Dynamic in-situ X-ray Diffraction of Catalyzed Alanates

K. J. Grossa, G. Sandrocka, G. J. Thomasa

aSandia National Laboratories, P.O. Box 969, MS 9402, Livermore, CA 94551 USA
bSunaTech, Inc., 113 Kraft Pl., Ringwood, NJ 07456 USA

cSunaTech, Inc., 113 Kraft Pl., Ringwood, NJ 07456 USA

Abstract

The discovery that hydrogen can be reversible absorbed and desorbed from NaAlH₄ by the addition of catalysts has created an entirely new prospect for lightweight hydrogen storage. NaAlH₄ releases hydrogen through the following set of decomposition reactions.

\[\text{NaAlH}_4 \rightarrow \frac{1}{3}(\alpha-\text{Na}_3\text{AlH}_6) + \frac{2}{3}\text{Al} + \text{H}_2 \rightarrow \text{NaH} + \text{Al} + \frac{3}{2}\text{H}_2 \]

These decomposition reactions as well as the reverse recombination reactions were directly observed using time-resolved in-situ x-ray powder diffraction. These measurements were performed under conditions similar to those found in PEM fuel cell operations (hydrogen absorption: 50-70°C, 10-15 bar H₂, hydrogen desorption: 80-110°C, 5-100 mbar H₂). Catalyst doping was found to dramatically improve kinetics under these conditions. In this study, the alanate was doped with a catalyst by dry ball-milling NaAlH₄ with 2 mol.% solid TiCl₃. X-ray diffraction clearly showed that TiCl₃ reacts with NaAlH₄ to form NaCl during the doping process. Partial desorption of NaAlH₄ was even observed to occur during the catalyst doping process.

Keywords: Metal hydride; Complex hydride; Hydrogen storage; Fuel cell; NaAlH₄; Na₃AlH₆;

Correspondence Address:
Karl J. Gross
Analytical Materials Science Department
Sandia National Laboratories
P.O. Box 969 MS 9403
Livermore, CA 94551-0969, U.S.A.
Tel. (925) 294-4639, Fax. (925) 294-3410
E-mail: kigross@sandia.gov

RECEIVED
DEC 20 2000
C0511
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1. Introduction

The synthesis and decomposition of the compound NaAlH₄ have been known for many years [1-6]. However, it was not until the recent work of Bogdanovic and Schwickardi that the potential use of NaAlH₄ for reversible hydrogen storage was considered practical [7]. They demonstrated that doping (in solution) the alkali metal hydride with Ti-based catalysts enabled the ready release and absorption of hydrogen gas under moderate conditions. The advantage of this class of hydrides is their high hydrogen weight capacities. NaAlH₄ has a theoretical reversible capacity of 5.6 wt.%H₂.

Unlike classic interstitial metal hydrides, the alanates (alkali-metal aluminum hydrides) desorb and absorb hydrogen through chemical decomposition and recombination reactions. In particular, NaAlH₄ decomposes with the formation of at least one intermediate compound, Na₃AlH₆:

\[\text{NaAlH}_4 \rightarrow \frac{1}{3}(\alpha\text{-Na}_3\text{AlH}_6) + \frac{2}{3}\text{Al} + \text{H}_2 \rightarrow \text{NaH} + \text{Al} + \frac{3}{2}\text{H}_2 \]

(1)

Detailed investigations of decomposition at elevated temperatures (100-180°) [8], as well as the thermodynamic and kinetic properties of this material, were reported in previous works [9-12].

In this paper we will present a study of these decomposition reactions, as well as the recombination-reactions. These were investigated by dynamic in-situ x-ray diffraction (XRD). In-situ XRD measurements provide a means to directly observe the hydride reactions that take place during hydrogen loading and unloading. They are useful in identifying the formation of metastable phases that may otherwise not be observed in ex-situ measurements [8]. Dynamic in-situ x-ray diffraction experiments consist of making a continuous sequence of XRD scans during
the reaction process. Among other things, dynamic XRD enables the direct measurement of individual rates of reaction.

We will also present results of an XRD study of the interaction between NaAlH₄ and a catalyst added to kinetically enhance the reactions of Eq.1. The choice of catalyst and doping process is critical to achieving practical hydrogen absorption and desorption rates. Catalyst development and material processing has been the focus of work by several groups [10-14]. Our recent investigations have led to a catalyst and doping method with greatly improved kinetics and substantially reduced hydrogen impurities [15]. This entails catalyst doping the samples by dry ball-milling solid NaAlH₄ in argon with 2 mol.% solid TiCl₃.

2. Sample Preparation and Experimental Details

Samples were prepared from solid NaAlH₄ (90% purity, Aldrich) which were purified by solvating in THF, decanting and vacuum drying. Catalyst doping consisted of adding 2 mol.% solid TiCl₃ to about 2g NaAlH₄, which was then sealed into a tungsten-carbide milling pot (in an argon glove box). This mixture was milled in a SPEX® mill for 3 hours. Undoped samples were prepared in the same manner without the addition of a catalyst.

X-ray powder diffraction experiments were performed on a Scintag XDS 2000 diffractometer using Cu Kα radiation. Dynamic studies consisted of collecting a series of consecutive XRD scans. The low reaction rates allowed scan times of 42 minutes per scan. In-situ hydrogen absorption and desorption XRD measurements were performed at elevated temperatures in a specially designed sample cell fitted with a beryllium window (described elsewhere [8]). Following the catalyst doping, samples were loaded into the in-situ x-ray diffraction cell under argon. Both the sample temperature and hydrogen pressure in the cell were monitored during the
dynamic absorption and desorption experiments. Changes in the hydrogen pressure during absorption were too small to precisely determine the quantity of hydrogen absorbed by the sample. Desorption experiments were performed by opening a valve on the cell and allowing the sample to desorb into a previously evacuating vessel of a known volume. The pressure change (5-50 mbar) was more than sufficient to precisely measure the amount of hydrogen desorbed from the sample.

Ex-situ XRD studies of the reaction of TiCl$_3$ with NaAlH$_4$ were performed on samples prepared as described above. These were spread onto special background-free glass sample holder. They were then sealed under argon using a thin Mylar film (100 microns). The Mylar film is relatively transparent to x-rays and produces no diffraction peaks in the angle range of interest. This allowed ex-situ XRD measurements to be made without exposing the samples to air.

3. Results and Discussions

3.1. Dynamic in-situ XRD measurements – Absorption

In light of the potential use of these materials for on-board hydrogen storage in vehicular applications, the dynamic in-situ XRD measurements were performed under conditions similar to those found in PEM fuel cell operations. These were hydrogen absorption: 50-70°C, 10-15 bar H$_2$, and hydrogen desorption: 80-110°C, 5-100 mbar H$_2$. The first experiment consisted of re-hydriding TiCl$_3$ catalyzed NaAlH$_4$ from its desorbed state (i.e. NaH + Al). In this case, 300 mg of material was removed from a larger sample that had already undergone 5 absorption and desorption cycles. This dynamic in-situ XRD absorption measurement was performed in two steps. In the first step, the sample was heated to 70 °C and subjected to a hydrogen over-pressure of 10.2 bar. These conditions were sufficient to convert the sample from NaH and Al to Na$_3$AlH$_6$. In the second part of the experiment, the pressure was increased to 15.8 bar to promote
the formation of NaAlH₄. A maximum applied pressure of 16 bar was imposed by limitations in the XRD cell design. However, this relatively low applied pressure is appropriate because it represents a typical pressure limit of a lightweight on-board hydride storage vessel that might be used in a fuel cell vehicle.

The series of in-situ XRD scans measured during hydrogen absorption have been compiled into a dynamic representation of the hydriding reactions, which is presented in Figure 1a and 1c. The transition from Na₃AlH₆ + Al to NaAlH₄ was considerably slower than the NaH + Al to Na₃AlH₆ reaction. For this reason only a few representative scans were made during the second half of the absorption experiment. Since direct measurements of the change in over-pressure were unreliable, the quantity of hydrogen absorbed by the sample was inferred from the relative intensities of the XRD peaks of each phase. By the start of the second part of the absorption measurement only Na₃AlH₆ and Al were visible in the diffraction patterns. [Note; some additional intensity remains at 31.7° overlapping both the Na (111) and NaAlH₄ (004) peaks. This is a remnant of the catalyst doping procedure as will be discussed later.] Thus, the integrated peak intensities of Na₃AlH₆ are proportional to the sample’s hydrogen content at this point. The hydrogen content of the active material in the sample was assumed to be equal to the theoretical value for the formation of Na₃AlH₆ from NaH and Al (1.9 wt.%). The effective hydrogen contents of the sample for each of the previous XRD scans were calculated based on the integrated peak intensities of Na₃AlH₆. For the second part of the measurement the integrated peak intensities of Na₃AlH₆ were again used to calculate the sample’s hydrogen content. This was based on a theoretical value of 3.7 wt.% for the Na₃AlH₆ to NaAlH₄ transformation. Hydrogen content is plotted versus time in Figures 1b and 1d. Rough estimates of the hydrogen absorption rates have been determined from these plots. These are: (3NaH + Al → Na₃AlH₆) = 0.05 wt.%H₂/hour and (1/3Na₃AlH₆ + 2/3Al → NaAlH₄) = 0.004 wt.%H₂/hour. Thus, at these low temperatures and pressures the re-hydriding reaction do occur, albeit slowly. It is also important
to note that the reaction $1/3\text{Na}_3\text{AlH}_6 + 2/3\text{Al}$ to NaAlH_4, which contributes the most of the reversible hydrogen (3.7 wt.%) is an order of magnitude slower than the $3\text{NaH} + \text{Al}$ to Na_3AlH_6 reaction. From these results it can be estimated that the complete transformation from $\text{NaH} + \text{Al}$ to NaAlH_4 would require about 40 days. The dependence of the reaction rates on the degree of hydrogen over pressure as well as temperature (see Figure 1b) is the subject of current studies that will be presented elsewhere.

3.2. Dynamic in-situ XRD measurements – Desorption

The desorption of TiCl_3-catalyzed NaAlH_4 was again carried out in two steps. In the first step, the $\text{NaAlH}_4 \rightarrow 1/3\text{Na}_3\text{AlH}_6 + 2/3\text{Al}$ decomposition reaction was performed at 80°C. When this reaction was complete the desorbed hydrogen pressure was too near the plateau pressure for the second reaction to proceed. Therefore, to drive the decomposition of Na_3AlH_6 the sample temperature was raised to 111°C. Both of the decomposition reactions were recorded in a single series of in-situ XRD scans. Once again, these have been compiled into a dynamic representation shown in Figure 2a. It is clear from the starting diffraction pattern that, despite a 5th cycle charging at 125°C and 75 bar for 24 hours, the sample was not completely re-hydrided. Unlike the absorption measurements, the sample’s hydrogen content during desorption was directly determined by measuring the increase in pressure (Figure 2b). The following reaction rates were determined from these curves: ($\text{NaAlH}_4 \rightarrow 1/3\text{Na}_3\text{AlH}_6 + 2/3\text{Al}$) = 0.06 wt.%H$_2$/hour and ($\text{Na}_3\text{AlH}_6 \rightarrow 3\text{NaH} + \text{Al}$) = 0.02 wt.%H$_2$/hour. Because of the temperature difference these rates are of about the same order of magnitude. These rates imply that TiCl_3-catalyzed NaAlH_4 would take about 6.5 days to desorb completely under these conditions.
3.3. **Catalyst doping**

The interaction between NaAlH$_4$ and TiCl$_3$ was also investigated by XRD. Two different samples were prepared by dry ball-milling solid NaAlH$_4$ in argon for 3 hours. One sample was milled without any catalyst and the other was milled together with 9 mol.% solid TiCl$_3$. The XRD patterns of these two samples are compared in Figure 3. Diffraction peaks from TiCl$_3$ are not observed in the sample to which TiCl$_3$ was added. On-the-other-hand, NaCl is clearly present. These measurements demonstrate that NaAlH$_4$ and TiCl$_3$ react during the milling process to form NaCl. This finding is significant with respect to understanding the nature of the catalyst and its role in enhancing both the hydrogen absorption and desorption processes.

Another important observation is that NaAlH$_4$ decomposes to a considerable degree during mechanical milling, but only when TiCl$_3$ is added. This can be seen in the greatly reduced intensities of the NaAlH$_4$ peaks and the presence of reflections from Na$_3$AlH$_6$ and Al (XRD pattern of the catalyzed sample Figure 3). This indicates that TiCl$_3$ adds a component which acts as a potent catalyst in the desorption of NaAlH$_4$, even at the only moderately elevated temperatures created during ball milling.
4. Conclusion and outlook

Hydrogen absorption and desorption from NaAlH₄ doped with 2mol.% TiCl₃ was measured by dynamic in-situ x-ray diffraction under conditions similar to those found in fuel cell operations. Thanks to the catalyst and doping procedures we have improved the kinetics at these low temperatures (50-110°C) to the point where the hydriding reaction are clearly observed. From these measurements we were able to determine rates of the hydrogen absorption and desorption. XRD measurements also demonstrated that TiCl₃ reacts with NaAlH₄ during the mechanical doping process to form NaCl. Moreover, it was found that the addition of TiCl₃ promotes the partial decomposition of NaAlH₄ into Na₃AlH₆ and Al during the doping process. While these results are significant in demonstrating the achievement of low pressure and temperature reversibility in catalyzed NaAlH₄, much progress to improve kinetics is still required before these materials will be practical for hydrogen storage in fuel cell vehicle applications.

Acknowledgements

Funding is provided by the U.S. Department of Energy, Office of Power Technologies, Hydrogen Program Office under contract No. DE-AC36-83CH10093. We wish to thank Don Meeker and Ken Stewart for their expert technical assistance.
References

Figure Captions

Figure 1. a-b): Compilation of a series of dynamic in-situ x-ray diffraction patterns taken during the 6th hydrogen absorption cycle of a previously desorbed sample (2mol.\% TiCl\textsubscript{3} catalyzed NaAlH\textsubscript{4}). c-d): The quantity of hydrogen absorbed by the sample inferred from the relative XRD peak intensities of Na\textsubscript{3}AlH\textsubscript{6}. Reactions: a-c): NaAlH\textsubscript{4} \rightarrow 1/3Na\textsubscript{3}AlH\textsubscript{6} + 2/3Al; b-d): Na\textsubscript{3}AlH\textsubscript{6} \rightarrow 3NaH + Al.

Figure 2. a): Compilation of a series of dynamic in-situ x-ray diffraction patterns taken during the 6th hydrogen desorption cycle of 2mol.\% TiCl\textsubscript{3} catalyzed NaAlH\textsubscript{4}. b): The quantity of desorbed hydrogen determined volumetrically.

Figure 3. X-ray diffraction patterns taken after three hours of milling NaAlH\textsubscript{4} with and without 9 mol.\% TiCl\textsubscript{3}.
6th hydrogen absorption cycle

Figure 1.
Figure 3.