Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part II: Laboratory Proof-of-Principle

PDF Version Also Available for Download.

Description

Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine is ... continued below

Physical Description

vp.

Creation Information

Lawler, J.S. October 29, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 34 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine is greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.

Physical Description

vp.

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111875
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788592
  • Archival Resource Key: ark:/67531/metadc725506

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 29, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 24, 2016, 9:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 34

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lawler, J.S. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part II: Laboratory Proof-of-Principle, article, October 29, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc725506/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.