-r)**2+(dk-x)**2)
thic=atan((h-r)/(dk-x))
return
de

function cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)
c Sets up Trapezoidal Rule quadrature of analytical view factor for a strip, in order to build up a cylindrical surface with axis parallel to +x, center at (yc,zc). Cylinder extends from x1 to x2. Sample point dA1 is on z-axis at h1 above the origin,
with normal in -z direction. It can view that portion
c of the cylinder between angles ang1<ang<ang2 where
c ang=0 is the horizontal -y direction from cylinder
c center. Quadrature evaluates strip function at 'iq'
c points, including endpoints at ang1,ang2.

pi=4.*atan(1.)
tol=1.e-5
iq=max1(4,iq)
dang=(ang2-ang1)/float(iq-1)

Perform trapezoidal rule quadrature from ang1 to ang2:
ang=ang1
d=yc-r*sin(ang)
zt=zc*sin(ang)-yc*cos(ang)+r
h=h1*sin(ang)-zt
d=yc*sin(ang)-(h1-zc)*cos(ang)
rtol=tol*sqrt(h**2+d**2)
rot=ang-0.5*pi

End new variables...
dw=r*dang
if(abs(d).gt.rt01) then
 vwang=atan(abs(h/d))
else
 vwang=0.5*pi
cc if(rot.le.-vwang.or.rot.ge.(0.5*pi+vwang)) then
c dF=0.
c else
dF=0.5*strip2(d,h,x1,x2,rot,dw)
c endif
cc write(11,*) ' CYLQ quadrature with ang1,rot,d,h,x1,x2,dw='
c write(11,*) ang1,rot,d,h,dF,vwang
cc write(11,*) ' CYLQ quadrature with ang1,ang2,dang,iq,dF1='
c write(11,*) ang1,ang2,dang,iq,dF

do 10 i=2,iq-1
 ang=ang+dang
 d=yc-r*sin(ang)
 zt=zc*sin(ang)-yc*cos(ang)+r
 h=h1*sin(ang)-zt
 d=yc*sin(ang)-(h1-zc)*cos(ang)
 rot=ang-0.5*pi
 if(abs(d).gt.rtol) then
 vwang=atan(abs(h/d))
 else
 vwang=0.5*pi
 endif
cc if(rot.gt.-vwang.and.rot.lt.(0.5*pi+vwang)) then
dFq=strip2(d,h,x1,x2,rot,dw)
c endif
cc write(11,*) ang,rot,d,h,dFq,vwang
dF=dFq+dF
10 continue
 ang=ang2
 d=yc-r*sin(ang)
 zt=zc*sin(ang)-yc*cos(ang)+r
 h=h1*sin(ang)-zt
 d=yc*sin(ang)-(h1-zc)*cos(ang)
 rot=ang-0.5*pi
 if(abs(d).gt.rtol) then
 vwang=atan(abs(h/d))
 else
 vwang=0.5*pi
 endif
cc if(rot.gt.-vwang.and.rot.lt.(0.5*pi+vwang)) then
dF=dF+0.5*strip2(d,h,x1,x2,rot,dw)
c endif
cc write(11,*) ang,rot,d,h,dF,vwang
cylq=dF
return
end
c Outputs heater assembly viewfactors of a sample point
 c point (x1,y1,0) in the (x,y) plane with area dA1. Heater is
 c array of cylindrical elements, each of which has viewfactors
 c Fkl(k,l) on a grid of imax,jmax points with uniform spacing
dx,dy. Array of elements has offset xoff,yoff from entry
to section, spacing Lx in ribbon motion direction and Ly in
the transverse direction. Each element is over the glass
at height h. Input file 'Fkl.dat' contains single-element
viewfactors; output file 'Fht.dat' contains summed viewfactors
c of all the elements at the xi,yj point corresponding to Fij.
open(unit=7,file='Fkl.dat',status='old')
open(unit=10,file='Fht.log',status='unknown')
open(unit=11,file='Fht.plt',status='unknown')
open(unit=12,file='chk.plt',status='unknown')
pi=4.*atan(1.)
read(7,*) imax,jmax,dx,dy,cL,r,hc

Sample point dA1 is at (x1,y1) with origin on centerline
c of glass ribbon, at entry to the section of the lehr
c being heated. The ribbon moves along +x.
c Height hc above ribbon is already specified in 'Fkl.dat';
c new version of that file is required to change distance--
c rerun 'vwelem.dat'. This value is used in 'hvf()' to
c extrapolate viewfactor beyond the range covered in 'Fkl.dat'.
xoff=1.5
yoff=0.5
xL=2.0
yL=1.0

Footprint rectangle (usually cooler boundary):
xf=36.
yf=3.5

nx=ifix((xf-xoff)/xL)
yy=ifix((yf-yoff)/yL)
cc imax=imax-1
write(6,*) ' SUM has imax,jmax,nx,ny=',imax,jmax,nx,ny
do 10 j=1,jmax
 yfkl(j)=dy*float(j-1)
10 continue
do 20 i=1,imax
 read(7,101) (Fkl(i,j),j=1,jmax)
 xfkl(i)=dx*float(i-1)
20 continue

c Echo first row of array just read:
c i1=1
write(6,101) (Fkl(i1,j),j=1,jmax)

c Plot file for element positions:
xe=0.
ye=0.001
do 25 i=1,nx
 write(12,*) xe,yo
 xe=xoff+xl*float(i-1)
25 continue

wy=0.
x=2.
y=3.
call ptdst(cL,wy,x,y,xoff,yoff,xL,yL,nx,ny,xr,yr,n1,n2)
write(6,*) 'Position (x,y)=(',x,',',y,'); n1,n2=',n1,n2

c Sample points (xs,ys) at which viewfactor is computed and
c written into 'Fht.plt'
dxs=2./12.
dys=2./12.
xs=-4.
ys=0.5
isam=91
jsam=1
do 60 kjs=1,jsam
 y=ys+dys*float(kjs-1)
 do 50 ks=1,isam
 x=xs+dxs*float(ks-1)
 do 30 i=1,nx
 xe=abs(x-xoff-xL*float(i-1)-0.5*cL)
 call hvf(mk,imax,jmax,hc,xfkl,yfkl,Fkl,xe,ye,Fe)
 30 continue
 ye=abs(y-yoff-yL*float(j-1)-0.5*wy)
 do 40 j=1,ny
 ye=abs(y-yoff-yL*float(j-1)-0.5*wy)
 40 continue
 write(6,*) ' Summing element xe=',xe,' with Fe=',Fe
 fxy=Fxy+Fe
 50 continue
 write(6,*) ' Sampling points in column kjs=',kjs,
 & ' ; y=',y
 write(6,*) ' Sampling x=',x
 for this position, sum the elements' contributions to
 viewfactor:
 fxy=0.
do 40 j=1,ny
 ye=abs(y-yoff-yL*float(j-1)-0.5*wy)
 write(6,*) ' Summing elements with ye=',ye
 do 30 i=1,nx
 xe=abs(x-xoff-xL*float(i-1)-0.5*cL)
 call hvf(mk,imax,jmax,hc,xfkl,yfkl,Fkl,xe,ye,Fe)
 30 continue
 fxy=Fxy+Fe
 write(6,*) ' Summing points in column kjs=',kjs,
 & ' ; y=',y
 write(6,*) ' Sampling x=',x
 Fxy=Fxy+Fe
 xout=x-xoff-0.5*cL
 close(7)
close(10)
close(11)
101 format(31e13.4)
stop
end

subroutine ptdst(cL,wy,x,y,xoff,yoff,xL,yL,nx,ny,xr,yr,n1,n2)
**
**
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c**
**

given position (x,y) in array of elements with spacing
xL and yL along x,y respectively, find number of
columns nx and number of rows ny of elements. Each
c element begins at xoff, xoff+xL,..., and is cL long.
c Transverse start at yoff, then yoff+yL,... wy wide.

x=2.
y=3.
call ptdst(cL,wy,x,y,xoff,yoff,xL,yL,nx,ny,xr,yr,n1,n2)
write(6,*) 'Position (x,y)=(',x,',',y,'); n1,n2=',n1,n2

Return the indices \((n_1, n_2)\) of the element nearest point \((x, y)\), and the distance \((x_r, y_r)\) to that element's centroid.

Fictitious y-width for generality:

\[
wy = 0.
\]

\[
\begin{align*}
i_1 &= \text{ifix}((x-x_{off})/x_L) \\
j_1 &= \text{ifix}((y-y_{off})/y_L) \\
i_1 &= \text{amin1}(n_x, \text{amax1}(i_1, 0)) \\
j_1 &= \text{amin1}(n_y, \text{amax1}(j_1, 0)) \\
\end{align*}
\]

write(6,*) ' x,y,i1,j1=',x,y,i1,j1

call near(i1,nx,x,xL,cL,xoff,n1,xr)
call near(j1,ny,y,yL,wy,yoff,n2,yr)

c write(6,*) ' xr,yr,n1,n2=',xr,yr,n1,n2
return
end

subroutine near(i1,nx,x,xL,cL,xoff,n1,xr)

These index \(i_1\) is the element to the left of point \(x\). Now determine if this is the nearest element.

\[
n1 = i1 \\
x1 = x_{off} + x_L \times \text{float}(i1) + 0.5 \times cL
\]

if(i1.eq.0) then
if((x-x_{off}).gt.0.) then
 \(x_r = x - x1\)
else
 Point \((x, y)\) is to left of \(x_{off}\); first row is nearest:
 \(x_r = x1 - x\)
endif
elseif(i1.eq.nx) then
 Point \((x, y)\) is to right of whole array; \(nx\) row nearest:
 \(x_r = x - x1 + cL\)
else
 Point \((x, y)\) is inside array; check row \(i1+1\) distance:
 \(x_{r1} = x - x1\)
 \(x_{r2} = x1 + x_L - x\)
 if(xr2.lt.xr1) then
 \(n1 = n1+1\)
 endif
 \(x_r = x_{r2}\)
else
 \(x_r = x_{r1}\)
endif
return
end

subroutine hvf(mk,imax,jmax,hc,xfkl,yfkl,Fkl,xe,ye,fe)
dimension Fkl(mk,*),xfkl(*),yfkl(*)

c Positive quadrant is covered by (xfkl,yfkl) mesh, starting at (0,0). These values are interpolated to (xe,ye) inside the mesh, but extrapolated by a 1/dist decay function outside the mesh.

ie=imax
tol=1.e-5
do 10 i=1,imax
 if(xfkl(i)+tol.lt.xe) then
 go to 10
 else
 ie=max1(1,i-1)
go to 15
endif
10 continue
ie=imax
15 continue
do 20 j=1,jmax
 if(yfkl(j)+tol.lt.ye) then
 go to 20
 else
 je=max1(1,j-1)
go to 25
endif
20 continue
je=jmax
25 continue

c Indices (ie,je) are to L and below (xe,ye) point.
if(ie.eq.imax) then
 xe is outside mesh (xfkl,yfkl)
if(je.eq.jmax) then
 Point (xe,ye) is to UR of mesh:
 rmesh=sqrt(hc**2+xfkl(imax)**2 + yfkl(jmax)**2)
 re=sqrt(hc**2+xe**2 + ye**2)
 fe=Fkl(imax,jmax)*((rmesh/re)**3)
 return
elseif(je.ge.2) then
 Point is to R of mesh but within y-range:
 fr=Fkl(imax,je)+(fkl(imax,je+1)-fkl(imax,je))*
 (ye-yfkl(je))/(yfkl(je+1)-yfkl(je))
 rmesh=sqrt(hc**2+xfkl(imax)**2 + ye**2)
 re=sqrt(hc**2+xe**2 + ye**2)
 fe=FR*((rmesh/re)**3)
 return
else
 Point is to R of and below mesh:
 rmesh=sqrt(hc**2+xfkl(imax)**2 + yfkl(1)**2)
 re=sqrt(hc**2+xe**2 + ye**2)
 fe=Fkl(imax,1)*((rmesh/re)**3)
 return
endif
endif
if(je.eq.jmax) then
 ye is outside mesh (xfkl,yfkl)
 if(ie.ge.2) then
 Point is above mesh but within x-range:
 fr=fkl(ie,jmax)+(fkl(ie+1,jmax)-fkl(ie,jmax))*
 (xe-xfkl(ie))/(xfkl(ie+1)-xfkl(ie))
 rmesh=sqrt(hc**2+yfkl(jmax)**2 + xe**2)
 re=sqrt(hc**2+xe**2 + ye**2)
 fe=fr*((rmesh/re)**3)
 return
 endif
endif
f1=Fkl(ie,je)
if(ie.ge.2) then
 f2=Fkl(ie+1,je)
endif
f3=Fkl(ie+1,je+1)
if(je.ge.2) then
 f4=Fkl(ie,je+1)
endif
x1=xfkl(ie)
x2=xfkl(ie+1)
y1=yfkl(je)
y2=yfkl(je+1)
xfrac=(xe-x1)/(x2-x1)
yfrac=(ye-y1)/(y2-y1)
write(12,*) ' Interpolating with x1,x2,y1,y2=',
& x1,x2,y1,y2,' and ie,je=',ie,je
write(12,*) ' Corner values f1,f2,f3,f4=',
& f1,f2,f3,f4,' with xfrac,yfrac=',
& xfrac,yfrac
fe1=(f1+(f2-f1)*xfrac)
fe2=(f4+(f3-f4)*xfrac)
fe=(fe1+(fe2-fe1)*yfrac)
return
end
APPENDIX D. Inputs to Define Lehr Geometry and Operating Conditions

INPUT FILES FOR ENCLOSURE

GEOM.DAT

FL1 Lehr Geometry: Enclosures by section.
Section L(ft) W (ft) H (ft; to tubes) D (ft; to tubes) Name/Function
1 100. 20. 2.5 2.5 A Conditioning
2 150. 20. 2.5 2.5 B Anneal
3 150. 20. 2.5 2.5 C1 1st Cooldown
4 150. 20. 2.5 2.5 C2 2nd Cooldown
5 50. 20. 10. 2.5 -- Air Chill

End Section Definitions

Section A Coolers: From CL to N wall
Index x gap(ft) y gap(in) height(ft) L W Comment
1 2.00 0.75 2.50 96.00 2.75 TC3 sensor
2 2.00 1.50 2.50 96.00 3.00 TC4 sensor
3 2.00 1.50 2.50 96.00 3.00 TC5 sensor
4 2.00 0.75 -2.50 96.00 2.75 TC13 sensor*
5 2.00 1.50 -2.50 96.00 3.00 TC14 sensor*
6 2.00 1.50 -2.50 96.00 3.00 TC15 sensor*

Section A Heaters From CL to N wall
Index nx ny xinit xspace yinit yspace Le(in) De(in) Ht(ft) kW
Comment
1 48 5 1.00 2.00 0.00 0.50 4.00 0.50 2.00 1.00
4A3
2 48 5 1.00 2.00 2.00 0.50 4.00 0.50 2.00 1.00
4A4
3 48 5 1.00 2.00 4.00 0.50 4.00 0.50 2.00 1.00
4A5
4 48 5 1.00 2.00 0.00 0.50 4.00 0.50 -2.00 1.00
4A13
5 48 5 1.00 2.00 2.00 0.50 4.00 0.50 -2.00 1.00
4A14
6 48 5 1.00 2.00 4.00 0.50 4.00 0.50 -2.00 1.00
4A15

Section A Rollers
Material Dia(in) Space (C-C, in) L (in) no. Drive Group Comments
1 12.00 24.00 180.00 10 1 Stainless; inside lehr
2 12.00 36.00 180.00 26 2 Xyolite; inside lehr

OPNL.DAT

ribbon width (in) pull rate (ton/day) 0.1600e+03 0.5500e+03
Conditioner center line T, edge dT (deg F) [SETPOINT] 0.1070e+04 0.2000e+02
Incoming center line T, edge dT (deg F) [IR Strip Sensor] 0.1120e+04 -0.4000e+02
Anneal rate R (deg C/sec)
0.3000e+01

Peak stresses in C1/C2 (psi)
<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>Anneal stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5000e+02</td>
<td>0.2000e+03</td>
<td></td>
</tr>
</tbody>
</table>

transverse axial Membrane stresses (split/tear)
0.12500e+04 0.1500e+04
APPENDIX E. Thermophysical and Constitutive Properties for Glass

Thermophysical properties for glass ktype; nlines of data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, room temperature</td>
<td>0.2400e+01 (gm/cc)</td>
</tr>
<tr>
<td>Specific heat, room temperature</td>
<td>0.1030e+01 (J/gm-K)</td>
</tr>
<tr>
<td>Specific heat, anneal temperature</td>
<td>0.1030e+01 (J/gm-K)</td>
</tr>
<tr>
<td>Thermal conductivity, room temperature</td>
<td>0.3000e-01 (W/cm-K)</td>
</tr>
<tr>
<td>Thermal conductivity, anneal temperature</td>
<td>0.4000e-01 (W/cm-K)</td>
</tr>
<tr>
<td>Anneal temperature (1070 deg F)</td>
<td>0.5750e+03 (deg C)</td>
</tr>
<tr>
<td>Glass temperature (950 deg F)</td>
<td>0.5100e+03 (deg C)</td>
</tr>
<tr>
<td>Fictive residual temperature, Tfr</td>
<td>0.5200e+03 (deg C)</td>
</tr>
<tr>
<td>Glass linear coefficient of thermal expansion</td>
<td>0.1000e-07 (1/deg C)</td>
</tr>
<tr>
<td>Liquid linear coefficient of thermal expansion</td>
<td>0.3000e-07 (1/deg C)</td>
</tr>
<tr>
<td>Emissivity at glass temperature, 5 micron IR</td>
<td>0.8000e+00</td>
</tr>
<tr>
<td>Fulcher To</td>
<td>0.2511e+03</td>
</tr>
<tr>
<td>Fulcher b</td>
<td>0.1000e+05</td>
</tr>
<tr>
<td>Fulcher a</td>
<td>-0.6120e+01</td>
</tr>
<tr>
<td>Young's modulus, E(0), room T</td>
<td>0.1000e+08 (psi)</td>
</tr>
<tr>
<td>Young's modulus, E(0), glass T</td>
<td>0.1000e+08 (psi)</td>
</tr>
<tr>
<td>Poisson's ratio, nu, room T</td>
<td>0.2500e+00 (1)</td>
</tr>
<tr>
<td>GN structural relax activation energy Hs</td>
<td>0.4675e+05 (cal/mole)</td>
</tr>
<tr>
<td>GN structural relax time,tf</td>
<td>0.7560e+03 (sec)</td>
</tr>
<tr>
<td>GN structural relax exponent, bf</td>
<td>0.1300e+01 (1)</td>
</tr>
<tr>
<td>GN viscous relax activation energy Hv</td>
<td>0.9350e+05 (cal/mole)</td>
</tr>
<tr>
<td>GN viscous relax time,tvisc</td>
<td>0.1410e+03 (sec)</td>
</tr>
<tr>
<td>GN viscous relax exponent, bv</td>
<td>0.1300e+01 (1)</td>
</tr>
<tr>
<td>Viscosity base temperature, TB</td>
<td>0.5300e+03 (deg C)</td>
</tr>
<tr>
<td>Base viscosity at TB: visc,B</td>
<td>0.3000e+13 (Pa-sec)</td>
</tr>
<tr>
<td>Radiation/conduction parity temperature</td>
<td>0.2600e+03 (deg C)</td>
</tr>
<tr>
<td>Upper wavelength bound for transparency (4.5?)</td>
<td>0.2700e+01 (micron)</td>
</tr>
</tbody>
</table>

Notes: Anneal is presumed to start at Narayanaswamy's TU and end at his TL, given by

\[
TU = Ta + dTa \\
TL = Ts + dTa
\]

where

\[
dTa = 8.86 \ln Ravg + 65 (1 - Ravg)
\]

in terms of average cooling rate Ravg (deg C/sec).

Fulcher refers to viscosity-temperature relation

\[
visc(T) = \exp\{ a + b / (T - To) \}
\]

The given coefficients do not give \(visc=10**(12.5) \) Pa-sec at \(Ta \), nor is \(visc=10**(13.5) \) at \(Ts \), as in classical definitions.

GN is Gardon-Narayanaswamy viscoelastic formulation

\[
bf(M(ksi)) = \exp\{- (ksi/tf) \}
\]

where

\[
ksi = \text{reduced time} = \int(0,t) \phi(T,Tf) dt', \text{ in terms of } \\
\phi = \text{visc,B/visc(T)}
\]
\[
\ln(\phi) = \frac{H_g(1/T_b - 1/T) + H_s(1/T_b - 1/T_f)}{R_g}
\]
in which
\[
T_f = T + \int(0,t) \left[M(\text{ksi-ksi}') \frac{dT}{d\text{ksi}'} \right] \text{ ksi}' \, d \text{ ksi}'
\]
Then stress is given by
\[
\sigma = E(0) \frac{d (e-\text{eth})}{(1-\nu) \int(0,t) \left[R(\text{ksi}') \frac{d (e-\text{eth})}{d \text{ ksi}' \text{ ksi}' \right]}
\]
\[
\text{eth} = a_{T,L} (T - T_a) - r_x, \text{ where}
\]
\[
r_x = (a_{T,L} - a_{T,g}) \int(0,t) \left[M(\text{ksi-ksi}') \frac{dT}{d\text{ksi}'} \right] \text{ ksi} \, d \text{ ksi}'
\]
with \(a_{T,L} \) = liquid linear coefficient of thermal expansion and \(a_{T,g} \) = glass linear coefficient of thermal expansion; and the stress relaxation function \(R \) for a slab is:
\[
R(\text{ksi}) = \exp\left(-\frac{\text{ksi}}{t_{\text{visc}}}\right).
\]

Notation

"\int(0,t) \left[\right]" denotes "integral from 0 to t, of integrand \(\left[\right] \)"

GN use of VZN seems to have been supplanted by Rekhson/Mazurin terms for viscosity, M and R in Narayanaswamy 1981. This also used consistent \(\phi = \text{visc,B/visc relationship}. \)

VZN is Van Zee & Noritake viscoelastic formulation

\[
M(\text{ksi}) = c_1 \exp\left(-\frac{\text{ksi}}{t_{\text{fast}}}\right) + (1-c_1) \exp\left(-\frac{\text{ksi}}{t_{\text{slow}}}\right), \text{ with}
\]

\[
\text{ksi} = \text{reduced time} = \int(0,t) \left[\phi(T,T_f) \, dt' \right], \text{ in terms of}
\]

\[
\phi = \exp\left(c_2 (T - T_{\text{ref}})\right)
\]
DISTRIBUTION:

1 Henry Technology Solutions, L.L.C.
 Attn: Vincent I. Henry, President
 603 Florence Road
 Ann Arbor, MI 48103

5 PPG Industries, Inc.
 Attn: Andrew Calabrese, Director, Glass Research & Development
 Rajiv Tiwary
 Ray Mayer
 William Krall
 William Siskos
 Guys Run Road
 P.O. Box 11472
 Pittsburgh, PA 15238-0472

1 University of Texas
 Mechanical Engineering
 Attn: Professor Joseph Beaman
 Austin, TX 78712

2 University of Utah
 Department of Chemical Engineering
 Attn: Professor Philip J. Smith
 Dr. Dale Smith
 Salt Lake City, UT 84112

2 U.S. Department of Energy
 Office of Industrial Technologies, EE-20
 Attn: Theodore Johnson
 Elliott Levine
 1000 Industrial Ave. SW
 Washington, DC 20585

1 MS0501 M. K. Lau, 2338
1 MS0501 T. F. Owen, 2338
1 MS0834 R. A. Roach, 9114
1 MS1134 J. A. Van Den Avyle, 1835
1 MS1349 W. F. Hammetter, 1846
1 MS9056 P. M. Walsh, 8356
1 MS9102 D. A. Sheafer, 8416
1 MS9103 R. G. Hillaire, 8120
1 MS9102 K. L. Schroeder, 8120
5 MS9042 L.A. Bertram, 8728
<table>
<thead>
<tr>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>D.R. Chenoweth, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>G.N. Evans, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>S.K. Griffiths, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>W.G. Houf, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>M. P. Kanouff, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>R. S. Larson, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>C.D. Moen, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>A. H. Nilson, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>P.A. Spence, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>A. Ting, 8728</td>
</tr>
<tr>
<td>MS9042</td>
</tr>
<tr>
<td>W.S. Winters, 8728</td>
</tr>
<tr>
<td>MS9051</td>
</tr>
<tr>
<td>L. A. Rahn, 8351</td>
</tr>
<tr>
<td>MS9052</td>
</tr>
<tr>
<td>D.R. Hardesty, 8361</td>
</tr>
<tr>
<td>MS9053</td>
</tr>
<tr>
<td>J.O. Keller, 8362</td>
</tr>
<tr>
<td>MS9054</td>
</tr>
<tr>
<td>F.P. Tully, 8350</td>
</tr>
<tr>
<td>MS9054</td>
</tr>
<tr>
<td>R. W. Carling, 8360</td>
</tr>
<tr>
<td>MS9055</td>
</tr>
<tr>
<td>T. T. Bramlette, 8365</td>
</tr>
<tr>
<td>MS9055</td>
</tr>
<tr>
<td>J. E. Goldsmith, 8353</td>
</tr>
<tr>
<td>MS9056</td>
</tr>
<tr>
<td>R. E. Palmer, 8305</td>
</tr>
<tr>
<td>MS9056</td>
</tr>
<tr>
<td>R. J. Gallagher, 8366</td>
</tr>
<tr>
<td>MS9161</td>
</tr>
<tr>
<td>W. Bauer, 8302</td>
</tr>
<tr>
<td>MS9951</td>
</tr>
<tr>
<td>A.E. Pontau, 8358</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS9018</td>
</tr>
<tr>
<td>Central Technical Files, 8940-2</td>
</tr>
<tr>
<td>MS0899</td>
</tr>
<tr>
<td>Technical Library, 4916</td>
</tr>
<tr>
<td>MS9021</td>
</tr>
<tr>
<td>Classification Office, 8511/Technical Library, MS 0899, 4916</td>
</tr>
<tr>
<td>MS9021</td>
</tr>
<tr>
<td>Classification Office, 8511 For DOE/OSTI</td>
</tr>
</tbody>
</table>