
SANDIA REPORT
SAND2001-1827
Unlimited Release
Printed June 2001

Synthetic Aperture Radar Image
Formation in Reconfigurable Logic

Peter A. Dudley

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

3

SAND2001-1827
Unlimited Release
Printed June 2001

SYNTHETIC APERTURE RADAR IMAGE FORMATION
IN RECONFIGURABLE LOGIC

Peter A. Dudley
Special Processors & Computers

Sandia National Laboratories
PO Box 5800

Albuquerque, NM 87109-0519

ABSTRACT
This paper studies the implementation of polar format, synthetic aperture radar image formation in modern Field
Programmable Gate Arrays (FPGA's).

The polar format algorithm is described in rough terms and each of the processing steps is mapped to FPGA logic.
This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with airborne image
formation.

4

This page left intentionally blank.

5

1 SUMMARY ...7

2 THE MODERN FPGA..7

2.1 LOGIC CELL ...7
2.2 BLOCK MEMORY ..7
2.3 EMBEDDED MULTIPLIERS..8

3 POLAR FORMAT IMAGE FORMATION ALGORITHM..9

3.1 POLAR FORMAT IMAGE FORMATION WITH SINC INTERPOLATION...9
3.2 POLAR FORMAT IMAGE FORMATION WITH CHIRP-Z TRANSFORM ..10

4 FFT COMPUTATION ..11

5 NUMBER SYSTEMS FOR SAR IMAGE FORMATION ...14

5.1 INTEGER...14
5.2 REDUCED PRECISION FLOATING POINT ...14

5.2.1 The floating point multiplier ...15
5.2.2 The floating point adder ...15
5.2.3 Integer to float converter ..16

6 FPGA LOGIC REQUIREMENTS FOR POLAR FORMAT IMAGE FORMATION17

6.1.1 Integer Logic..17
6.1.2 Reduced Precision Floating Point...18

7 THROUGHPUT REQUIREMENTS FOR POLAR FORMAT IMAGE FORMATION............19

8 DETAILED HARDWARE PARTITIONING ..19

8.1 FPGA PARTITIONING..19
8.2 AREA, COST AND POWER ..20

9 CONCLUSIONS..21

10 REFERENCES ..21

6

LIST OF FIGURES

Figure 1: FPGA Logic Cell... 7
Figure 2: FPGA Block Memory .. 8
Figure 3: FPGA Embedded Multiplier .. 8
Figure 4: Polar Format Processing with Sinc Interpolator .. 10
Figure 5: Polar Format Processing with Chirp-Z ... 11
Figure 6: Chirp-Z Transform .. 11
Figure 7: FFT Calculation in FPGA's.. 12
Figure 8: The Radix 2 Butterfly .. 13
Figure 9: Radix 2 FFT Engine .. 13
Figure 10: Radix 2 Butterfly Pipeline.. 14
Figure 11: Reduced Precision Floating-Point Format... 14
Figure 12: Reduced Precision Floating-Point Multiplier .. 15
Figure 13: Reduced Precision Floating-Point Adder .. 16
Figure 14: Integer to Floating-Point Converter .. 17
Figure 15: Expanded Block Diagram .. 20

7

1 Summary
This paper studies the implementation of polar format, synthetic aperture radar image formation in modern
Field Programmable Gate Arrays (FPGA's).

The polar format algorithm is described in rough terms and each of the processing steps is mapped to
FPGA logic. This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with
airborne image formation.

2 The Modern FPGA
Modern FPGA's are RAM based programmable logic chips that offer performance and size comparable to
application specific integrated circuits but without the high cost of custom masks and fabrication runs.
FPGA's are true standard off-the-shelf parts that are programmed at power-up time. In this paper we will
use the Xilinx Virtex II FPGA family for our analysis.

2.1 Logic Cell
The basic building block of FPGA logic is the logic cell or LC and both major FPGA vendors employ the
same basic structure illustrated in Figure 1. The LC consists of a 16 by 1 Look Up Table (LUT) followed
by an optional register. The LUT can be loaded at power up time to implement any combinational function
of four inputs. Also the LUT can be used as a RAM to provide single or dual port read/write storage or the
RAM can be configured as FIFO memory. Programmable delay lines can also be built up from LUT
RAM's.

Not shown are special carry/cascade paths that combine LC's to efficiently implement arithmetic functions
like adders and high fan-in combinational functions like multiplexors. Addition operations like adders,
accumulators, subtractors or counters require 1 + N LC's where N is the width of the function. For example
a 24-bit accumulator requires 25 LC's. Multiplexors require one LC per pair of input bits so a single 64 to 1
multiplexor needs 32 LC's.

The largest devices contain up to 122,880 LC's. Programmable routing resources allow the LC's to be
interconnected. In this document we will count a LC as consumed if the LUT or the flip-flop or both are
used.

16 x 1
LUT

LE

Figure 1: FPGA Logic Cell

2.2 Block Memory
To make use of the large number of transistors available today FPGA vendors are adding blocks of RAM to
their arrays. The Xilinx Virtex II chips have up to 192 18K-bit blocks per chip. This memory can be
programmed to operate in an amazing variety of configurations. These memories can be RAM or ROM,
dual ported or single ported, synchronous or asynchronous, 512 by 36 or 1K by 18 or 2K by 9 or 4K by 4 or
8K by 2 or 16K by 1. Furthermore the two ports can be different widths so that you can access the memory

8

18 bits wide on port A and 36 bits wide on port B and so on. The blocks can function as First In First Out
(FIFO) buffers or Content Addressable Memories (CAM's).

Memories larger than 18K bits can be created by combining multiple block RAM's. For example, a 4K
deep by 25 wide memory can be implemented using 6 block RAM's (four configured as 2K by 8 and two
configured as 2K by 9).

For this application we will only be using the block RAM's as FIFO's, synchronous dual port RAM's and
ROM's.

ADDR_B
D_B

WE_B
CLK_B

Q_B

ADDR_A
D_A

WE_A
CLK_A

Q_A

18K bits

Figure 2: FPGA Block Memory

2.3 Embedded Multipliers
For each block memory the Virtex II FPGA's provide an embedded 18 by 18 bit multiplier. They can do 18
by 18 two's complement multiply, 17 by 17 bit unsigned multiply and under some circumstances they can
be configured to perform two smaller multiplies such as 5 by5 and 6 by 6 in the same block.

Figure 3: FPGA Embedded Multiplier

9

3 Polar Format Image Formation Algorithm
While the mathematics of synthetic aperture image formation are beyond the scope of this paper two basic
algorithms have been proposed here for polar formati,ii processing in FPGA's. The first requires a unique
sinc interpolator before a 2D FFT. The second eliminates the sinc interpolator and replaces the first FFT
operation with a chirp-Z transform. In either case, a digital receiver producing complex range vectors at
about a 1KHz rate precedes the image formation hardware. For this paper, 4096 by 4096 image size will be
assumed and the results can be scaled for other sizes.

It should be mentioned here that other SAR image formation algorithms exist. In particular, the Overlap
Sub-Aperture (OSA) algorithm may offer advantages in terms of memory size and processing latency. Also
high resolution SAR images generally require auto-focus processing not discussed in this paper and OSA
processing has additional advantages when auto-focus is taken into account.

Polar format processing was selected for this paper because of its relative ease of presentation. Finally, the
image formation algorithm presented here should be considered a skeleton outline for logic estimation
purposes. Important details such as auto-focus are missing.

3.1 Polar Format Image Formation with sinc interpolation
A bare bones block diagram of one polar format image formation algorithm is shown in Figure 4. A digital
receiver produces N length complex range vectors at about a 1KHz rate. Polar format image formation is
inherently an azimuth before range algorithm so an entire N by N image buffer of phase histories must be
stored before image formation on the data can begin. The corner turn memory is an N by N image buffer
that inputs data in row major order and outputs data in column major order. The effect is that data goes into
the corner turn memory in range order and comes out in azimuth order ready for azimuth sinc interpolation.

Sinc interpolation is a resampling process that changes the spacing of samples in the azimuth direction.
Unfortunately sinc interpolation is an unusual signal processing operation that does not lend itself to
systolic processing in fixed hardware. Basically the sinc interpolator is a FIR filter of approximately 17 taps
where the filter coefficients vary in the range and azimuth directions. This means that 17 new filter
coefficients must be loaded for each new complex sample into the interpolator. The filter coefficients could
be pre-computed and stored in a memory array but if the image size is 4096 by 4096 and the coefficients
are 12 bits we would need about a .5 G byte memory organized 204 bits wide by 16 Meg deep. While not
impossible to implement in hardware let's file it under "very difficult" for now and hope that the chirp-z
algorithm saves us.

After the sinc interpolation step, two N length FFT's separated by a corner turn operation are performed.
FFT implementation is discussed in section 4. Finally the complex image is converted to magnitude
display.

Please note that pipelined processing of data is implied here. That is, several successive images are being
calculated simultaneously. For example if image n is being calculated in the range FFT then image n+1 is
being calculated in the azimuth FFT and the digital receiver will be generating image n+2.

10

N Length
Azimuth

FFT

N Length
Range
FFT

High
speed

interfaces

Magnitude

Complex 2D FFT

Azimuth
sinc

Interpolation

Sinc
Vector

Memory

16x17

ADC
250 MHz IF

I/Q
Demod8

1 Gsps

LPF
Decimate
in range

Complex
samples

Azimuth
Prefilter

Decimate
 in
azimuth

PRF ~ 1KHz
Digital Receiver

Corner Turn
Memory

NxN Complex

Corner Turn
Memory

NxN Complex

Figure 4: Polar Format Processing with Sinc Interpolator

Observations:
• Digital receiver produces N length complex range vectors at a pulse repetition frequency (PRF) of

about 1 kHz.
• For N = 4096, 1KHz * 4096 = 4 Meg complex samples per second.
• The image formation engine is pipelined so each stage is only required to process 4 M samples/second.
• Sinc interpolation is "very difficult" in systolic hardware.

3.2 Polar Format Image Formation with chirp-Z transform
The chirp-Z image formation engine of Figure 6 replaces the sinc interpolator and N length azimuth FFT
with a chirp-Z transform. For our purposes the chirp-Z transform in Figure 6 is itself built from three
quadrature Direct Digital Synthesis (DDS) complex sinusoid generators, three complex multipliers and two
2N-length FFT blocks. This seems good because we are replacing the sinc interpolator that we do not know
how to build with blocks that we do know how to build.

11

ADC
250 MHz IF

I/Q
Demod8

1 Gsps

LPF
Decimate
in range

Complex
samples

Azimuth
Prefilter

Decimate
 in azimuth

N Length
Azimuth
Chirp-Z

Transform

N Length
Range
FFT

High
speed

interfaces
Magnitude

PRF ~ 1KHz
Digital Receiver

Corner Turn
Memory

NxN Complex

Corner Turn
Memory

NxN Complex

Figure 5: Polar Format Processing with Chirp-Z

2N Length
FFT

2N Length
IFFT

Azimuth Vectors

from memory buffer To Corner Turn Memory

Complex
Multiply

Quadrature
DDS

Complex
Multiply

Quadrature
DDS

Complex
Vector

Multiply

Quadrature
DDS

Figure 6: Chirp-Z Transform

The chirp Z approach looks like the better alternative. The quadrature DDS blocks are easily derived from
our chirp synthesizers and the corner turn memories and FFT's are required for either approach. Let's go
with the chirp Z to eliminate the odd ball sinc interpolator. Nevertheless, the FFT is still a really tough
block so let's look at that.

Please note that new chirp parameters for the three quadrature DDS blocks must be calculated and loaded at
the PRF rate; that is, once per millisecond.

4 FFT Computation
Many references describe how an N point Discrete Fourier Transform is broken down into successively
smaller transforms until it is composed of a series of two point DFT's known as Radix 2 Butterflies. The
resulting computational load is proportional to N*log2(N) where N is the length of the FFT.iii

12

Figure 7 shows a general block diagram for radix 2 computation of a 4096 point FFT in dedicated logic.iv

Input RAM
Complex samples in

Radix 2
Butterfly
Pipeline

ej2π/N

4K Complex

Output RAM
Complex data out

Figure 7: FFT Calculation in FPGA's

Processing proceeds as follows.
1. Data to be transformed is written sequentially into the input RAM at the clock frequency of the system.
2. To compute the N length FFT using a radix 2 butterfly engine, log2(N) read/write passes are made

through the entire contents of the input RAM where 2 complex numbers are read sequentially from the
input RAM and inputted to the butterfly engine. The 2 complex result values are written back to the
same addresses in the input RAM (in-place processing).

3. The input RAM is dual port so that reads from one address can occur during the same clock cycle as
writes to another address.

4. The WN
k ROM supplies one complex number per each pair of complex input numbers.

5. On the last pass the results of the FFT are written out to the output RAM in correct (non-bit reversed)
order.

The following general points can be made about computing FFT's with dedicated logic as above.
1. Radix 2 FFT needs 12 passes through data to compute 4096 point FFT.
2. New data can be inputted on one out of 12 passes.
3. A radix 4-butterfly engine would require 6 passes on 4096 points. I.e., twice the throughput with four

times the logic.
4. The WN

k ROM supplies data at half the rate as the input RAM so a single ROM can be multiplexed to
provide both the real and imaginary coefficients.

Figure 8 shows symbolic and mathematical representations of the radix 2 butterfly. Four unique multiplies
and six unique additions are required for each pair of complex input numbers.

13

X=(Ar+BrWr-BiWi)+(Ai+BiWr+BrWi)j =(Ar+(BrWr-BiWi))+(Ai+(BiWr+BrWi))j

Y=(Ar-BrWr+BiWi)+(Ai-BiWr-BrWi)j = (Ar-(BrWr-BiWi))+(Ai-(BiWr+BrWi))j

W

A

B Y

X

x
+

+

W

Y

X
A

B

+

-

+

+

Figure 8: The Radix 2 Butterfly

Figure 9 shows a more detailed block diagram of a possible FFT engine. The logic consists of input and
output dual port RAM's, a ROM to supply the complex sinusoidal "twiddle factors", a butterfly pipeline
that does the actual multiplies and additions and a control block that sequences the data and twiddle factors
through the butterfly engine.

RAM
4096 Words

D_A

ADDR_A

WE_A

D_B

ADDR_B

WE_B

Q_B

Q_A

complex

m
ux

Wn

ROM
4K Words

QAddr

RAM
4096 Words

D_A

ADDR_A

WE_A

D_B

ADDR_B

WE_B

Q_B

Q_A

complex

Butterfly
Pipeline

W

D Q

Control

Data In complex

complex

Data Out

Figure 9: Radix 2 FFT Engine

Figure 10 shows a possible processing pipeline for computing FFT butterflies. The real and imaginary parts
of the data samples are applied to the Dr and Di inputs. The B and A complex inputs are applied
sequentially along with the real and imaginary parts of the twiddle factor and a fixed number of clock
cycles later the X and Y complex results appear at the Q outputs.

14

X

Dr
Di

W
X

X
X

+
+

-
+

+
+

+

-
-

m
ux

System clock

D

W

Q

B(0) A(0) B(1) A(1) B(2) A(2) B(3) A(3) B(4) A(4) B(5) A(5) B(6) A(6) B(7) A(7) B(8) A(8)

Wr(0) Wi(0) Wr(1) Wi(1) Wr(2) Wi(2) Wr(3) Wi(3) Wr(4) Wi(4)

...

Wr(4) Wi(4) Wr(4) Wi(4) Wr(4) Wi(4) Wr(4) Wi(4) ...

Q r
Q i

X(0) Y(0) X(1) Y(1) X(2) Y(2) X(3) Y(3) X(4) Y(4) X(5) Y(5) X(6) Y(6) ...

Figure 10: Radix 2 Butterfly Pipeline

5 Number Systems for SAR Image Formation

5.1 Integer
Xilinx Virtex II FPGA has a natural integer word size of 18 bits two's complement due to the dimensions of
the embedded multipliers and block memories.

5.2 Reduced precision floating point
The recent introduction of very large FPGA chips opens up the possibility of doing digital signal
processing in floating point math. Compared to integer math, floating point math provides greatly increased
dynamic range. Also since many algorithms are initially developed in computer simulations using floating
point math, direct mapping to floating point hardware eliminates some of the difficult analysis steps
required when porting to fixed point logic.

Figure 11 shows a reduced precision floating point word that matches well to the features of the new
FPGA's. Specifically the Xilinx Virtex II chips contain 18 bit embedded multipliers and optimized
multiplexing logic. Few good discussions of floating point logicv remain in print so this paper includes
rough block diagrams showing the logic involved for the purposes of counting logic requirements.

IEEE 32 bit
Single

Precision

FPGA 25 bit
Reduced
Precision

Sign
bit

8 bit
exponent

23 bit
mantissa

Sign
bit

8 bit
exponent

16 bit
mantissa

Figure 11: Reduced Precision Floating-Point Format

15

5.2.1 The floating point multiplier
The reduced precision floating point multiplier below requires about 100 LC's and 1 embedded multiplier.

SA SB

XOR

EXPA EXPB MANTA MANTB

+ 17x17 Unsigned
multiply

8 8
16 16

Shift by
0 or 1+

msb
8

8

EXPC MANTC

17

16

SC

Underflow/zero
detect

mux mux

“0000”“00”

168

Figure 12: Reduced Precision Floating-Point Multiplier

5.2.2 The floating point adder
The reduced precision floating point adder below requires about 280 LC's.

16

SA SB

Sign
unit

EXPA EXPB MANTA MANTB

+
shifter

8

8
16 16

8

SC

Shift
control shifter

16 16

mux

Adder/subtractor

16

Leading zeros
encoder

Left/right
shifter

+

8

8

EXPC MANTC

16

mux

“00”

Figure 13: Reduced Precision Floating-Point Adder

5.2.3 Integer to float converter
A final element that might be needed is the integer to floating point converter that uses 62 LC's and 1
embedded multiplier.

A

SC

18

Decimal Point
Calculator

Left
shifter

EXPC MANTC

16

8

ABS

msb
18

17

Figure 14: Integer to Floating-Point Converter

6 FPGA Logic Requirements for Polar Format Image Formation
We now have descriptions of the logic required for image formation and we can go through the blocks and
add up the resources. We can count logic cells, block memories and embedded multipliers inside the
FPGA and external memory chips. Again we are assuming 4096 by 4096 image size.

6.1.1 Integer Logic
Let's count logic assuming 18-bit integer math throughout.

• Corner Turn Memories
Each corner turn memory must hold at least one 4K by 4K 36 bit wide complex image. A common
synchronous DRAM configuration is 16M by 8 bits so we would need 5 chips to hold an image. The easiest
way to implement the corner turn function is to ping pong two full size image memories such that one is
being written row major while the other is being read column major. This requires two full image size
memories or 10 chips per corner turn. Each chip uses about 1/3 square inch of board space.

We can guess about the amount of FPGA logic needed to read and write these memories by looking at the
data and address bus widths. Let's take the address bus width plus the data bus width and multiply by four
(four LC's per address or data bit to control).
(24 address lines + 36 data lines) * (2 banks per CT) = 120 LC's.

• Quadrature DDS's
The DDS synthesizes a complex linear FM chirp by driving two sine lookup ROM's (real and imaginary)
with the output of two cascaded accumulators. The value added to the first accumulator determines the
chirp rate of the sinusoid and the initial value of the first accumulator determines the starting frequency.
The initial value of the second accumulator determines the starting phase of the chirp. An accumulator
length of 64 bits is certainly sufficient and we need the two accumulators plus registers for the three chirp
parameters for a total of about 64 * 5 = 320 LC's.

The largest practical sine ROM for FPGA implementation is 32K by 13 bits and use two block memories,
one embedded multiplier and 30 LC's.

18

• FFT
The chirp-Z transform requires two 2N length FFT's and the range FFT is an N length transform. Each FFT
has input and output RAM's that hold and entire vector of complex samples so the N length FFT needs 4 *
2 * 2 = 16 block memories and the 2N length FFT's require 32 block memories. The twiddle factor ROM
needs to be the same length as the input and output vectors but real and imaginary numbers can be
multiplexed out on successive clock cycles. Also, the twiddle ROM can contain only the first π of data
because the second π is just a negated copy of the same data so the N length ROM needs 2 block memories
and the 2N length ROM needs 4.

The butterfly pipeline uses about 500 LC's and 4 embedded multipliers.

The control logic for the FFT engine is more difficult to estimate but we can see from Figure 9 that it drives
a number of address busses and control lines totaling about 70 lines in all. Let's multiply by 4 and add 36
for the data input multiplexor. This gives 316 LC's for control and a total of 816 LC's per FFT.

• Complex Vector Multiply
The complex multiply actually requires four scalar multiplies and two adds. Resource requirements are 4
embedded multipliers and about 120 LC's per complex multiplier and there are three complex multipliers
per chirp-Z transform.

• Magnitude
This block squares the real and imaginary parts and adds them together. The results pass through a
nonlinear mapping function to approximate a square root. Two embedded multipliers, two block memories
and 36 LC's should do the trick.

function quantity LC's/func block mems/func embedded mults/func
Corner Turn Memory 2 120 0 0
Quadrature DDS 3 350 4 2
Complex Multiply 3 120 0 4
8192 Length FFT 2 816 36 4
4096 Length FFT 1 816 18 4
Magnitude Squared 1 36 2 2
FIFO rate buffer 3 8

Total LC's 4134
Total Block memories 128
Total embedded multipliers 32
Total external memory chips 24

Table 1: Fixed Point Resource Requirements

6.1.2 Reduced Precision Floating Point
Let's add up the logic resources required to do the image formation algorithm using the reduced precision
floating point math of section 5.2. The first thing to note is that the digital receiver produces integer
numbers and there is no value in carrying floating point numbers through the first corner turn memory so
let's convert to floating point just before the chirp-Z transform. Also the quadrature DDS blocks produce
integer values so we have to convert their output to floating point.

19

Going through the block diagram and converting to floating point operations and widening data paths from
18 to 25 bits we get the following results for logic resource requirements.

function quantity LC's/func block mems/func embedded mults/func ext mem chips/func
Integer CT w/fp convert 1 182 0 1 12
FP CT Memory 1 160 0 0 12

Quadrature DDS w/ fp convert 3 422 4 4
Complex Multiply 3 1000 0 4
8192 Length FFT 2 2746 54 4
4096 Length FFT 1 2746 27 4
Magnitude Squared 1 480 2 2
FIFO rate buffer 3 12

Total LC's 13326
Total Block memories 185
Total embedded multipliers 39
Total external memory chips 24

Table 2: Reduced Precision Floating Point Resource Requirements

7 Throughput Requirements for Polar Format Image Formation
For this analysis we still assume a PRF rate of 1 KHz and a 4K by 4K image size. In this scenario the
digital receiver outputs a 4K length complex vector once per millisecond for an average sample rate of 4
million samples per second. Looking at Figure 5 you can see that everything works out well if each block
can just keep up with this rate.

The Virtex II FPGA family has a natural clock frequency of about 125 MHz and synchronous DRAM for
the corner turn memory is readily available in 133 MHz versions for personal computer main memories so
lets assume 125 MHz for the system clock frequency. The complex multipliers, quadrature DDS's and
magnitude functions can all be pipelined to run at the system clock frequency so they are no problem.

The FFT blocks' throughput is reduced by the number of passes through the data. The 8192 point FFT's
require 13 passes through the data so their overall throughput is 125 MHz/13 = 9.6 MHz which is still more
than twice what we need.

The corner turn memories will also require multiple cycles per sample to deal with refresh and other
overhead but this is unlikely to add up to more than 8 cycles per sample so we are good here as well.

FIFO rate buffers can be used to match processing rates between computational blocks.

Everything still looks good so let's pull it all together into partitioned hardware.

8 Detailed Hardware Partitioning

8.1 FPGA Partitioning
In order to build working hardware have to divide the logic so that if fits into FPGA chips that have
sufficient LC's, block RAM, embedded multipliers and I/O pins. The following members of the Xilinx
Virtex II family are listed as likely candidates.

20

part LC's RAM blocks Embedded multipliers Maximum I/O pins
XC2V1000 10,240 40 40 432
XC2V3000 28,672 96 96 720

XC2V10,000 122,880 192 192 1108

Table 3: Virtex II FPGA family members

Let's look at an expanded block diagram to see all the bits and pieces. Figure 15 shows the logic for the
reduced precision floating point case partitioned into three XC2V3000 FPGA's. Please note that while the
entire image former would fit into a single XC2V10,000 this may not be advisable for heat dissipation
reasons.

Digital
Receiver

Corner
Turn

SDRAM

FIFO
4K deep

QDDS

FFT
8192

FFT
8192

FIFO
4K deep

Corner
Turn

SDRAM

FIFO
4K deep

FFT
4096 |x| H.S

Interface

QDDS

QDDS

40

60

60

60

XCV3000 - 5772 LC’s , 80 RAM’s, 21 mults , 330 I/O

130

XCV3000 - 4328 LC’s, 76 RAM’s, 12 mults , 380 I/O

XCV3000 - 3226 LC’s, 44 RAM’s, 6 mults , 220 I/O

VME or PCI
Interface

100

160

Local bus

to all FPGA’s

Figure 15: Expanded Block Diagram

8.2 Area, Cost and Power
We can easily estimate the board area required for the implementation of Figure 15.

Part Package quantity sq in./pkg sq. in $ each $ Watts ea. Watts
XC2V3000 FPGA FF1152 3 2 6 1500 4500 4 12
MT48LC16M8A2 SDRAM FB60 24 0.3 7.2 32 768 0.1 2.4
VME/PCI FPGA PQFP240 1 2 2 200 200 1 1
HS Interface FPGA PQFP240 1 2 2 200 200 1 1

total sq. in. 17.2
total component $ 5668
total Watts 16.4

Table 4: Component Area

This area estimate of 17.2 in. sq. compares favorably with the usable area of a 3U cPCI board which is 5"
by 3.5" by 2 sides = 35 sq. in.

21

This component cost of about $6K can be added to the bare board cost and assembly cost of about $2K and
combined with test and burn-in for about $5K to get to a very rough $10K to $20K manufacturing cost
estimate for an imager former module. This compares favorably with the $250K that is spent for
commercial multiprocessor modules to perform SAR image formation.

The estimate for power dissipated in the XC2V3000 FPGA's is only based on the experience that a really
hard working FPGA dissipates about 4 Watts. More detailed analysis based on the actual logic
implementation and clock speed should be done before committing to this approach.

9 Conclusions
The following points should be made about this analysis of real-time SAR image computation using
FPGA's.
• The polar format image formation algorithm presented is missing important details such as:

• Autofocus
• Data windowing in azimuth and range

• Therefore all estimates are very rough.
• Nevertheless, SAR image formation in FPGA logic appears to be practical.
• 4K by 4K with 1 kHz presumed PRF using reduced precision floating point math appears to fit on a

3U-size cPCI/VME board.
• The FPGA logic is block RAM limited. In the logic partition presented LC's and multipliers are less

than 25% used.
• Deliverable image formation module should cost $10K to $20K to manufacture.
• Module power dissipation would be about 16 Watts.
• The image formation engine described in this document is a very high complexity system requiring

several designer-years of work to produce.

10 References

i Spotlight-Mode Synthetic Aperture Radar : A Signal Processing Approach
by Charles V. Jakowatz (Editor), Daniel E. Wahl, Paul H. Eichel,Kluwer Academic Publishers; ISBN:
0792396774

ii Real-time Polar-Format Processing for Sandia’s Testbed Radar Systems, Armin W. Doerry, June
2001SAND2001-1644P

iii Rabiner, Gold, "Theory and Application of Digital Signal Processing", ISBN: 0-13-914101-4, Prentice-
Hall, Inc. Englewood Cliffs, New Jersey, 1975.

iv High-Performance 1024-Point Complex FFT/IFFT V2.0, Xilinx, Inc. July 5 2000, URL:
http://www.xilinx.com/

v Introduction to Arithmetic for Digital Systems Designers by Shlomo Waser and Michael J. Flynn, ISBN
0-03-060571-7, CBS College Publishing 1982.

22

Distribution

1 MS 0529 B. C. Walker 2308

1 MS 0503 A. Schauer 2341
2 MS 0503 P. A. Dudley 2341

1 MS 0519 G. R. Sloan 2345
1 MS 0519 A. W. Doerry 2345
1 MS 0519 D. F. Dubbert 2345
1 MS 0519 S. S. Kawka 2345

1 MS 0519 B. L. Remund 2348
1 MS 0519 T. P. Bielek 2348
1 MS 0519 B. L. Burns 2348
1 MS 0519 S. M. Devonshire 2348
1 MS 0519 J. A. Hollowell 2348
1 MS 0519 M. S. Murray 2348
1 MS 0519 J. W. Redel 2348

1 MS 0519 R. M. Axline 2344

1 MS 0529 C. W. Ottesen 2346

1 MS 1207 C. V. Jakowatz 5912

1 MS0859 R. L. Williams 15351

1 MS 9018 Central Technical Files 8945-1
2 MS 0899 Technical Library 9616
1 MS 0612 Review & Approval Desk 9612

for DOE/OSTI

	ABSTRACT
	1 Summary
	2 The Modern FPGA
	2.1 Logic Cell
	2.2 Block Memory
	2.3 Embedded Multipliers

	3 Polar Format Image Formation Algorithm
	3.1 Polar Format Image Formation with sinc interpolation
	3.2 Polar Format Image Formation with chirp-Z transform

	4 FFT Computation
	5 Number Systems for SAR Image Formation
	5.1 Integer
	5.2 Reduced precision floating point

	6 FPGA Logic Requirements for Polar Format Image Formation
	7 Throughput Requirements for Polar Format Image Formation
	8 Detailed Hardware Partitioning
	8.1 FPGA Partitioning
	8.2 Area, Cost and Power

	9 Conclusions
	10 References
	Distribution

